Mitogenomes from Avar nomadic elite show Inner Asian origin

ring-pommel-swords

Inner Asian maternal genetic origin of the Avar period nomadic elite in the 7th century AD Carpathian Basin, by Csáky et al. bioRxiv (2018).

Abstract (emphasis mine):

After 568 AD the nomadic Avars settled in the Carpathian Basin and founded their empire, which was an important force in Central Europe until the beginning of the 9th century AD. The Avar elite was probably of Inner Asian origin; its identification with the Rourans (who ruled the region of today’s Mongolia and North China in the 4th-6th centuries AD) is widely accepted in the historical research.

Here, we study the whole mitochondrial genomes of twenty-three 7th century and two 8th century AD individuals from a well-characterised Avar elite group of burials excavated in Hungary. Most of them were buried with high value prestige artefacts and their skulls showed Mongoloid morphological traits.

The majority (64%) of the studied samples’ mitochondrial DNA variability belongs to Asian haplogroups (C, D, F, M, R, Y and Z). This Avar elite group shows affinities to several ancient and modern Inner Asian populations.

The genetic results verify the historical thesis on the Inner Asian origin of the Avar elite, as not only a military retinue consisting of armed men, but an endogamous group of families migrated. This correlates well with records on historical nomadic societies where maternal lineages were as important as paternal descent.

mds-ancient-avar-elite
MDS with 23 ancient populations. The Multidimensional Scaling plot is based on linearised Slatkin FST values that were calculated based on whole mitochondrial sequences (stress value is 0.1581). The MDS plot shows the connection of the Avars (AVAR) to the Central-Asian populations of the Late Iron Age (C-ASIA_LIAge) and Medieval period (C-ASIA_Medieval) along coordinate 1 and coordinate 2, which is caused by non-significant genetic distances between these populations. The European ancient populations are situated on the left part of the plot, where the Iberian (IB_EBRAge), Central-European (C-EU_BRAge) and British (BRIT_BRAge) populations from Early Bronze Age and Bronze Age are clustered along coordinate 2, while the Neolithic populations from Germany (GER_Neo), Hungary (HUN_Neo), Near-East (TUR_ _Neo) and Baltic region (BALT_Neo) are located on the skirt of the plot along coordinate 1. The linearised Slatkin FST values, abbreviations and references are presented in Table S4.

Interesting excerpts:

The mitochondrial genome sequences can be assigned to a wide range of the Eurasian haplogroups with dominance of the Asian lineages, which represent 64% of the variability: four samples belong to Asian macrohaplogroup C (two C4a1a4, one C4a1a4a and one C4b6); five samples to macrohaplogroup D (one by one D4i2, D4j, D4j12, D4j5a, D5b1), and three individuals to F (two F1b1b and one F1b1f). Each haplogroup M7c1b2b, R2, Y1a1 and Z1a1 is represented by one individual. One further haplogroup, M7 (probably M7c1b2b), was detected (sample AC20); however, the poor quality of its sequence data (2.19x average coverage) did not allow further analysis of this sample.

European lineages (occurring mainly among females) are represented by the following haplogroups: H (one H5a2 and one H8a1), one J1b1a1, three T1a (two T1a1 and one T1a1b), one U5a1 and one U5b1b (Table S1).

We detected two identical F1b1f haplotypes (AC11 female and AC12 male) and two identical C4a1a4 haplotypes (AC13 and AC15 males) from the same cemetery of Kunszállás; these matches indicate the maternal kinship of these individuals. There is no chronological difference between the female and the male from Grave 30 and 32 (AC11 and AC12), but the two males buried in Grave 28 and 52 (AC13 and AC15) are not contemporaries; they lived at least 2-3 generations apart.

ward-clustering-ancient-populations
Ward type clustering of 44 ancient populations. The Ward type clustering shows separation of Asian and European populations. The Avar elite group (AVAR) is situated on an Asian branch and clustered together with Central Asian populations from Late Iron Age (C-ASIA_LIAge) and Medieval period (C-ASIA_Medieval), furthermore with Xiongnu period population from Mongolia (MON_Xiongnu) and Scythians from the Altai region (E-EU_IAge_Scyth). P values are given in percent as red numbers on the dendogram, where red rectangles indicate clusters with significant p values. The abbreviations and references are presented in Table S2.

The Avar period elite shows the lowest and non-significant genetic distances to ancient Central Asian populations dated to the Late Iron Age (Hunnic) and to the Medieval period, which is displayed on the ancient MDS plot (Fig. 4); these connections are also reflected on the haplogroup based Ward-type clustering tree (Fig. 3). Building of these large Central Asian sample pools is enabled by the small number of samples per cultural/ethnic group. Further mitogenomic data from Inner Asia are needed to specify the ancient genetic connections; however, genomic analyses are also set back by the state of archaeological research, i.e. the lack of human remains from the 4th-5th century Mongolia, which would be a particularly important region in the study of the Avar elite’s origin.

