Spread of Y. pestis, earlier than previously thought, may have caused Neolithic decline

spread-yersinia-pestis

Open access Emergence and Spread of Basal Lineages of Yersinia pestis during the Neolithic Decline, by Rascovan et al. Cell (2018)

Abstract (emphasis mine):

Between 5,000 and 6,000 years ago, many Neolithic societies declined throughout western Eurasia due to a combination of factors that are still largely debated. Here, we report the discovery and genome reconstruction of Yersinia pestis, the etiological agent of plague, in Neolithic farmers in Sweden, pre-dating and basal to all modern and ancient known strains of this pathogen. We investigated the history of this strain by combining phylogenetic and molecular clock analyses of the bacterial genome, detailed archaeological information, and genomic analyses from infected individuals and hundreds of ancient human samples across Eurasia. These analyses revealed that multiple and independent lineages of Y. pestis branched and expanded across Eurasia during the Neolithic decline, spreading most likely through early trade networks rather than massive human migrations. Our results are consistent with the existence of a prehistoric plague pandemic that likely contributed to the decay of Neolithic populations in Europe.

spread-yersinia-trypillia
(A) Schematic representation of the trajectories and time periods (thousand years before present, kyr) of major known human migrations in Eurasia during the Neolithic and Bronze Age. The observed geographic distribution and divergence times of Y. pestis strains from the Gok2 and Bronze Age clades cannot be explained by the timings and routes of these human movements.
(B) Geographic distribution of the use of animal traction and wheeled transport across Neolithic and Bronze Age populations in Eurasia, which broadly expanded during the period of 5,500 and 5,000 BP. The expansion of these technological innovations overlaps the predicted period for the expansion of the basal Y. pestis strains.
(C) Timeline indicating the proposed key historical events that contributed to the emergence and spread of plague during the Neolithic.

We have evolved in the interpretation of the plague from 1) a Corded Ware-driven disease, to 2) a steppe disease that was spread by Yamna and Corded Ware, and now 3) a (potentially) Trypillia-driven disease that spread to the west earlier than Yamna and Corded Ware, but probably also later east and west with both.

At least it still seems that the plague and its demographic consequences were a good reason for the expansion of Indo-Europeans and Uralians into Europe, as we thought…

Featured image, from the paper: “The predicted model of early dispersion of Y. pestis during Neolithic and Bronze Age was built by integrating phylogenetic information of Y. pestis strains from this period (Figure 1E), their divergence times (Figure 3), the geographic locations, carbon dating and genotypes of the individuals, and the archaeological record. The model suggests that early Y. pestis strains likely emerged and spread from mega-settlements in Eastern Europe (built by the Trypillia Culture) into Europe and the Eurasian steppe, most likely through human interaction networks. This was facilitated by wheeled and animal-powered transports, which are schematized in the map with red lines with arrows pointing in both senses. Our model builds upon a previous model (Andrades Valtuena et al., 2017) that proposed the spread of plague to be associated with large-scale human migrations (blue line).

Related

A very “Yamnaya-like” East Bell Beaker from France, probably R1b-L151

bell-beaker-expansion

Interesting report by Bernard Sécher on Anthrogenica, about the Ph.D. thesis of Samantha Brunel from Institut Jacques Monod, Paris, Paléogénomique des dynamiques des populations humaines sur le territoire Français entre 7000 et 2000 (2018).

NOTE. You can visit Bernard Sécher’s blog on genetic genealogy.

A summary from user Jool, who was there, translated into English by Sécher (slight changes to translation, and emphasis mine):

They have a good hundred samples from the North, Alsace and the Mediterranean coast, from the Mesolithic to the Iron Age.

There is no major surprise compared to the rest of Europe. On the PCA plot, the Mesolithic are with the WHG, the early Neolithics with the first farmers close to the Anatolians. Then there is a small resurgence of hunter-gatherers that moves the Middle Neolithics a little closer to the WHGs.

From the Bronze Age, they have 5 samples with autosomal DNA, all in Bell Beaker archaeological context, which are very spread on the PCA. A sample very high, close to the Yamnaya, a little above the Corded Ware, two samples right in the Central European Bell Beakers, a fairly low just above the Neolithic package, and one last full in the package. The most salient point was that the Y chromosomes of their 12 Bronze Age samples (all Bell Beakers) are all R1b, whereas there was no R1b in the Neolithic samples.

Finally they have samples of the Iron Age that are collected on the PCA plot close to the Bronze Age samples. They could not determine if there is continuity with the Bronze Age, or a partial replacement by a genetically close population.

PCA-caucasus-yamna
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are interesting samples; In red, likely position of late Yamna Hungary / early East Bell Beakers An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here. To understand the drawn potential Caucasus Mesolithic cluster, see above the PCA from Lazaridis et al. (2018).

The sample with likely high “steppe ancestry“, clustering closely to Yamna (more than Corded Ware samples) is then probably an early East Bell Beaker individual, probably from Alsace, or maybe close to the Rhine Delta in the north, rather than from the south, since we already have samples from southern France from Olalde et al. (2018) with high Neolithic ancestry, and samples from the Rhine with elevated steppe ancestry, but not that much.

This specific sample, if confirmed as one of those reported as R1b (then likely R1b-L151), as it seems from the wording of the summary, is key because it would finally link Yamna to East Bell Beaker through Yamna Hungary, all of them very “Yamnaya-like”, and therefore R1b-L151 (hence also R1b-L51) directly to the steppe, and not only to the Carpathian Basin (that is, until we have samples from late Repin or West Yamna…)

NOTE. The only alternative explanation for such elevated steppe ancestry would be an admixture between a ‘less Yamnaya-like’ East Bell Beaker + a Central European Corded Ware sample like the Esperstedt outlier + drift, but I don’t think that alternative is the best explanation of its position in the PCA closer to Yamna in any of the infinite parallel universes, so… Also, the sample from Esperstedt is clearly a late outlier likely influenced by Yamna vanguard settlers from Hungary, not the other way round…

Unexpectedly, then, fully Yamnaya-like individuals are found not only in Yamna Hungary ca. 3000-2500 BC, but also among expanding East Bell Beakers later than 2500 BC. This leaves us with unexplained, not-at-all-Yamnaya-like early Corded Ware samples from ca. 2900 BC on. An explanation based on admixture with locals seems unlikely, seeing how Corded Ware peoples continue a north Pontic cluster, being thus different from Yamna and their ancestors since the Neolithic; and how they remained that way for a long time, up to Sintashta, Srubna, Andronovo, and even later samples… A different, non-Indo-European community it is, then.

olalde_pca2
Image modified from Olalde et al. (2018). PCA of 999 Eurasian individuals. Marked is the Espersted Outlier with the approximate position of Yamna Hungary, probably the source of its admixture. Different Bell Beaker clines have been drawn, to represent approximate source of expansions from Central European sources into the different regions. In red, likely zone of Yamna Hungary and reported early East Bell Beaker individual from France.

Let’s wait and see the Ph.D. thesis, when it’s published, and keep observing in the meantime the absurd reactions of denial, anger, bargaining, and depression (stages of grief) among BBC/R1b=Vasconic and CWC/R1a=Indo-European fans, as if they had lost something (?). Maybe one of these reactions is actually the key to changing reality and going back to the 2000s, who knows…

Featured image: initial expansion of the East Bell Beaker Group, by Volker Heyd (2013).

Related

Corded Ware—Uralic (IV): Hg R1a and N in Finno-Ugric and Samoyedic expansions

haplogroup-uralians

This is the fourth of four posts on the Corded Ware—Uralic identification:

Let me begin this final post on the Corded Ware—Uralic connection with an assertion that should be obvious to everyone involved in ethnolinguistic identification of prehistoric populations but, for one reason or another, is usually forgotten. In the words of David Reich, in Who We Are and How We Got Here (2018):

Human history is full of dead ends, and we should not expect the people who lived in any one place in the past to be the direct ancestors of those who live there today.

Haplogroup N

Another recurrent argument – apart from “Siberian ancestry” – for the location of the Uralic homeland is “haplogroup N”. This is as serious as saying “haplogroup R1” to refer to Indo-European migrations, but let’s explore this possibility anyway:

Ancient haplogroups

We have now a better idea of how many ancient migrations (previously hypothesized to be associated with westward Uralic migrations) look like in genetic terms. From Damgaard et al. (Science 2018):

These serial changes in the Baikal populations are reflected in Y-chromosome lineages (Fig. SA; figs. S24 to S27, and tables S13 and SI4). MAI carries the R haplogroup, whereas the majority of Baikal_EN males belong to N lineages, which were widely distributed across Northern Eurasia (29), and the Baikal_LNBA males all carry Q haplogroups, as do most of the Okunevo_EMBA as well as some present-day Central Asians and Siberians.

The only N1c1 sample comes from Ust’Ida Late Neolithic, 180km to the north of Lake Baikal, which – together with the Bronze Age sample from the Kola peninsula, and the medieval sample from Ust’Ida – gives a good idea of the overall expansion of N subclades and Siberian ancestry among the Circum-Arctic peoples of Eurasia, speakers of Palaeo-Siberian languages.

eurasian-n-subclades
Geographical location of ancient samples belonging to major clade N of the Y-chromosome.