The investigated elite group from the Avar period elite also shows low genetic distances and phylogenetic connections to several Central and Inner Asian modern populations. Our results indicate that the source population of the elite group of the Avar Qaganate might have existed in Inner Asia (region of today’s Mongolia and North China) and the studied stratum of the Avars moved from there westwards towards Europe. Further genetic connections of the Avars to modern populations living to East and North of Inner Asia (Yakuts, Buryats, Tungus) probably indicate common source populations.

mds-eurasian-avar-elite-group
MDS with the 44 modern populations and the Avar elite group. The Multidimensional Scaling plot is displayed based on linearised Slatkin FST values calculated based on whole mitochondrial sequences (stress value is 0.0677). The MDS plot shows differentiation of European, Near-Eastern, Central- and East-Asian populations along coordinates 1 and 2. The Avar elite (AVAR) is located on the Asian part of plot and clustered with Uyghurs from Northwest-China (NW-CHIN_UYG) and Han Chinese (CHIN), as well as with Burusho and Hazara populations from the Central-Asian Highland (Pakistan). The linearised Slatkin FST values, abbreviations and references are presented in Table S5.

Sadly, no Y-DNA is available from this paper, although haplogroups Q, C2, or R1b (xM269) are probably to be expected, given the reported mtDNA. A replacement of the male population with subsequent migrations is obvious from the current distribution of Y-DNA haplogroups in the Carpathian Basin.

Hungarians and Corded Ware

Ancient Hungarians are important to understand the evolution, not only of Ugric, but also of Finno-Ugric peoples and their origin, since they show a genetic picture before more recent population expansions, genetic drift, and bottlenecks in eastern Europe.

By now it is evident that the migration of Magyar clans from their homeland in the Cis-Urals region (from the 4th century AD on) happened after the first waves of late and gradual expansion of N1c subclades among Finno-Ugric peoples, but before the bottlenecks seen in modern populations of eastern Europe.

In Ob-Ugric peoples, from the scarce data found in Pimenoff et al. (2018), we can see how Siberian N subclades expanded further after the separation of Magyars, evidenced by the inverted proportion of haplogroups R1a and N in modern Khantys and Mansis compared to Hungarians, and the diversity of N subclades compared to modern Fennic peoples.

Similarly to Hungarians, the situation of modern Estonians (where R1a and N subclades show approximately the same proportion, ca. 33%) is probably closer to Fennic peoples in Antiquity, not having undergone the latest strong founder effect evident in modern Finns after their expansion to the north.

middle-age-hungarian
Hungarian expansion from the 4th to the 10th century AD.

Modern Hungary

This is data from recent papers, summed up in Wikipedia:

  • In Semino et al. (2001) they found among 45 Palóc from Budapest and northern Hungary: 60% R1a, 13% R1b, 11% I, 9% E, 2% G, 2% J2.
  • In Csányi et al. (2008) Among 100 Hungarian men, 90 of whom from the Great Hungarian Plain: 30% R1a, 15% R1b, 13% I2a1, 13% J2, 9% E1b1b1a, 8% I1, 3% G2, 3% J1, 3% I*, 1% E*, 1% F*, 1% K*. Among 97 Székelys, in Romania: 20% R1b, 19% R1a, 17% I1, 11% J2, 10% J1, 8% E1b1b1a, 5% I2a1, 5% G2, 3% P*, 1% E*, 1% N.
  • In Pamjav et al. (2011), among 230 samples expected to include 6-8% Gypsy peoples: 26% R1a, 20% I2a, 19% R1b, 7% I, 6% J2, 5% H, 5% G2a, 5% E1b1b1a1, 3% J1, <1% N, <1% R2.
  • In Pamjav et al. (2017), from the Bodrogköz population: R1a-M458 (20.4%), I2a1-P37 (19%), R1b-M343 (15%), R1a-Z280 (14.3%), E1b-M78 (10.2%), and N1c-Tat (6.2%).

NOTE. The N1c-Tat found in Bodrogköz belongs to the N1c-VL29 subgroup, more frequent among Balto-Slavic peoples, which may suggest (yet again) an initial stage of the expansion of N subclades among Finno-Ugric peoples by the time of the Hungarian migration.

This is the data from FTDNA group on Hungary (copied from a Wikipedia summary of 2017 data):

  • 26.1% R1a (15% Z280, 6.5% M458, 0.9% Z93=>S23201, 3.7% unknown)
  • 19.2% R1b (6% L11-P312/U106, 5.3% P312, 4.2% L23/Z2103, 3.7% U106)
  • 16.9% I2 (15.2% CTS10228, 1.4% M223, 0.5% L38)
  • 8.3% I1
  • 8.1% J2 (5.3% M410, 2.8% M102)
  • 6.9% E1b1b1 (6% V13, 0.3% V22, 0.3% M123, 0.3% M81)
  • 6.9% G2a
  • 3.2% N (1.4% Z9136, 0.5% M2019/VL67, 0.5% Y7310, 0.9% Z16981)- note: only unrelated males are sampled
  • 2.3% Q (1.2% YP789, 0.9% M346, 0.2% M242)
  • 0.9% T
  • 0.5% J1
  • 0.2% L
  • 0.2% C

R1a-Z280 stands out in FDNA (which we have to assume has no geographic preference among modern Hungarians), while R1a-M458 is prevalent in the north, which probably points to its relationship with (at least West) Slavic populations.

Ancient Hungarians

We already knew that Hungarians show similarities with Srubna and Hunnic peoples, and this paper shows a good reason for the similarities with the Huns.

Also, recent population movements in the region (before the Avars) probably increased the proportion of R1b-L23 and I1 subclades (related to Roman and Germanic peoples) as well as possibly R1a-Z283 (mainly M458, related to the expansion of Slavs). From Understanding 6th-century barbarian social organization and migration through paleogenomics, by Amorim et al. (2018):

szolad-collegno
Y-chromosome haplogroup attribution for 37 medieval and 1 Bronze age individuals.

NOTE. The sample SZ15, of haplogroup R1a1a1b1a3a (S200), belongs to the Germanic branch Z284, which has a completely different history with its integration into the Nordic Bronze Age community.

Interesting is the Szólád Bronze Age sample of R1a1a1b2a2a (Z2123) subclade (ca. 2100-1700 BC), which is possibly the same haplogroup found in King Béla III [Z93+ (80.6%), Z2123+ (10.8%)]*. Nevertheless, Z2123 refers to an upper clade, found also in East Andronovo sites in Narasimhan et al. (2018), as well as in the modern population of the Tarim Basin.

NOTE. For more on the analysis of probability of the actual subclade, see here.

Bronze Age R1a-Z93 samples of central-east Europe – like the Balkans BA sample (ca. 1750-1625 BC) from Merichleri, of R1a1a1b2 subclade – correspond most likely to the expansion of Iranian-speaking peoples in the early 2nd millennium BC, probably to the westward expansion of the Srubna culture.

The specific subclade of King Béla III, on the other hand, probably corresponds to the more recent expansion of Magyar tribes settled in the region during the 9th century AD, so the specific subclade must have separated from those found in central-east Europe and in Andronovo during the Corded Ware expansion.

r1a-z282-z93-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups. Notice the potential Finno-Ugric-associated distribution of Z282 (including M558, a Z280 subclade) according to ancient maps; the northern Eurasian finds of Z2125 (upper clade of Z2123); and the potential of M458 subclades representing a west-east expansion of Balto-Slavic as a western outgroup of an original Fenno-Ugric population, equivalent to Z284 in Scandinavia.

The study by Csányi et al. (2008), where the Tat C allele was found in 2 of 4 ancient samples, showed thus a potential 50:50 relationship of N1c in ancient Magyars, which is striking given the modern 1-3% a mere 1,000 years later, without any relevant population movement in between. This result remains to be reproduced with the current technology.

In fact, recent studies of ancient Magyars, from the 10th to the 12th century, have not shown any N1c sample, and have confirmed instead the ancient presence of R1a (two other samples, interred near Béla III), R1b (four samples), I2a (two samples) J1, and E1b, a mixed genetic picture which is more in line with what is expected.

So the question that I recently posed about east Corded Ware groups remains open: were Proto-Ugric peoples mainly of R1a-Z282 or R1a-Z93 subclades? Without ancient DNA from Middle Dnieper, Fatyanovo, Afanasevo, and the succeeding cultures (like Netted Ware) in north-eastern Europe, it is difficult to say.

It is very likely that they are going to show mainly a mixture of both R1a-Z282 and R1a-Z93 lineages, with later populations showing a higher proportion of R1a-Z280 subclades. Whether this mixture happened already during the Corded Ware period, or is the result of later developments, is still unknown. What is certain is that Hungarian N1a1a1a-L708 subclades belong to more recent additions of Siberian haplogroups to the Ugric stock, probably during the Iron Age, just centuries before the Magyar expansion.