Modern haplogroups

What we should expect from Uralic peoples expanding with haplogroup N – seeing how Yamna expands with R1b-L23, and Corded Ware expands with R1a-Z645 – is to find a common subclade spreading with Uralic populations. Let’s see if it works like that for any N-X subclade, in data from Ilumäe et al. (2016):

haplogroup_n1
Geographic-Distribution Map of hg N3 / N1c / N1a.

Within the Eurasian circum-Arctic spread zone, N3 and N2a reveal a well-structured spread pattern where individual sub-clades show very different distributions:

N1a1-M46 (or N-TAT), formed ca. 13900 BC, TMRCA 9800 BC

   N1a1a2-B187, formed ca. 9800 BC, TMRCA 1050 AD:

The sub-clade N3b-B187 is specific to southern Siberia and Mongolia, whereas N3a-L708 is spread widely in other regions of northern Eurasia.

     N1a1a1a-L708, formed ca. 6800 BC, TMRCA 5400 BC.

       N1a1a1a2-B211/Y9022, formed ca. 5400 BC, TMRCA 1900 BC:

The deepest clade within N3a is N3a1-B211, mostly present in the Volga-Uralic region and western Siberian Khanty and Mansi populations.

         N1a1a1a1a-L392/L1026), formed ca. 4400 BC, TMRCA 2800 BC:

The neighbor clade, N3a3’6-CTS6967, spreads from eastern Siberia to the eastern part of Fennoscandia and the Baltic States

haplogroup_n3a3
Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29, probably initially with Akozino warrior-traders.

           N1a1a1a1a1a-CTS2929/VL29, formed ca. 2100 BC, TMRCA 1600 BC:

In Europe, the clade N3a3-VL29 encompasses over a third of the present-day male Estonians, Latvians, and Lithuanians but is also present among Saami, Karelians, and Finns (Table S2 and Figure 3). Among the Slavic-speaking Belarusians, Ukrainians, and Russians, about three-fourths of their hg N3 Y chromosomes belong to hg N3a3.

In the post on Finno-Permic expansions, I depicted what seems to me the most likely way of infiltration of N1c-L392 lineages with Akozino warrior-traders into the western Finno-Ugric populations, with an origin around the Barents sea.

This includes the potential spread of (a minority of) N1c-B211 subclades due to contacts with Anonino on both sides of the Urals, through a northern route of forest and forest-steppe regions (equivalent to the distribution of Cherkaskul compared to Andronovo), given the spread of certain subclades in Ugric populations.

NOTE. An alternative possibility is the association of certain B211 subclades with a southern route of expansion with Pre-Scythian and Scythian populations, under whose influence the Ananino culture emerged -which would imply a very quick infiltration of certain groups of haplogroup N everywhere among Finno-Ugrics on both sides of the Urals – , and also the expansion of some subclades with Turkic-speaking peoples, who apparently expanded with alliances of different peoples. Both (Scythian and Turkic) populations expanded from East Asia, where haplogroup N (including N1c) was present since the Neolithic. I find this a worse model of expansion for upper clades, but – given the YFull estimates and the presence of this haplogroup among Turkic peoples – it is a possibility for many subclades.

           N1a1a1a1a2-Z1936, formed ca. 2800 BC, TMRCA 2400 BC:

The only notable exception from the pattern are Russians from northern regions of European Russia, where, in turn, about two-thirds of the hg N3 Y chromosomes belong to the hg N3a4-Z1936—the second west Eurasian clade. Thus, according to the frequency distribution of this clade, these Northern Russians fit better among other non-Slavic populations from northeastern Europe. N3a4 tends to increase in frequency toward the northeastern European regions but is also somewhat unexpectedly a dominant hg N3 lineage among most Turcic-speaking Volga Tatars and South-Ural Bashkirs.

haplogroup_n3a4
Frequency-Distribution Maps of Individual Subclade N3a4 / N1a1a1a1a2-Z1936, probably with the Samic (first) and Fennic (later) expansions into Paleo-Lakelandic and Palaeo-Laplandic territories.

The expansion of N1a-Z1936 in Fennoscandia is most likely associated with the expansion of Saami into asbestos ware-related territory (like the Lovozero culture) during the Late Iron Age – and mixture with its population – , and with the later Fennic expansion to the east and north, replacing their language.

           N1a1a1a1a4-M2019 (previously N3a2), formed ca. 4400 BC, TMRCA 1700 BC:

Sub-hg N3a2-M2118 is one of the two main bifurcating branches in the nested cladistic structure of N3a2’6-M2110. It is predominantly found in populations inhabiting present-day Yakutia (Republic of Sakha) in central Siberia and at lower frequencies in the Khanty and Mansi populations, which exhibit a distinct Y-STR pattern (Table S7) potentially intrinsic to an additional clade inside the sub-hg N3a2

The second widespread sub-clade of hg N is N2a. (…):

   N1a2b-P43 (B523/FGC10846/Y3184), formed ca. 6800 BC, TMRCA ca. 2700 BC:

The absolute majority of N2a individuals belong to the second sub-clade, N2a1-B523, which diversified about 4.7 kya (95% CI = 4.0–5.5 kya). Its distribution covers the western and southern parts of Siberia, the Taimyr Peninsula, and the Volga-Uralic region with frequencies ranging from from 10% to 30% and does not extend to eastern Siberia (…)

haplogroup_n2
Geographic-Distribution Map of hg N2a1 / N1a2b-P43

The “European” branch suggested earlier from Y-STR patterns turned out to consist of two clades

     N1a2b2a-Y3185/FGC10847, formed ca. 2200 BC, TMRCA 800 BC:

N2a1-L1419, spread mainly in the northern part of that region.

     N1a2b2b1-B528/Y24382, formed ca. 900 BC, TMRCA ca. 900 BC:

N2a1-B528, spread in the southern Volga-Uralic region.

Haplogroup R1a

We also have a good idea of the distribution of haplogroup R1a-Z645 in ancient samples. Its subclades were associated with the Corded Ware expansion, and some of them fit quite well the early expansion of Finno-Permic, Ugric, and Samoyedic peoples to the east.

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.

This is how the modern distribution of R1a among Uralians looks like, from the latest report in Tambets et al. (2018):

  • Among Fennic populations, Estonians and Karelians (ca. 1.1 million) have not suffered the greatest bottleneck of Finns (ca. 6-7 million), and show thus a greater proportion of R1a-Z280 than N1c subclades, which points to the original situation of Fennic peoples before their expansion. To trust Finnish Y-DNA to derive conclusions about the Uralic populations is as useful as relying on the Basque Y-DNA for the language spread by R1b-P312
  • Among Volga-Finnic populations, Mordovians (the closest to the original Uralic cluster, see above) show a majority of R1a lineages (27%).
  • Hungarians (ca. 13-15 million) represent the majority of Ugric (and Finno-Ugric) peoples. They are mainly R1a-Z280, also R1a-Z2123, have little N1c, and lack Siberian ancestry, and represent thus the most likely original situation of Ugric peoples in 4th century AD (read more on Avars and Hungarians).
  • Among Samoyedic peoples, the Selkup, the southernmost ones and latest to expand – that is, those not heavily admixed with Siberian populations – , also have a majority of R1a-Z2123 lineages (see also here for the original Samoyedic haplogroups to the south).

To understand the relevance of Hungarians for Ugric peoples, as well as Estonians, Karelians, and Mordovians (and northern Russians, Finno-Ugric peoples recently Russified) for Finno-Permic peoples, as opposed to the Circum-Arctic and East Siberian populations, one has to put demographics in perspective. Even a modern map can show the relevance of certain territories in the past:

population-density
Population density (people per km2) map of the world in 1994. From Wikipedia.

Summary of ancestry + haplogroups

Fennic and Samic populations seem to be clearly influenced by Palaeo-Laplandic peoples, whereas Volga-Finnic and especially Permic populations may have received gene flow from both, but essentially Palaeo-Siberian influence from the north and east.

The fact that modern Mansis and Khantys offer the highest variation in N1a subclades, and some of the highest “Siberian ancestry” among non-Nganasans, should have raised a red flag long ago. The fact that Hungarians – supposedly stemming from a source population similar to Mansis – do not offer the same amount of N subclades or Siberian ancestry (not even close), and offer instead more R1a, in common with Estonians (among Finno-Samic peoples) and Mordvins (among Volga-Finnic peoples) should have raised a still bigger red flag. The fact that Nganasans – the model for Siberian ancestry – show completely different N1a2b-P43 lineages should have been a huge genetic red line (on top of the anthropological one) to regard them as the Uralian-type population.

We know now that ethnolinguistic groups have usually expanded with massive (usually male-biased) migrations, and that neighbouring locals often ‘resurge’ later without changing the language. That is seen in Europe after the spread of Bell Beakers, with the increase of previous ancestry and lineages in Scandinavia during the formation of the Nordic ethnolinguistic community; in Central-West Europe, with the resurgence of Neolithic ancestry (and lineages) during the Bronze Age over steppe ancestry; and in Central-East Europe (with Unetice or East European Bronze Age groups like Mierzanowice, Trzciniec, or Lusatian) showing an increase in steppe ancestry (and resurge of R1a subclades); none of them represented a radical ethnolinguistic change.

finno-ugric-haplogroup-n
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

It is not hard to model the stepped arrival, infiltration, and/or resurge of N subclades and “Siberian ancestries”, as well as their gradual expansion in certain regions, associated with certain migrations first – such as the expansions to the Circum-Arctic region, and later the Scythian- and Turkic-related movements – , as well as limited regional developments, like the known bottleneck in Finns, or the clear late expansion of Ugric and Samoyedic languages to the north among nomadic Palaeo-Siberians due to traditions of exogamy and multilingualism. This fits quite well with the different arrival of N (N1c and xN1c) lineages to the different Uralic-speaking groups, and to the stepped appearance of “Siberian ancestry” in the different regions.