Related

The origin of social complexity in the development of the Sintashta culture

kamenni-ambar

Very interesting PhD thesis by Igor Chechushkov, Bronze Age human communities in the Southern Urals steppe: Sintashta-Petrovka social and subsistence organization (2018).

Abstract:

Why and how exactly social complexity develops through time from small-scale groups to the level of large and complex institutions is an essential social science question. Through studying the Late Bronze Age Sintashta-Petrovka chiefdoms of the southern Urals (cal. 2050–1750 BC), this research aims to contribute to an understanding of variation in the organization of local communities in chiefdoms. It set out to document a segment of the Sintashta-Petrovka population not previously recognized in the archaeological record and learn about how this segment of the population related to the rest of the society. The Sintashta-Petrovka development provides a comparative case study of a pastoral society divided into sedentary and mobile segments.

Subsurface testing on the peripheries of three Sintashta-Petrovka communities suggests that a group of mobile herders lived outside the walls of the nucleated villages on a seasonal basis. During the summer, this group moved away from the village to pasture livestock farther off in the valley, and during the winter returned to shelter adjacent to the settlement. This finding illuminates the functioning of the year-round settlements as centers of production during the summer so as to provide for herd maintenance and breeding and winter shelter against harsh environmental conditions.

The question of why individuals chose in this context to form mutually dependent relationships with other families and thus give up some of their independence can be answered with a combination of two necessities: to remain a community in a newly settled ecological niche and to protect animals from environmental risk and theft. Those who were skillful at managing communal construction of walled villages and protecting people from military threats became the most prominent members of the society. These people formed the core of the chiefdoms but were not able to accumulate much wealth and other possessions. Instead, they acquired high social prestige that could even be transferred to their children. However, this set of relationships did not last longer than 300 years. Once occupation of the region was well established the need for functions served by elites disappeared, and centralized chiefly communities disintegrated into smaller unfortified villages.

sintashta-petrovka-archaeological
Research area: map of the Sintashta-Petrovka archaeological sites. Settlements: 101 – Stepnoye; 102 – Shibaeyvo 1; 103 – Chernorechye 3; 104 – Bakhta; 105 – Paris; 106 – Isiney; 107 – Kuisak; 108 – Ust’ye; 109 – Rodniki; 110 – Konoplyanka; 111 – Zhurumbay; 112 – Arkaim; 113 – Sintashta; 114 – Sintashta 2; 115 – Kamennyi Ambar; 116 – Alandskoye; 117 – Chekatay; 118 – Selek; 119 – Sarym- Sakly; 120 – Kamysty; 121 – Kizilskoye; 122 – Bersuat; 123 – Andreyevskoe; 124 – Ulak; 125 – Streletskoye; 126 – Zarechnoye 4; 127 – Kamennyi Brod. Cemeteries: 201 – Ozernoye 1; 202 – Krivoe Ozero; 203 – Stepnoye M; 204 – Kamennyi Ambar-5; 205 – Stepnoye 1; 206 – Tsarev Kurgan; 207 – Ubagan 2; 208 – Solntse 2; 209 – Bolshekaraganskyi; 210 – Aleksandrovsky 4; 211 – Sintashta; 212 – Solonchanka 1a; 213 – Knyazhenskyi; 214 – Bestamak; 215 – Ishkinovka 1; 216 – Ishkinovka 2; 217 – Novo–Kumakskyi; 218 – Zhaman–Kargala 1; 219 – Tanabergen 2; 220 – Novo-Petrovka; 221 – Semiozernoye 2; 222 – Khalvayi 3

Some interesting excerpts (emphasis mine):

The quintessential archaeological evidence of Sintashta-Petrovka communities takes the form of highly nucleated and fortified settlements paired with easily-recognized kurgan (burial mound) cemeteries. This pattern spread across Northern Central Eurasia in a relatively short period of about 300 years (cal. 2050–1750 BC), and the period consists of two chronological phases (Hanks et al. 2007). The earlier Sintashta phase (cal. 2050–1850 BC) is distinguished from the later Petrovka phase (cal. 1850–1750 BC) by some differences in ceramic styles and some techniques of bronze metallurgy (Degtyareva et al. 2001; Vinogradov 2013). Bronze Age subsistence patterns apparently relied on a wide variety of resources, among which meat and milk production played a major role (…). The most outstanding graves are individual male burials accompanied by weaponry (projectile weapons and chariots), the insignia of power (stone mace heads), craft tools, and a specific set of sacrificed animals (horses, cows, and dogs). (…) there were at least two adults buried with chariots and one with sacrificed horses (Epimakhov 1996b). Chariots – the most famous and spectacular material component of Sintashta-Petrovka society – are known exclusively from burial contexts. Two-wheeled vehicles represent complex technology, incorporating some crucial innovations and the investment of substantial resources. Highly developed craft and military skills were required for their production and use. Burials with chariots probably represent military elites who used them (Anthony 2009; Chechushkov 2011; Frachetti 2012:17) and played especially important social roles in Sintashta-Petrovka societies. This pattern strongly suggests that military leadership extended into the realm of ideology and general social prestige (Earle 2011:32–33).

The following sequence of archaeological cultures – based on the sample of radiocarbon dates (Epimakhov 2007a; 2010a), – is adopted: (1) the Sintashta-Petrovka phase 1 dated to cal. 2050–1750 BC and (2) the Srubnaya-Alakul’ phase 2 dated to cal. 1750–1350 BC.

(…) control of craft might have provided a source of power for elites in the fortified settlements (Steponaitis 1991). Some bronze tools, such as chisels, adzes, and handsaws seem more abundantly represented at some fortified settlements than at others, raising the possibility of a stronger focus on different craft products and some degree of exchange and interdependence between fortified settlements. (…) Zdanovich (1995:35) estimates 2500 people within the walls at Arkaim. He bases his conclusion an average house size of 140 m2 and the idea that Arkaim households consisted of an extended family of several generations, similar to Iroquois longhouse inhabitants. He also suggests that the entire population did not live in the “town” all the time, but moved around. The fully permanent residents were shamans, warriors, and craftsmen, i.e., elites and attached specialists.

Summarizing, excavated households represent very strongly similar architectural patterns, similar levels of wealth and prestige, little productive differentiation, and no evidence of elites amassing wealth through control of craft or subsistence production or any other mechanism (Earle 1987). These observations sharply contradict the burial record, where strong social differentiation is visible. The description above recalls the Regional Classic period elites of the Alto Magdalena whose standard of living differed little if at all from anyone else’s. Their elaborate tombs and sculptures suggest supernatural powers and ritual roles were much more important bases of their social prominence than economic control or accumulation of wealth (Drennan 1995:96–97). On the other hand, craft activities (especially metal production) are highly obvious in the Sintashta-Petrovka settlements. Defensive functions could also have played some role for the entire population. This benefit might attract people in an unstable or wild environment to spend much of their time in or near such settlements (Earle 2011:32–33). Since the construction of ditches and outer walls, as well as dwellings with shared walls, requires planning and organization, purposeful collective effort must have been a key feature of Sintashta-Petrovka communities (Vinogradov 2013; Zdanovich 1995). Sintashta-Petrovka communities thus evidence substantial investment of effort in non-subsistence activities, potentially resulting in a subsistence deficit in an economy with a heavy emphasis on herding. Altogether, this makes it plausible to think of the known Sintashta-Petrovka communities as special places where elites for whom military activities were important resided, and where metal production and possibly other crafts were carried out. It remains unclear just how a subsistence economy relying heavily on herding was managed from these substantial sedentary communities. Moving herds around the landscape seasonally is generally thought to be a part of subsistence strategy in Inner Eurasia (Frachetti 2008; Bachura 2013). In this area migration to exploit seasonal pastures is the best strategy for maintaining a regular supply of food for livestock due to shortages of capital or of labor pool to produce, harvest, and store fodder (Dyson-Hudson and Dyson-Hudson 1980:17). The recent stable isotope studies support this notion showing high likelihood that during the Bronze Age livestock was raised locally (Kiseleva et al. 2017).

The above raises the possibility that the residential remains that have been excavated within the fortifications of Sintashta-Petrovka communities represent only a portion of the population (Hanks and Doonan 2009, Johnson and Hanks 2012). It could be (along with the general lines suggested by D. Zdanovich [1997]) that the archaeological remains of the ordinary people who made up the majority of the population, built the impressive fortifications and stoked the subsistence economy have gone largely undetected. In global comparative perspective, many societies with the features known for Sintashta-Petrovka organization consisted of elite central-place settlements and hinterland populations. In such a scenario, the “missing” portion of the Sintashta population would reside in smaller unfortified settlements scattered around in the vicinity of the fortified ones.

kamenni-ambar-cultural-layer

In terms of wealth and productive differentiation, the inside assemblage of Kamennyi Ambar demonstrates a higher degree of richness and diversity in its material assemblage, leading to the conclusion that the outside materials may represent a semi-mobile group of people who used significantly less durable materials and accumulated less possessions. As for the diversity within the inside artifact assemblage, some households at Kamennyi Ambar demonstrate more diverse artifact assemblages than others, as well as bigger sizes, that could be related to differences in productive activities and/or wealth differentiation between families. A focus on specific objects of ceramic production in House 1 suggests some degree of productive specialization, while the elite goods in House 5 clearly point out the presence of elite members of the society.