The aternative

It is evident that a lot of people were too attached to the idea of Palaeolithic R1b lineages ‘native’ to western Europe speaking Basque languages; of R1a lineages speaking Indo-European and spreading with Yamna; and N lineages ‘native’ to north-eastern Europe and speaking Uralic, and this is causing widespread weeping and gnashing of teeth (instead of the joy of discovering where one’s true patrilineal ancestors come from, and what language they spoke in each given period, which is the supposed objective of genetic genealogy…)

Since an Indo-Germanic branch (as revived now by some in the Copenhaguen group to fit Kristiansen’s theory of the 1980s with recent genetic data) does not make any sense in linguistics, the finding of R1a in Yamna would not have led where some think it would have, because North-West Indo-European would still be the main Late PIE branch in Europe. Don’t take my word for it; take James P. Mallory’s (2013).

mallory-adams-tree
The levels of Indo-European reconstruction, from Mallory & Adams (2006).

If an (unlikely) Indo-Slavonic group were posited, though, such a group would still be bound (with Indo-Iranian) to the steppes with East Yamna/Poltavka (admixing with Abashevo migrants, but retaining its language), developing Sintashta/Potapovka → Srubna/Andronovo, and R1a lineages would have equally undergone the known bottlenecks of the steppes where they replaced R1b-Z2103 – which this eastern group shares with Balkan languages, a haplogroup that links therefore together the Graeco-Aryan group.

As far as I know – and there might be many other similar pet theories out there – there have been proposals of “modern Balto-Slavic-like” populations (in an obvious circular reasoning based on modern populations) in some Scythian clusters of the Iron Age.

NOTE. I will not enter into “Balto-Slavic-like R1a” of the Late Bronze Age or earlier because no one can seriously believe at this point of development of Population Genetics that autosomal similarity predating 1,500+ years the appearance of Slavs equates to their (ethnolinguistic) ancestral population, without a clear intermediate cultural and genetic trail – something we lack today in the Slavic case even for the late Roman period…

finno-saamic-palaeo-germanic-substratum
The Finnic and Saamic separation looks shallower than it actually is. Invisible convergence can be ‘triangulated’ with the help of Germanic layers of mutual loanwords (Häkkinen 2012).

We also know of R1a-Z280 lineages in Srubna, probably expanding to the west. With that in mind, and knowing that Palaeo-Germanic was in close contact with Finno-Samic while both were already separated but still in contact, and that Palaeo-Germanic was also in contact and closely related to a ‘Temematic’ distinct from Balto-Slavic (and also that early Proto-Baltic and Proto-Slavic from the Roman Iron Age and later were in contact with western Uralic) this will be the linguistic map of the Iron Age if R1a is considered to expand Indo-European from some kind of “patron-client” relationship with west Yamna:

palaeo-germanic-italo-celtic
Eastern European language map during the Late Bronze Age / Iron Age, if R1a spread Indo-European languages and Eastern Yamna spoke Indo-Slavonic. Palaeo-Germanic (i.e. Pre- to Proto-Germanic) needs to be in contact with both the Samic Lovozero population and the Fennic west Circum-Arctic one. Italic and Celtic in contact with Pre-Germanic. Germanic in contact with Temematic. Balto-Slavic in contact with Iranian, and near Fennic to allow for later loanwords. For Germanic and Temematic, see Kortlandt (2018).

You might think I have some personal or political reason against this kind of proposals. I haven’t. We have been proposing Indo-European to be the language of the European Union for more than 10 years, so to support R1b-Italo-Celtic in the whole Western Europe, R1a-Germanic in Central and Eastern Europe, and R1a-Indo-Slavonic in the steppes (as the Danish group seems to be doing) has nothing inherently bad (or good) for me. If anything, it gives more reason to support the revival of North-West Indo-European in Europe.

My problem with this proposal is that it is obviously beholden to the notion of the uninterrupted cultural, historic and ethnic continuity in certain territories. This bias is common in historiography (von Falkenhausen 1993), but it extends even more easily into the lesser known prehistory of any territory, and now more than ever some people feel the need to corrupt (pre)history based on their own haplogroups (or the majority haplogroups of their modern countries). However, more than on philosophical grounds, my rejection is based on facts: this picture is not what the combination of linguistic, archaeological, and genetic data shows. Period.

Nevertheless, if Yamna + Corded Ware represented the “big and early expansion” of Germanic and Italo-Celtic peoples proper of the dream Nazi’s Lebensraum and Fascist’s spazio vitale proposals; Uralians were Siberian hunter-gatherers that controlled the whole eastern and northern Russia, and miraculously managed to push (ethnolinguistically) Neolithic agropastoralists to the west during and after the Iron Age, with gradual (and often minimal) genetic impact; and Balto-Slavic peoples were represented by horse riders from Pokrovka/Srubna, hiding then somewhere around the forest-steppe until after the Scythian expansion, and then spreading their language (without much genetic impact) during the early Middle Ages…so be it.

Related

Corded Ware—Uralic (III): “Siberian ancestry” and Ugric-Samoyedic expansions

siberian-ancestry-tambets

This is the third of four posts on the Corded Ware—Uralic identification. See

An Eastern Uralic group?

Even though proposals of an Eastern Uralic (or Ugro-Samoyedic) group are in the minority – and those who support it tend to search for an origin of Uralic in Central Asia – , there is nothing wrong in supporting this from the point of view of a western homeland, because the eastward migration of both Proto-Ugric and Pre-Samoyedic peoples may have been coupled with each other at an early stage. It’s like Indo-Slavonic: it just doesn’t fit the linguistic data as well as the alternative, i.e. the expansion of Samoyedic first, different from a Finno-Ugric trunk. But, in case you are wondering about this possibility, here is Häkkinen’s (2012) phonological argument:

ugro-samoyedic-uralic

The case of Samoyedic is quite similar to that of Hungarian, although the earliest Palaeo-Siberian contact languages have been lost. There were contacts at least with Tocharian (Kallio 2004), Yukaghir (Rédei 1999) and Turkic (Janhunen 1998). Samoyedic also:

a) has moved far from the related languages and has been exposed to strong foreign influence

b) shares a small number of common words with other branches (from Sammallahti 1988: only 123 ‘Uralic’ words, versus 390 ‘Uralic’ + ‘Finno-Ugric’ words found in other branches than Samoyedic = 31,5 %)

c) derives phonologically from the East Uralic dialect.

The phonological level is taxonomically more reliable, since it lacks the distortion caused by invisible convergence and false divergence at the lexical level. Thus we can conclude that the traditional taxonomic model, according to which Samoyedic was the first branch to split off from the Proto-Uralic unity, is just as incorrect as the view that Hungarian was the first branch to split off.

Seima-Turbino

Late Uralic can be traced back to metallurgical cultures thanks to terms like PU *wäśka ‘copper/bronze’ (borrowed from Proto-Samoyedic *wesä into Tocharian); PU *äsa and *olna/*olni, ‘lead’ or ‘tin’, found in *äsa-wäśka ‘tin-bronze’; and e.g. *weŋći ‘knife’, borrowed into Indo-Iranian (through the stage of vocalization of nasals), appearing later as Proto-Indo-Aryan *wāćī ‘knife, awl, axe’.

It is known that the southern regions of the Abashevo culture developed Proto-Indo-Iranian-speaking Sintashta-Petrovka and Pokrovka (Early Srubna). To the north, however, Abashevo kept its Uralic nature, with continuous contacts allowing for the spread of lexicon – mainly into Finno-Ugric – , and phonetic influence – mainly Uralisms into Proto-Indo-Iranian phonology (read more here).

The northern part of Abashevo (just like the south) was mainly a metallurgical society, with Abashevo metal prospectors found also side by side with Sintashta pioneers in the Zeravshan Valley, near BMAC, in search of metal ores. About the Seima-Turbino phenomenon, from Parpola (2013):

From the Urals to the east, the chain of cultures associated with this network consisted principally of the following: the Abashevo culture (extending from the Upper Don to the Mid- and South Trans-Urals, including the important cemeteries of Sejma and Turbino), the Sintashta culture (in the southeast Urals), the Petrovka culture (in the Tobol-Ishim steppe), the Taskovo-Loginovo cultures (on the Mid- and Lower Tobol and the Mid-Irtysh), the Samus’ culture (on the Upper Ob, with the important cemetery of Rostovka), the Krotovo culture (from the forest steppe of the Mid-Irtysh to the Baraba steppe on the Upper Ob, with the important cemetery of Sopka 2), the Elunino culture (on the Upper Ob just west of the Altai mountains) and the Okunevo culture (on the Mid-Yenissei, in the Minusinsk plain, Khakassia and northern Tuva). The Okunevo culture belongs wholly to the Early Bronze Age (c. 2250–1900 BCE), but most of the other cultures apparently to its latter part, being currently dated to the pre-Andronovo horizon of c. 2100–1800 BCE (cf. Parzinger 2006: 244–312 and 336; Koryakova & Epimakhov 2007: 104–105).

post-eneolithic-steppe-asia
Schematic map of the Middle Bronze Age cultures (steppe and foreststeppe
zone)

The majority of the Sejma-Turbino objects are of the better quality tin-bronze, and while tin is absent in the Urals, the Altai and Sayan mountains are an important source of both copper and tin. Tin is also available in southern Central Asia. Chernykh & Kuz’minykh have accordingly suggested an eastern origin for the Sejma-Turbino network, backing this hypothesis also by the depiction on the Sejma-Turbino knives of mountain sheep and horses characteristic of that area. However, Christian Carpelan has emphasized that the local Afanas’evo and Okunevo metallurgy of the Sayan-Altai area was initially rather primitive, and could not possibly have achieved the advanced and difficult technology of casting socketed spearheads as one piece around a blank. Carpelan points out that the first spearheads of this type appear in the Middle Bronze Age Caucasia c. 2000 BCE, diffusing early on to the Mid-Volga-Kama-southern Urals area, where “it was the experienced Abashevo craftsmen who were able to take up the new techniques and develop and distribute new types of spearheads” (Carpelan & Parpola 2001: 106, cf. 99–106, 110). The animal argument is countered by reference to a dagger from Sejma on the Oka river depicting an elk’s head, with earlier north European prototypes (Carpelan & Parpola 2001: 106–109). Also the metal analysis speaks for the Abashevo origin of the Sejma-Turbino network. Out of 353 artefacts analyzed, 47% were of tin-bronze, 36% of arsenical bronze, and 8.5% of pure copper. Both the arsenical bronze and pure copper are very clearly associated with the Abashevo metallurgy.

seima-turbino-phenomenon-parpola
Find spots of artefacts distributed by the Sejma-Turbino intercultural trader network, and the areas of the most important participating cultures: Abashevo, Sintashta, Petrovka. Based on Chernykh 2007: 77.

The Abashevo metal production was based on the Volga-Kama-Belaya area sandstone ores of pure copper and on the more easterly Urals deposits of arsenical copper (Figure 9). The Abashevo people, expanding from the Don and Mid-Volga to the Urals, first reached the westerly sandstone deposits of pure copper in the Volga and Kama basins, and started developing their metallurgy in this area, before moving on to the eastern side of the Urals to produce harder weapons and tools of arsenical copper. Eventually they moved even further south, to the area richest in copper in the whole Urals region, founding there the very strong and innovative Sintashta culture.

Regarding the most likely expansion of Eastern Uralic peoples:

Nataliya L’vovna Chlenova (1929–2009; cf. Korenyako & Ku’zminykh 2011) published in 1981 a detailed study of the Cherkaskul’ pottery. In her carefully prepared maps of 1981 and 1984 (Figure 10), she plotted Cherkaskul’ monuments not only in Bashkiria and the Trans-Urals, but also in thick concentrations on the Upper Irtysh, Upper Ob and Upper Yenissei, close to the Altai and Sayan mountains, precisely where the best experts suppose the homeland of Proto-Samoyed to be.

cherkaskul-andronovo
Distribution of Srubnaya (Timber Grave, early and late), Andronovo (Alakul’ and Fëdorovo variants) and Cherkaskul’ monuments. After Parpola 1994: 146, fig. 8.15, based on the work of N. L. Chlenova (1984: map facing page 100).

Ugric

The Cherkaskul’ culture was transformed into the genetically related Mezhovka culture (c. 1500–1000 BCE), which occupied approximately the same area from the Mid-Kama and Belaya rivers to the Tobol river in western Siberia (cf. Parzinger 2006: 444–448; Koryakova & Epimakhov 2007: 170–175). The Mezhovka culture was in close contact with the neighbouring and probably Proto-Iranian speaking Alekseevka alias Sargary culture (c. 1500–900 BCE) of northern Kazakhstan (Figure 4 no. 8) that had a Fëdorovo and Cherkaskul’ substratum and a roller pottery superstratum (cf. Parzinger 2006: 443–448; Koryakova & Epimakhov 2007: 161–170). Both the Cherkaskul’ and the Mezhovka cultures are thought to have been Proto-Ugric linguistically, on the basis of the agreement of their area with that of Mansi and Khanty speakers, who moreover in their Fëdorovo-like ornamentation have preserved evidence of continuity in material culture (cf. Chlenova 1984; Koryakova & Epimakhov 2007: 159, 175).

mezhovska-sargary-irmen
Cultures of the Final Bronze Age of the Urals and western Siberia (steppe
and forest-steppe zone).

The Mezhovka culture was succeeded by the genetically related Gamayun culture (c. 1000–700 BCE) (cf. Parzinger 2006: 446; 542–545).

From the Gamayun culture descend Trans-Urals cultures in close contact with Finno-Permic populations of the Cis-Ural region:

  • [Proto-Mansi] Itkul’ culture (c. 700–200 BCE) distributed along the eastern slope of the Ural Mountains (cf. Parzinger 2006: 552–556). Known from its walled forts, it constituted the principal Trans-Uralian centre of metallurgy in the Iron Age, and was in contact with both the Anan’ino and Akhmylovo cultures (the metallurgical centres of the Mid-Volga and Kama-Belaya region) and the neighbouring Gorokhovo culture.
    • [Proto-Hungarian] via the Vorob’evo Group (c. 700–550 BCE) (cf. Parzinger 2006: 546–549), to the Gorokhovo culture (c. 550–400 BCE) of the Trans-Uralian forest steppe (cf. Parzinger 2006: 549–552). For various reasons the local Gorokhovo people started mobile pastoral herding and became part of the multicomponent pastoralist Sargat culture (c. 500 BCE to 300 CE), which in a broader sense comprized all cultural groups between the Tobol and Irtysh rivers, succeeding here the Sargary culture. The Sargat intercommunity was dominated by steppe nomads belonging to the Iranian-speaking Saka confederation, who in the summer migrated northwards to the forest steppe
  • [Proto-Khanty] Late Bronze Age and Early Iron Age cultures related to the Gamayunskoe and Itkul’ cultures that extended up to the Ob: the Nosilovo, Baitovo, Late Irmen’, and Krasnoozero cultures (c. 900–500 BCE). Some were in contact with the Akhmylovo on the Mid-Volga.
sargat-gorokhovo-bolscherechye
Cultural groups of the Iron Age in the forest-steppe zone of western
Siberia. (

Samoyedic

Parpola (2012) connects the expansion of Samoyedic with the Cherkaskul variant of Andronovo. As we know, Andronovo was genetically diverse, which speaks in favour of different groups developing similar material cultures in Central Asia.

Juha Janhunen, author of the etymological dictionary of the Samoyed languages (1977), places the homeland of Proto-Samoyedic in the Minusinsk basin on the Upper Yenissei (cf. Janhunen 2009: 72). Mainly on the basis of Bulghar Turkic loanwords, Janhunen (2007: 224; 2009: 63) dates Proto-Samoyedic to the last centuries BCE. Janhunen thinks that the language of the Tagar culture (c. 800–100 BCE) ought to have been Proto-Samoyedic (cf. Janhunen 1983: 117– 118; 2009: 72; Parzinger 2001: 80 and 2006: 619–631 dates the Tagar culture c. 1000–200 BCE; Svyatko et al. 2009: 256, based on human bone samples, c. 900 BCE to 50 CE). The Tagar culture largely continues the traditions of the Karasuk culture (c. 1400–900 BCE), (…)

chicha-irmen-tagar-baraba-forest-siberian
Map showing the location of Chicha-1.

For the most recent expansions of Samoyedic languages to the north, into Palaeo-Siberian populations, read more about the traditional multilingualism of Siberian populations.

Genetics

Siberian ancestry

The use of a map of “Siberian ancestry” peaking in the arctic to show a supposedly late Uralic population movement (starting in the Iron Age!) seems to be the latest trend in population genomics:

siberian-ancestry-map
Frequency map of the so-called ‘Siberian’ component. From Tambets et al. (2018) (see below for ADMIXTURE in specific populations).

I guess that would make this map of Neolithic farmer ancestry represent an expansion of Indo-European from the south, because Anatolia, Greece, Italy, southern France, and Iberia – where this ancestry peaks in modern populations – are among the oldest territories where Indo-European languages were recorded:

reich-farmer-ancestry
Modern genome-wide data shows that the primary gradient of farmer ancestry in Europe does not flow southeast-to-northwest but instead in an almost perpendicular direction, a result of a major migration of pastoralists from the east that displaced much of the ancestry of the first farmers.

Probably not the right interpretation of this kind of simplistic data about modern populations, though…

The most striking thing about the “Siberian ancestry” white whale is that nobody really knows what it is; just like we did not know what “Yamnaya ancestry” was, until the most recent data is making the picture clearer. Its nature is changing with each new paper, and it can be summed up by “some ancestry we want to find that is common to Uralic-speaking peoples, and should not be CWC-related”. Tambets et al. (2018) explain quite well how they “found it”:

Overall, and specifically at lower values of K, the genetic makeup of Uralic speakers resembles that of their geographic neighbours. The Saami and (a subset of) the Mansi serve as exceptions to that pattern being more similar to geographically more distant populations (Fig. 3a, Additional file 3: S3). However, starting from K = 9, ADMIXTURE identifies a genetic component (k9, magenta in Fig. 3a, Additional file 3: S3), which is predominantly, although not exclusively, found in Uralic speakers. This component is also well visible on K = 10, which has the best cross-validation index among all tests (Additional file 3: S3B). The spatial distribution of this component (Fig. 3b) shows a frequency peak among Ob-Ugric and Samoyed speakers as well as among neighbouring Kets (Fig. 3a). The proportion of k9 decreases rapidly from West Siberia towards east, south and west, constituting on average 40% of the genetic ancestry of FU speakers in Volga-Ural region (VUR) and 20% in their Turkic-speaking neighbours (Bashkirs, Tatars, Chuvashes; Fig. 3a).

siberian-ancestry-modern
Population structure of Uralic-speaking populations inferred from ADMIXTURE analysis on autosomal SNPs in Eurasian context. Individual ancestry estimates for populations of interest for selected number of assumed ancestral populations (K3, K6, K9, K11). Ancestry components discussed in a main text (k2, k3, k5, k6, k9, k11) are indicated and have the same colours throughout. The names of the Uralic-speaking populations are indicated with blue (Finno-Ugric) or orange (Samoyedic). Image from Tambets et al. (2018).