There are two possible social scenarios that explain the settlement situation during the Sintashta-Petrovka phase. The first scenario considers all three communities as simultaneous and the second scenario suggests seeing the three sites as the same community that moved around the landscape during the Late Bronze Age in order to keep the pasture grounds from degradation.

Since no remains of permanent structures were found and any people living outside the walls must have stayed in temporary shelters. If this was the case, then the outside part of the population consisted of a semi-mobile group of people who moved to live near the fortified settlement during the winter. The pattern of animal slaughtering supports this conclusion. Animal teeth found near Kamennyi Ambar and Konoplyanka demonstrate a tendency for animal butchering during the fall, throughout the winter and spring, with less evidence of summer meat consumption. Moreover, since the Bronze Age subsistence strategy relied heavily on pastoralism, herds had to be grazed during the summer and kept safe during the winter. This strongly suggests that the part of the population responsible for management of animals spent their time in the summer pastures with the livestock. During the winter the animals had to be kept in the warm and safe environment of the walled settlements (as suggested by the highest level of phosphorus on the house floors) while the herders stayed in portable shelters in close to the walls.

(…) the outsiders used a less diverse set of tools, as well as less durable materials (for example, wooden instead of metal) in their everyday life and did not accumulate much in the way of archaeologically visible possessions. On the other hand, a few stone and lithic artifacts demonstrate that craft activities were carried out using cheap and abundant raw materials. The artefact assemblages also point out that the people inside accumulated wealth in the form of material belongings and luxury goods, especially, things like metal artifacts and symbolic or military-related stone artifacts, while people outside did not do that. However, the presence of semi-precious stones could signify some kind of wealth accumulation by the segment of population outside the walls. Since there are limits to our ability to assess social relationships from material remains, it is difficult to say if the people who lived outside the walls were oppressed or less respected. Their possible concentration on herding-related activities and livestock keeping might suggest less prestigious social status. The most prominent members of the society were, nonetheless, buried with the attributes of warriors or craft specialists, not those of shepherds, suggesting that those involved in livestock management had less social prestige.

Furthermore, Kuzmina (1994:72) cites linguistic studies demonstrating that the Sanskrit word for a permanent village earlier meant a circle of mobile wagon homes, situated together for defensive purposes for an overnight camp (Kuzmina 1994:72).

The likely population of semi-mobile herders represented some 30%–60% of the entire local community, while the other of 40%–70% were inhabitants of the walled settlement. The almost completely excavated kurgan cemetery of Kamennyi Ambar-5 (only two kurgans remain unstudied) yielded about 100 individuals, or about 2%–5% of the total of 4,896±1,960 individuals in four generations who lived at the nearby settlement for 100 years. In other words, no more than 10% of the population was entitled to be buried under the kurgan mound and this proportion can be taken as an estimate of those with elevated social status. Perhaps, these elites were kin, since analysis of the burial patterns suggests sex/age rather than wealth/prestige differentiation between buried individuals within this elite group (Epimakhov and Berseneva 2011; Ventresca Miller 2013). The remaining non-elite members of the permanently resident community, then, represented some 30%–60% of the complete local community, but did not show evidence of standards of living particularly lower than the elites eventually interred in the kurgan.

(…) The buried population in the Sintashta Cemetery is about 80 individuals or only about 2%–3% of the total estimated population. However, these few individuals were buried with extremely rich offerings, like complete chariots, decorations made of precious metals or sacrifices of six horses (equal to about 900 kg of meat), etc. With such a low proportion of the population assigned such high prestige, the Sintashta local community can easily be labeled a local chiefdom. In Pitman and Doonan’s view (2018) the social structure of the chifedom consisted of a chief and his kin at the highest level; warriors, religious specialists, and craftsmen in the middle; and the pastoral community at the bottom level.

kamenni-ambar-excavations

In the Bronze Age, the people who comprised the majority of the permanent population were involved in craft activities, including extraction of copper ores, metallurgy, bone, leather, and woodwork. The most important and labor-intensive part of the economy, however, was haymaking. The evidence of hay found in the cultural layer near Kamennyi Ambar supports the idea that animals were fed during the winter. Nowadays, hay cutting is typically done in July-August, the period of most intensive grazing for animals. Thus, the part of the collective that remained in the settlement had to provide the labor force for haymaking.

In the wintertime, the herders returned to the settlements with the herds, and animals were kept inside the walls––a practice which is known archaeologically (Zakh 1995) and ethnographically (Shahack-Gross et al. 2004)––while herders stayed outside in their tents.