However, this ‘something’ that some people occasionally find in some Uralic populations is also common to other modern and ancient groups, and not so common in some other Uralic peoples. Simply put:

siberian-ancestry-modern-populations
Image modified from Lamnidis et al. (2018). Red line representing maximum “Siberian admixture” in Eastern European hunter-gatherers. In blue, Uralic-speaking groups. “Plot of ADMIXTURE (K=3) results containing West Eurasian populations and the Nganasan. Ancient individuals from this study are represented by thicker bars.”

I already said this in the recent publication of Siberian samples, where a renamed and radiocarbon dated Finnish_IA clearly shows that Late Iron Age Saami (ca. 400 AD) had little “Siberian ancestry”, if any at all, representing the most likely Fennic (and Samic) ancestral components before their expansion into central and northern Finland, where they admixed with circum-polar peoples of asbestos ware cultures.

I will say that again and again, any time they report the so-called “Siberian ancestry” in Uralic samples, no matter how it is defined each time: it does not seem to be that special something people are looking for, but rather (at least in a great part) a quite old ancestral component forming an evident cline with EHG, whose best proximate source are Baikal_EN (and/or Devil’s Gate) at this moment, and thus also East European hunter-gatherers for Western Uralic peoples:

dzudzuana-baikal-en-admixture
Image modified from Lazaridis et al. (2018). In red: samples with Baikal_EN ancestry in speculative estimates. In pink: samples with Baikal_EN ancestry in conservative estimates (probably marking a recent arrival of Baikal_En ancestry, see here). Modeling present-day and ancient West-Eurasians. Mixture proportions computed with qpAdm (Supplementary Information section 4). The proportion of ‘Mbuti’ ancestry represents the total of ‘Deep’ ancestry from lineages that split prior to the split of Ust’Ishim, Tianyuan, and West Eurasians and can include both ‘Basal Eurasian’ and other (e.g., Sub-Saharan African) ancestry. (Left) ‘Conservative’ estimates. Each population 367 cannot be modeled with fewer admixture events than shown. (Right) ‘Speculative’ estimates. The highest number of sources (≤5) with admixture estimates within [0,1] are shown for each population. Some of the admixture proportions are not significantly different from 0 (Supplementary Information section 4).

So either Samara_HG, Karelia_HG, and many other groups from eastern Europe all spoke Uralic according to this ADMIXTURE graphic (and the formation of steppe ancestry in the Volga-Ural region brought the Proto-Indo-European language to the steppes through the CHG/ANE expansion), or a great part of this “Siberian ancestry” found in modern Uralic-speaking populations is not what some people would like to think it is…

Modern populations

PCA clines can be looked for to represent expansions of ancient populations. Most recently, Flegontov et al. (2018) are attempting to do this with Asian populations:

For some Turkic groups in the Urals and the Altai regions and in the Volga basin, a different admixture model fits the data: the same West Eurasian source + Uralic- or Yeniseian-speaking Siberians. Thus, we have revealed an admixture cline between Scythians and the Iranian farmer genetic cluster, and two further clines connecting the former cline to distinct ancestry sources in Siberia. Interestingly, few Wusun-period individuals harbor substantial Uralic/Yeniseian-related Siberian ancestry, in contrast to preceding Scythians and later Turkic groups characterized by the Tungusic/Mongolic-related ancestry. It remains to be elucidated whether this genetic influx reflects contacts with the Xiongnu confederacy. We are currently assembling a collection of samples across the Eurasian steppe for a detailed genetic investigation of the Hunnic confederacies.

jeong-population-clines
Three distinct East/West Eurasian clines across the continent with some interesting linguistic correlates, as earlier reported by Jeong et al. (2018). Alexander M. Kim.

There are potential errors with this approach:

The main one is practical – does a modern cline represent an ancestral language? The answer is: sometimes. It depends on the anthropological context that we have, and especially on the precision of the PCA:

clines-himalayan
Genetic structure of the Himalayan region populations from analyses using unlinked SNPs. (A) PCA of the Himalayan and HGDP-CEPH populations. Each dot represents a sample, coded by region as indicated. The Himalayan region samples lie between the HGDP-CEPH East Asian and South Asian samples on the right-hand side of the plot. From Arciero et al. (2018).

The ‘Europe’, ‘Middle East’, etc. clines of the above PCA do not represent one language, but many. For starters, the PCA includes too many (and modern) populations, its precision is useless for ethnolinguistic groups. Which is the right level? Again, it depends.

The other error is one of detail of the clines drawn (which, in turn, depends on the precision of the PCA). For example, we can draw two paralell lines (or even one line, as in Flegontov et al. above) in one PCA graphic, but we still don’t have the direction of expansion. How do we know if this supposed “Uralic-speaking cline” goes from one region to the other? For that level of detail, we should examine closely modern Uralic-speaking peoples and Circum-Arctic populations:

uralic-cline
Modified from Tambets et al. (2018). Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations

The real ancient Uralic cluster (drawn above in blue) is thus probably from a North-East European source (probably formed by Battle Axe / Fatyanovo-Balanovo / Abashevo) to the east into Siberian populations, and to the north into Laplandic populations (see below also on Mezhovska ancestry for the drawn ‘European cline’, which some may a priori wrongly assume to be quite late).

The fact that the three formed clines point to an admixture of CWC-related populations from North-Eastern Europe, and that variation is greater at the Palaeo-Laplandic and Palaeo-Siberian extremities compared to the CWC-related one, also supports this as the correct interpretation.

However, judging by the two main clines formed, one could be alternatively inclined to interpret that Palaeo-Laplandic and Palaeo-Siberian populations formed a huge ancestral “Uralic” ghost cluster in Siberia (spanning from the Palaeo-Laplandic to the Palaeo-Siberian one), and from there expanded Finno-Samic on one hand, and “Volga-Ugro-Samoyed” on the other. That poses different problems: an obvious linguistic and archaeological one – which I assume a lot of people do not really care about – , and a not-so-obvious genetic one (see below for ancient samples and for the expansion of haplogroup N).

To understand the simplest solution better, one can just have a look at the PCA from Bell Beaker samples in Olalde et al. (2018), which (as Reich has already explained many times) expanded directly from Yamna R1b-L23 lineages:

olalde_pca_clines
Image modified from Olalde et al. (2018). PCA of 999 Eurasian individuals. Marked is the Espersted Outlier with the approximate position of Yamna Hungary, probably the source of its admixture. Different Bell Beaker clines have been drawn, to represent approximate source of expansions from Central European sources into the different regions.

Unlike this PCA with ancient samples, where Bell Beaker clines could be a rough approximation to the real sources for each population, and where a cluster spanning all three depicted Early Bronze Age clusters could give a rough proximate source of European Bell Beakers in Hungary (and where one can even distinguish the Y-DNA bottlenecks in the L23 trunk created by each cline) the PCA of modern Uralic populations is probably not suitable for a good estimate of the ancient situation, which may be found shifted up or down of the drawn “Uralic” cluster along East European groups.

After all, we already know that the Siberian cline shows probably as much an ancient admixture event – from the original Uralic expansion to the east with Corded Ware ancestry – as another more recent one – a westward migration of Siberian ancestry (or even more than one). While we know with more or less exactitude what happened with the Palaeo-Laplandic admixture by expanding Proto-Finno-Samic populations (see here), the Proto-Ugric and Pre-Samoyedic populations formed probably more than one cline during the different ancient migrations through central Asia.

Ancient populations

Apparently, the Corded Ware expansion to the east was not marked by a huge change in ancestry. While the final version of Narasimhan et al. (2018) may show a little more detail about other forest-steppe Seima-Turbino/Andronovo-related migrations (and thus also Eastern Uralic peoples), we have already had enough information for quite some time to get a good idea.

mezhovska-pca
Principal component analysis. PCA of ancient individuals (according colours see legend) projected on modern West Eurasians (grey). Iron Age Scythians are shown in black; CHG, Caucasus hunter-gatherer; LNBA, late Neolithic/Bronze Age; MN, middle Neolithic; EHG, eastern European huntergatherer; LBK_EN, early Neolithic Linearbandkeramik; HG, hunter-gatherer; EBA, early Bronze Age; IA, Iron Age; LBA, late Bronze Age; WHG, western hunter-gatherer.dataset (grey). Iron Age Scythians are shown in black; CHG, Caucasus hunter-gatherer; LNBA, late Neolithic/Bronze Age; MN, middle Neolithic; EHG, eastern European hunter-gatherer; LBK_EN, early Neolithic Linearbandkeramik; HG, hunter-gatherer; EBA, early Bronze Age; IA, Iron Age; LBA, late Bronze Age; WHG, western hunter-gatherer.