In sum, the Sintashta-Petrovka chiefdoms demonstrate a three-part social order. In Kuzmina’s (1994) view, this is similar to the Varna system of ancient India, that consisted of priests (Sansk. Brahmanis), rulers and warriors (Sansk. Kshatriyas), free producers (Sansk. Vaishyas) and laborers and service providers (Sansk. Shudras). In the Sintashta-Petrovka chiefdom, the elite 2%–5% of the population would have consisted of priests and warriors; 48%–55% would have been dependent producers; and 50%–60% would have been herders of lower social rank.

sintashta-petrovka-settlements
The map of the Bronze Age sites in the Karagaily-Ayat Valley Sites of Phase 1: 101 – Konoplyanka; 102 – Zhurumbay; 103 – Kamennyi Ambar; 104 – Kamennyi Ambar-5 Sites of Phase 2: 201 – Konoplyanka 1; 202 – Varshavskoye-1; 203 – Zhurumbay-1; 204 – Varshavskoye-3; 205 – Varshavskoye-5; 206 – Varshavskoye-9; 207 – Kamennyi Ambar-8; 208 – Kamennyi Ambar; 209 – Elizavetpolskoye-3; 210 – Elizavetpolskoye-2; 211 – Karagayli-26; 212 – Elizavetpolskoye-7; 213 – Elizavetpolskoye- 9; 214 – Yuzhno-Stepnoyi (1); 215 – Yuzhno-Stepnoyi (2)

Conclusions

In the case of the Sintashta-Petrovka chiefdoms, the questions of why and how exactly social complexity developed through time and why individuals choose to integrate and give up their independence can be answered as some combination of two necessities: to persist as a larger community in the ecological niche of the newly settled region, and to protect herds from theft.

There is general agreement among researchers that the Sintashta phenomenon had no local roots and originated with a large-scale migration of pastoral communities from Eastern Europe to the marginal area of the Southern Urals. This process forced families to stay together and fueled the necessity in the walled villages for ensuring the reproduction of herds in the extreme climatic conditions of the southern Urals that are colder and dryer than the eastern Black Sea region from which the Sintashta populations are thought to have migrated (Kuzmina 1994, 2007; Anthony 2007; Vinogradov 2011, etc.). At the same time, the herds needed protection from animal and human predators. Probably, the risk of losing animals was a threat to survival that created tensions between neighboring communities, and the Neolithic hunter-gatherers who had populated the Urals before the arrival of Sintashta people could have hunted the domestic animals. Apparently, those who were talented in managing the construction of closely-packed villages surrounded by ditches and walls to protect people and livestock from threats from neighbors, and who otherwise served the community in the newly colonized zone became the most prominent members of society. Theses people formed the core of the Sintashta-Petrovka chiefdom but were not able to accumulate much personal wealth in the form of material possessions. Instead, they acquired high social prestige that could even be transferred to their children (since up to 65% of the buried elite population consists of infants [Razhev and Epimakhov 2005). In this sense, the Sintashta-Petrovka elites were simmilar to their counterparts in the Alto Magdalena of Colombia (Drennan 1995; Gonzalez Fernandez 2007; Drennan and Peterson 2008).

However, this situation did not last longer than 300 years, since after the initial phase of colonization of the Southern Urals was over, the need for social services provided by an elite disappeared and centralized chiefly communities disintegrated into the smaller unfortified villages of the Srubnaya-Alakul’ period.

As I have said many times already (see e.g. here) the outsider pastoralists, forming originally the vast majority of the population, were most likely Pre-Proto-Indo-Iranian speakers of haplogroup R1b-Z2103, and their elite groups (whose inheritance system was based on kinship) probably incorporated gradually Uralic-speaking families of haplogroup R1a-Z93, whose relative importance increased gradually, and then eventually expanded massively with the migrations of Andronovo and Srubna, creating a second Y-chromosome bottleneck that favoured again Z93 subclades. The adaptation of Pre-Proto-Indo-Iranian to the Uralic pronunciation, and the adoption of PII vocabulary in neighbouring Proto-Finno-Ugric bear witness to this process.

Related

Polygyny as a potential reason for Y-DNA bottlenecks among agropastoralists

polygyny-estimates

Open access Greater wealth inequality, less polygyny: rethinking the polygyny threshold model by Ross et al. Journal of the Royal Society Interface (2018).

Interesting excerpts, from the discussion (emphasis mine):

We use cross-cultural data and a new mutual mate choice model to propose a resolution to the polygyny paradox. Following Oh et al. [17], we extend the standard polygyny threshold model to a mutual mate choice model that accounts for both female supply to, and male demand for, polygynous matchings, in the light of the importance of, and inequality in, rival and non-rival forms of wealth. The empirical results presented in figures 5 and 6 demonstrate two phenomena that are jointly sufficient to generate a transition to more frequent monogamy among populations with a co-occurring transition to a more unequal, highly stratified, class-based social structure. In such populations, fewer men can cross the wealth threshold required to obtain a second wife, and those who do may be fabulously wealthy, but—because of diminishing marginal fitness returns to increasing number of marriages—do not acquire wives in full proportion to their capacity to support them with rival wealth. Together, these effects reduce the population-level fraction of wives in polygynous marriages.

Our model demonstrates that a low population-level frequency of polygyny will be an equilibrium outcome among fitness maximizing males and females in a society characterized by a large class of wealth-poor peasants and a small class of exceptionally wealthy elite. Our mutual mate choice model thus provides an empirically plausible resolution to the polygyny paradox and the transition to monogamy which co-occurred with the rise of highly unequal agricultural populations.

polygyny-pastoralists
(a) Mean frequency of married women who are married polygynously by production system (+2 s.e.) using the Standard Cross-Cultural Sample [30]. Rates of polygyny are measured with variable ]872, per cent of wives with co-wives. (b) Rates of monogamy and polygyny by production system are measured with variable ]861, the standard polygamy code. Data on subsistence come from variable ]858, categorized subsistence. In general, agricultural populations show reduced rates of polygyny and increased rates of monogamy relative to other subsistence systems. See electronic supplementary material for more information. (c) Gini of wealth by production system in our sample.

The reasons for this decrease in marginal fitness returns are explained as either a) a potential missing of important rival forms of wealth in the statistical model, or b) one or more of the following reasons:

  • [A] male’s time and attention are rival inputs to his own fitness (…) A single rich man will have to defend his 10 wives from nine unmarried men on average.”As the wealth ratio grows even more skewed, this situation could become increasingly difficult to manage (e.g. requiring the use of eunochs to defend harems [74]).
  • A related possibility is that a growing number of unmarried men could socially censure wealthy polygynous males, imposing costs on them that reduce male demand for and/or female supply to polygynous marriage [23,24]. (…)
  • A third possibility is that sexually transmitted infection (STI) burden [22,75] could diminish returns to polygyny, if polygyny enhances infection rates [76,77]. (…)
  • Finally, impediments to cooperation or even outright conflict among co-wives can be greater as the number of wives increases. Interference competition among co-wives could impose significant fitness costs in settings where effective child rearing benefits from cooperation [79,80].(…)
polygyny-agropastoralists
between the Gini coefficient on completed rival wealth and per cent completed female polygyny.

I have previously argued against some reasons traditionally given to explain the replacement of native male populations after migrations (i.e. polygyny, slavery, targeted male extermination, etc.), because I believe that a gradual successful expansion of patrilineal clans over some generations based on wealth alone is enough to explain the obvious Y-DNA bottlenecks that happened in many different prehistoric and historic cultures (especially among steppe pastoralists, including Indo-Europeans).

I realize that I haven’t really used any study to support my opinion, though, and data from modern and ancient pastoralists from different regions seem to contradict it, so maybe ancient DNA can show that Indo-Europeans had often children with more than one woman at the same time. I don’t remember seeing that kind of information in supplementary materials to date. From memory I can think of maybe two or three examples of agnate siblings published, but I doubt the archaeological age estimation (based on simple observation of skeletal remains) combined with radiocarbon age (usually given with broad CI) could be enough to prove a similar age of conception. Maybe a case of many siblings clearly of the same age and from many different mothers in the same burial could be a strong proof of this…

I recently read that theoretical models are actually trusted by no one except for the researchers who propose them, and experimental data are trusted by everyone except for the researchers who worked with them. I cannot agree more. However, we lack information about this question (as far as I know), so we may have to rely on indirect estimations, like the kind of models presented in the paper (or the one proposed for Post-Neolithic Y-chromosome bottlenecks).

The Late Proto-Indo-European word for bride comes from a root meaning ‘drive, lead’, hence literally ‘deportation’, so the bride was transferred from her father’s family to her husband’s house. Marriage was certainly an asymmetrical contract for its members, and the reconstructible word for ‘dowry’ further supports the weaker position of the wife in it. Also, ancient marriage could differ from a family agreement, because marriage by elopement, bride kidnapping or hostage was probably common (more or less socially regulated) for people belonging the same culture. Apart from this, I don’t know about reconstructed linguistic data pointing to polygyny, and I doubt archaeological data alone – without genetics – can help.

Related