Mezhovska‘s position is similar to the later Pre-Scythian and Scythian populations. There are some interesting details: apart from haplogroup R1a-Z280 (CTS1211+), there is one R1b-M269 (PF6494+), probably Z2103, and an outlier (out of three) in a similar position to the recently described central/southern Scythian clusters.

NOTE. The finding of R1b-M269 in the forest-steppe is probably either 1) from an Afanasevo-Okunevo origin, or 2) from an admixture with neighbouring Andronovo-related populations, such as Sargary. A third, maybe less likely option is that this haplogroup admixed with Abashevo directly (as it happened in Sintashta, Potapovka, or Pokrovka) and formed part of early Uralic migrations. In any case, since Mezhovska is a Bronze Age society from the Urals region, its association with R1b-Z2103 – like the association of R1b-Z2103 in Scythian clusters – cannot be attributed to “Thracian peoples”, a link which is (as I already said) too simplistic.

The drawn “European cline” of Hungarians (see above), leading from ‘west-like’ Mansi to Hungarian populations – and hosting also Finnic and Estonian samples – , cannot therefore be attributed simply to late “Slavic/Balkan-like” admixture.

Karasuk – located further to the east – is basically also Corded Ware peoples showing clearly a recent admixture with local ANE / Baikal_EN-like populations. In terms of haplogroups it shows haplogroup Q, R1a-Z2124, and R1a-Z2123, later found among early Hungarians, and present also in ancient Samoyedic populations now acculturated.

The most interesting aspect of both Mezhovska and Karasuk is that they seem to diverge from a point close to Ukraine_Eneolithic, which is the supposed ancestral source of Corded Ware peoples (read more about the formation of “steppe ancestry”). This means that Eastern Uralians derive from a source closer to Middle Dnieper/Abashevo populations, rather than Battle Axe (shifted to Latvian Neolithic), which is more likely the source prevalent in Finno-Permic peoples.

Their initial admixture with (Palaeo-)Siberian populations is thus seen already starting by this time in Mezhovska and especially in Karasuk, but this process (compared to modern populations) is incomplete:

f4-test-karasuk-mezhovska
Visualization of f-statistics results. f4(Test, LBK; Han, Mbuti) values are plotted on x axis and f4(Test, LBK; EHG, Mbuti) values on y axis, positive deviations from zero show deviations from a clade between Test and LBK. A red dashed line is drawn between Yamnaya from Samara and Ami. Iron Age populations that can be modelled as mixtures of Yamnaya and East Eurasians (like the Ami) are arrayed around this line and appear to be distinct from the main North/South European cline (blue) on the left of the x axis.
karasuk-mezhovska-admixture
ADMIXTURE results for ancient populations. Red arrows point to the Iron Age Scythian individuals studied. LBK_EN: Early Neolithic Linearbandkeramik; EHG: Eastern European hunter-gatherer; Motala_HG: hunter-gatherer from Motala (Sweden); WHG: western hunter-gatherer; CHG: Caucasus hunter-gatherer; IA: Iron Age; EBA: Early Bronze Age; LBA: Late Bronze Age.

We know now that Samic peoples expanded during the Late Iron Age into Palaeo-Laplandic populations, admixing with them and creating this modern cline. Finns expanded later to the north (in one of their known genetic bottlenecks), admixing with (and displacing) the Saami in Finland, especially replacing their male lines.

So how did Ugric and Samoyedic peoples admix with Palaeo-Siberian populations further, to obtain their modern cline? The answer is, logically, with East Asian migrations related to forest-steppe populations of Central Asia after the Mezhovska and Karasuk periods, i.e. during the Iron Age and later. Other groups from the forest-steppe in Central Asia show similar East Asian (“Siberian”) admixture. We know this from Narasimhan et al. (2018):

(…) we observe samples from multiple sites dated to 1700-1500 BCE (Maitan, Kairan, Oy_Dzhaylau and Zevakinsikiy) that derive up to ~25% of their ancestry from a source related to present-day East Asians and the remainder from Steppe_MLBA. A similar ancestry profile became widespread in the region by the Late Bronze Age, as documented by our time transect from Zevakinsikiy and samples from many sites dating to 1500-1000 BCE, and was ubiquitous by the Scytho-Sarmatian period in the Iron Age.

We already have some information about these later migrations:

siberian-genetic-component-chronology
Very important observation with implication of population turnover is that pre-Turkic Inner Eurasian populations’ Siberian ancestry appears predominantly “Uralic-Yeniseian” in contrast to later dominance of “Tungusic-Mongolic” sort (which does sporadically occur earlier). Alexander M. Kim

The Ugric-speaking Sargat culture in Western Siberia shows the expected mixture of haplogroups (ca. 500 BC – 500 AD), with 5 samples of hg N and 2 of hg R1a1, in Pilipenko et al. (2017). Although radiocarbon dates and subclades are lacking, N lineages probably spread late, because of the late and gradual admixture of Siberian cultures into the Sargat melting pot.

The Samoyedic-speaking Tagar culture also shows signs of a genetic turnover in Pilipenko et al. (2018):

The observed reduction in the genetic distance between the Middle Tagar population and other Scythian like populations of Southern Siberia(Fig 5; S4 Table), in our opinion, is primarily associated with an increase in the role of East Eurasian mtDNA lineages in the gene pool (up to nearly half of the gene pool) and a substantial increase in the joint frequency of haplogroups C and D (from 8.7% in the Early Tagar series to 37.5% in the Middle Tagar series). These features are characteristic of many ancient and modern populations of Southern Siberia and adjacent regions of Central Asia, including the Pazyryk population of the Altai Mountains.

Before the Iron Age, the Karasuk and Mezhovska population were probably already somehow ‘to the north’ within the ancient Steppe-Altai cline (see image below9 created by expanding Seima-Turbino- and Andronovo-related populations. During the Iron Age, further Siberian contributions with Iranian expansions must have placed Uralians of the Central Asian forest-steppe areas much closer to today’s Palaeo-Siberian cline.

However, the modern genetic picture was probably fully developed only in historic times, when Samoyedic and Ugric languages expanded to the north, only in part admixing further with Palaeo-Siberian-speaking nomads from the Circum-Arctic region (see here for a recent history of Samoyedic Enets), which justifies their more recent radical ‘northern shift’.

east-uralic-clines
Modified image from Jeong et al. (2018), supplementary materials. The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the north-south cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals.

This late acquisition of the language by Palaeo-Siberian nomads (without much population replacement) also justifies the wide PCA clusters of very small Siberian populations. See for example in the PCA from Tambets et al. (2018):

uralic-ugric-samoyedic-modern-clines
Approximate Ugric and Samoyedic clines (exluding apparent outliers). Modified from Tambets et al. (2018). Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations

For their relationship with modern Mansi, we have information on Hungarian conqueror populations from Neparáczki et al. (2018):

Moreover, Y, B and N1a1a1a1a Hg-s have not been detected in Finno-Ugric populations [80–84], implying that the east Eurasian component of the Conquerors and Finno-Ugric people are probably not directly related. The same inference can be drawn from phylogenetic data, as only two Mansi samples appeared in our phylogenetic trees on the side branches (S1 Fig, Networks; 1, 4) suggesting that ancestors of the Mansis separated from Asian ancestors of the Conquerors a long time ago. This inference is also supported by genomic Admixture analysis of Siberian and Northeastern European populations [85], which revealed that Mansis received their eastern Siberian genetic component approximately 5–7 thousand years ago from ancestors of modern Even and Evenki people. Most likely the same explanation applies to the Y-chromosome N-Tat marker which originated from China [86,87] and its subclades are now widespread between various language groups of North Asia and Eastern Europe [88].

The genetic picture of Hungarians (their formed cline with Mansi and their haplogroups) may be quite useful for the true admixture found originally in Mansi peoples at the beginning of the Iron Age. By now it is clear even from modern populations that Steppe_MLBA ancestry accompanied the Uralic expansion to the east (roughly approximated in the graphic with Afanasievo_EBA + Bichon_LP EasternHG_M):

siberian-population-expansions
Admixture modelling using qpAdm. Maps showing locations and ancestry proportions of ancient (left) and modern (right) groups. From Sikora et al. (2018).

Continue reading the final post of the series: Corded Ware—Uralic (IV): Haplogroups R1a and N in Finno-Ugric and Samoyedic.

Related

  • The traditional multilingualism of Siberian populations
  • Iron Age bottleneck of the Proto-Fennic population in Estonia
  • Y-DNA haplogroups of Tuvinian tribes show little effect of the Mongol expansion
  • Corded Ware—Uralic (I): Differences and similarities with Yamna
  • Haplogroup R1a and CWC ancestry predominate in Fennic, Ugric, and Samoyedic groups
  • The Iron Age expansion of Southern Siberian groups and ancestry with Scythians
  • Evolution of Steppe, Neolithic, and Siberian ancestry in Eurasia (ISBA 8, 19th Sep)
  • Mitogenomes from Avar nomadic elite show Inner Asian origin
  • On the origin and spread of haplogroup R1a-Z645 from eastern Europe
  • Oldest N1c1a1a-L392 samples and Siberian ancestry in Bronze Age Fennoscandia
  • Consequences of Damgaard et al. 2018 (III): Proto-Finno-Ugric & Proto-Indo-Iranian in the North Caspian region
  • The concept of “Outlier” in Human Ancestry (III): Late Neolithic samples from the Baltic region and origins of the Corded Ware culture
  • Genetic prehistory of the Baltic Sea region and Y-DNA: Corded Ware and R1a-Z645, Bronze Age and N1c
  • More evidence on the recent arrival of haplogroup N and gradual replacement of R1a lineages in North-Eastern Europe
  • Another hint at the role of Corded Ware peoples in spreading Uralic languages into north-eastern Europe, found in mtDNA analysis of the Finnish population
  • New Ukraine Eneolithic sample from late Sredni Stog, near homeland of the Corded Ware culture
  • “Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

    dzudzuana_pca-large

    Wang et al. (2018) is obviously a game changer in many aspects. I have already written about the upcoming Yamna Hungary samples, about the new Steppe_Eneolithic and Caucasus Eneolithic keystones, and about the upcoming Greece Neolithic samples with steppe ancestry.

    An interesting aspect of the paper, hidden among so many relevant details, is a clearer picture of how the so-called Yamnaya or steppe ancestry evolved from Samara hunter-gatherers to Yamna nomadic pastoralists, and how this ancestry appeared among Proto-Corded Ware populations.

    anatolia-neolithic-steppe-eneolithic
    Image modified from Wang et al. (2018). Marked are in orange: equivalent Steppe_Maykop ADMIXTURE; in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups.”

    Please note: arrows of “ancestry movement” in the following PCAs do not necessarily represent physical population movements, or even ethnolinguistic change. To avoid misinterpretations, I have depicted arrows with Y-DNA haplogroup migrations to represent the most likely true ethnolinguistic movements. Admixture graphics shown are from Wang et al. (2018), and also (the K12) from Mathieson et al. (2018).

    1. Samara to Early Khvalynsk

    The so-called steppe ancestry was born during the Khvalynsk expansion through the steppes, probably through exogamy of expanding elite clans (eventually all R1b-M269 lineages) originally of Samara_HG ancestry. The nearest group to the ANE-like ghost population with which Samara hunter-gatherers admixed is represented by the Steppe_Eneolithic / Steppe_Maykop cluster (from the Northern Caucasus Piedmont).

    Steppe_Eneolithic samples, of R1b1 lineages, are probably expanded Khvalynsk peoples, showing thus a proximate ancestry of an Early Eneolithic ghost population of the Northern Caucasus. Steppe_Maykop samples represent a later replacement of this Steppe_Eneolithic population – and/or a similar population with further contribution of ANE-like ancestry – in the area some 1,000 years later.

    PCA-caucasus-steppe-samara

    This is what Steppe_Maykop looks like, different from Steppe_Eneolithic:

    steppe-maykop-admixture

    NOTE. This admixture shows how different Steppe_Maykop is from Steppe_Eneolithic, but in the different supervised ADMIXTURE graphics below Maykop_Eneolithic is roughly equivalent to Eneolithic_Steppe (see orange arrow in ADMIXTURE graphic above). This is useful for a simplified analysis, but actual differences between Khvalynsk, Sredni Stog, Afanasevo, Yamna and Corded Ware are probably underestimated in the analyses below, and will become clearer in the future when more ancestral hunter-gatherer populations are added to the analysis.

    2. Early Khvalynsk expansion

    We have direct data of Khvalynsk-Novodanilovka-like populations thanks to Khvalynsk and Steppe_Eneolithic samples (although I’ve used the latter above to represent the ghost Caucasus population with which Samara_HG admixed).

    We also have indirect data. First, there is the PCA with outliers:

    PCA-khvalynsk-steppe

    Second, we have data from north Pontic Ukraine_Eneolithic samples (see next section).

    Third, there is the continuity of late Repin / Afanasevo with Steppe_Eneolithic (see below).

    3. Proto-Corded Ware expansion

    It is unclear if R1a-M459 subclades were continuously in the steppe and resurged after the Khvalynsk expansion, or (the most likely option) they came from the forested region of the Upper Dnieper area, possibly from previous expansions there with hunter-gatherer pottery.

    Supporting the latter is the millennia-long continuity of R1b-V88 and I2a2 subclades in the north Pontic Mesolithic, Neolithic, and Early Eneolithic Sredni Stog culture, until ca. 4500 BC (and even later, during the second half).

    Only at the end of the Early Eneolithic with the disappearance of Novodanilovka (and beginning of the steppe ‘hiatus’ of Rassamakin) is R1a to be found in Ukraine again (after disappearing from the record some 2,000 years earlier), related to complex population movements in the north Pontic area.

    NOTE. In the PCA, a tentative position of Novodanilovka closer to Anatolia_Neolithic / Dzudzuana ancestry is selected, based on the apparent cline formed by Ukraine_Eneolithic samples, and on the position and ancestry of Sredni Stog, Yamna, and Corded Ware later. A good alternative would be to place Novodanilovka still closer to the Balkan outliers (i.e. Suvorovo), and a source closer to EHG as the ancestry driven by the migration of R1a-M417.

    PCA-sredni-stog-steppe

    The first sample with steppe ancestry appears only after 4250 BC in the forest-steppe, centuries after the samples with steppe ancestry from the Northern Caucasus and the Balkans, which points to exogamy of expanding R1a-M417 lineages with the remnants of the Novodanilovka population.

    steppe-ancestry-admixture-sredni-stog

    4. Repin / Early Yamna expansion

    We don’t have direct data on early Repin settlers. But we do have a very close representative: Afanasevo, a population we know comes directly from the Repin/late Khvalynsk expansion ca. 3500/3300 BC (just before the emergence of Early Yamna), and which shows fully Steppe_Eneolithic-like ancestry.

    afanasevo-admixture

    Compared to this eastern Repin expansion that gave Afanasevo, the late Repin expansion to the west ca. 3300 BC that gave rise to the Yamna culture was one of colonization, evidenced by the admixture with north Pontic (Sredni Stog-like) populations, no doubt through exogamy:

    PCA-repin-yamna

    This admixture is also found (in lesser proportion) in east Yamna groups, which supports the high mobility and exogamy practices among western and eastern Yamna clans, not only with locals:

    yamnaya-admixture

    5. Corded Ware

    Corded Ware represents a quite homogeneous expansion of a late Sredni Stog population, compatible with the traditional location of Proto-Corded Ware peoples in the steppe-forest/forest zone of the Dnieper-Dniester region.

    PCA-latvia-ln-steppe

    We don’t have a comparison with Ukraine_Eneolithic or Corded Ware samples in Wang et al. (2018), but we do have proximate sources for Abashevo, when compared to the Poltavka population (with which it admixed in the Volga-Ural steppes): Sintashta, Potapovka, Srubna (with further Abashevo contribution), and Andronovo:

    sintashta-poltavka-andronovo-admixture

    The two CWC outliers from the Baltic show what I thought was an admixture with Yamna. However, given the previous mixture of Eneolithic_Steppe in north Pontic steppe-forest populations, this elevated “steppe ancestry” found in Baltic_LN (similar to west Yamna) seems rather an admixture of Baltic sub-Neolithic peoples with a north Pontic Eneolithic_Steppe-like population. Late Repin settlers also admixed with a similar population during its colonization of the north Pontic area, hence the Baltic_LN – west Yamna similarities.

    NOTE. A direct admixture with west Yamna populations through exogamy by the ancestors of this Baltic population cannot be ruled out yet (without direct access to more samples), though, because of the contacts of Corded Ware with west Yamna settlers in the forest-steppe regions.

    steppe-ancestry-admixture-latvia

    A similar case is found in the Yamna outlier from Mednikarovo south of the Danube. It would be absurd to think that Yamna from the Balkans comes from Corded Ware (or vice versa), just because the former is closer in the PCA to the latter than other Yamna samples. The same error is also found e.g. in the Corded Ware → Bell Beaker theory, because of their proximity in the PCA and their shared “steppe ancestry”. All those theories have been proven already wrong.

    NOTE. A similar fallacy is found in potential Sintashta→Mycenaean connections, where we should distinguish statistically that result from an East/West Yamna + Balkans_BA admixture. In fact, genetic links of Mycenaeans with west Yamna settlers prove this (there are some related analyses in Anthrogenica, but the site is down at this moment). To try to relate these two populations (separated more than 1,000 years before Sintashta) is like comparing ancient populations to modern ones, without the intermediate samples to trace the real anthropological trail of what is found…Pure numbers and wishful thinking.

    Conclusion

    Yamna and Corded Ware show a similar “steppe ancestry” due to convergence. I have said so many times (see e.g. here). This was clear long ago, just by looking at the Y-chromosome bottlenecks that differentiate them – and Tomenable noticed this difference in ADMIXTURE from the supplementary materials in Mathieson et al. (2017), well before Wang et al. (2018).

    This different stock stems from (1) completely different ancestral populations + (2) different, long-lasting Y-chromosome bottlenecks. Their similarities come from the two neighbouring cultures admixing with similar populations.

    If all this does not mean anything, and each lab was going to support some pre-selected archaeological theories from the 1960s or the 1980s, coupled with outdated linguistic models no matter what – Anthony’s model + Ringe’s glottochronological tree of the early 2000s in the Reich Lab; and worse, Kristiansen’s CWC-IE + Germano-Slavonic models of the 1940s in the Copenhagen group – , I have to repeat my question again:

    What’s (so much published) ancient DNA useful for, exactly?

    Related

    Iron Age bottleneck of the Proto-Fennic population in Estonia

    tarand-graves-estonia-early-late

    Demographic data and figures derived from Estonian Iron Age graves, by Raili Allmäe, Papers on Anthropology (2018) 27(2).

    Interesting excerpts (emphasis mine):

    Introduction

    Inhumation and cremation burials were both common in Iron Age Estonia; however, the pattern which burials were prevalent has regional as well temporal peculiarities. In Estonia, cremation burials appear in the Late Bronze Age (1100–500 BC), for example, in stone-cist graves and ship graves, although inhumation is still characteristic of the period [28, 18]. Cremation burials have occasionally been found beneath the Late Bronze Age cists and the Early Iron Age (500 BC–450 AD) tarand graves [30, 28]. In south-eastern Estonia, including Setumaa, the tradition to bury cremated human remains in pit graves also appeared in the Bronze Age and lasted during the Pre-Roman period (500 BC–50 AD) and the Roman Iron Age (50–450 AD), and even up to the medieval times [30, 23, 33, 9]. During the Early Iron Age, cremations appear in cairn graves and have occasionally been found in many Pre-Roman early tarand graves where they appear with inhumations [27, 28, 19, 20, 21, 22, 24]. In Roman Iron Age tarand graves, cremation as well inhumation were practiced [28, 36, 37]; however, cremation was the prevailing burial practice during the Roman Iron Age, for example, in tarand graves in south-eastern Estonia [30, 28]. Roman Iron Age (50 AD–450 AD) burial sites have not been found in continental west Estonia [28, 38]). At the beginning of the Middle Iron Age (450–800 AD), burial sites, for example stone graves without a formal structure, like Maidla I, Lihula and Ehmja ‘Varetemägi’, appear in Läänemaa, west Estonia; in these graves cremations as well inhumations have been found [39, 48]. Like underground cremation burial, the stone grave without a formal structure was the most common grave type during the Late Iron Age (800– 1200 AD) in west Estonia [39, 35, 48]. In south-eastern and eastern Estonia, sand barrows with cremation burials appeared at the beginning of the Middle Iron Age. Cremation barrows are attributed to the Culture of Long Barrows and are most numerous in the villages Laossina and Rõsna in northern Setomaa, on the western shore of Lake Peipsi [8, 48]. Apparently during the Iron Age, the practiced burial customs varied in Estonia.

    cist-grave-tarand
    Typical prehistoric Estonian graves. Top: Cist-graves common during the Bronze Age, by Terker (GNU FDL 1.2). Bottom: Tarand graves of the Iron Age, by Marika Mägi (2017)

    Abstract:

    Three Iron Age cremation graves from south-eastern Estonia and four graves including cremations as well inhumations from western Estonia were analysed by osteological and palaeodemographic methods in order to estimate the age and sex composition of burial sites, and to propose some possible demographic figures and models for living communities.

    The crude birth/death rate estimated on the basis of juvenility indices varied between 55.1‰ and 60.0‰ (58.5‰ on average) at Rõsna village in south-eastern Estonia in the Middle Iron Age. The birth/death rates based on juvenility indices for south eastern graves varied to a greater degree. The estimated crude birth/death rate was somewhat lower (38.9‰) at Maidla in the Late Iron Age and extremely high (92.1‰) at Maidla in the Middle Iron Age, which indicates an unsustainable community. High crude birth/death rates are also characteristic of Poanse tarand graves from the Pre-Roman Iron Age – 92.3‰ for the 1st grave and 69.6‰for the 2nd grave. Expectedly, newborn life expectancies are extremely low in both communities – 10.8 years at Poanse I and 14.4 years at Poanse II. Most likely, both Maidla I and Poanse I were unsustainable communities.

    tarand-graves-estonia
    Locations of the investigated Estonian Iron Age graves. Map by R. Allmäe

    According to the main model where the given period of grave usage is 150 years, the burial grounds were most likely exploited by communities of 3–14 people. In most cases, this corresponds to one family or household. In comparison with other graves, Maidla II stone grave in western Estonia and Rõsna-Saare I barrow cemetery in south-eastern Estonia could have been used by a somewhat larger community, which may mean an extended family, a larger household or usage by two nuclear families.

    More papers on the same subject by the author – who participated in the recent Mittnik et al. (2018) paper – include Observations On Estonian Iron Age Cremations (2013), and The demography of Iron Age graves in Estonia (2014).

    Fast life history in Iron Age Estonia

    While the demographic situation in the Gulf of Finland during the Iron Age is not well known – and demography is always difficult to estimate based on burials, especially when cremation is prevalent – , there is a clear genetic bottleneck in Finns, which has been estimated precisely to this period, coincident with the expansion of Proto-Fennic.

    estonian-pca
    PCA of Estonian samples from the Bronze Age, Iron Age and Medieval times. Tambets et al. (2018, upcoming).

    The infiltration of N1c lineages in Estonia – the homeland of Proto-Fennic – happened during the Iron Age – as of yet found in 3 out of 5 sampled Tarand graves – , while the previous period was dominated by 100% R1a and Corded Ware + Baltic HG ancestry. With the Iron Age, a slight shift towards Corded Ware ancestry can be seen, which probably signals the arrival of warrior-traders from the Alanino culture, close to the steppe. They became integrated through alliances and intermarriages in a culture of chiefdoms dominated by hill forts. Their origin in the Mid-Volga area is witnessed by their material culture, such as Tarand-like graves (read here a full account of events).

    This new political structure, reminiscent of the chiefdom system in Sintashta (with a similar fast life history causing a bottleneck of R1a-Z645 lineages), coupled with the expansion of Fennic (and displaced Saamic) peoples to the north, probably caused the spread of N1c-L392 among Finnic peoples. The linguistic influence of these early Iron Age trading movements from the Middle Volga region can be seen in similarities between Fennic and Mordvinic, which proves that the Fenno-Saamic community was by then not only separated linguistically, but also physically (unlike the period of long-term Palaeo-Germanic influence, where loanwords could diffuse from one to the other).

    NOTE. Either this, or the alternative version: an increase in Corded Ware ancestry in Estonia during the Iron Age marks the arrival of the first Fennic speakers ca. 800 BC or later, splitting from Mordvinic? A ‘Mordvin-Fennic’ group in the Volga, of mainly Corded Ware ancestry…?? Which comes in turn from a ‘Volga-Saamic’ population of Siberian ancestry in the Artic region??? And, of course, Palaeo-Germanic widely distributed in North-Eastern Europe with R1a during the Bronze Age! Whichever model you find more logical.

    Related

    Dzudzuana, Sidelkino, and the Caucasus contribution to the Pontic-Caspian steppe

    hunter-gatherer-pottery

    It has been known for a long time that the Caucasus must have hosted many (at least partially) isolated populations, probably helped by geographical boundaries, setting it apart from open Eurasian areas.

    David Reich writes in his book the following about India:

    The genetic data told a clear story. Around a third of Indian groups experienced population bottlenecks as strong or stronger than the ones that occurred among Finns or Ashkenazi Jews. We later confirmed this finding in an even larger dataset that we collected working with Thangaraj: genetic data from more than 250 jati groups spread throughout India (…)

    Rather than an invention of colonialism as Dirks suggested, long-term endogamy as embodied in India today in the institution of caste has been overwhelmingly important for millennia. (…)

    The Han Chinese are truly a large population. They have been mixing freely for thousands of years. In contrast, there are few if any Indian groups that are demographically very large, and the degree of genetic differentiation among Indian jati groups living side by side in the same village is typically two to three times higher than the genetic differentiation between northern and southern Europeans. The truth is that India is composed of a large number of small populations.

    There is little doubt now, based on findings spanning thousands of years, that the Mesolithic and Neolithic Caucasus hosted various very small populations, even if the ancestral components may be reduced to the few known to date (such as ANE, EHG, AME*, ENA, CHG, and other “deep” ancestral components).

    NOTE. I will call the ancestral component of Dzudzuana/Anatolian hunter-gatherers Ancient Middle Easterner (AME), to give a clear idea of its likely extension during the Late Upper Palaeolithic, and to avoid using the more simplistic Dzudzuana, unless it is useful to mention these specific local samples.

    dzudzuana-pca
    Image modified from Lazaridis et al. (2018), including Caucasus, Don-Volga-Ural, and North Pontic Mesolithic-Neolithic populations. “Ancient West Eurasian population structure. (a) Geographical distribution of key ancient West Eurasian populations. (b) Temporal distribution of key ancient West Eurasian populations (approximate date in ky BP). (c) PCA of key ancient West Eurasians, including additional populations (shown with grey shells), in the space of outgroup f4-statistics (Methods).”

    Genetic labs have a strong fixation with ancestry. I guess the use of complex statistical methods gives professionals and laymen alike the feeling of dealing with “Science”, as opposed to academic fields where you have to interpret data. I think language reveals a lot about the way people think, and the fact that ancestral components are called ‘lineages’ – while not wrong per se – is a clear symptom of the lack of interest in the true lineages: Y-DNA haplogroups.

    Y-DNA bottlenecks

    It has become quite clear that male-biased migrations are often the ones which can be confidently followed for actual population movements and ethnolinguistic identification, at least until the Iron Age. The frequently used Palaeolithic clusters offer a clear example of why ancestry does not represent what some people believe: They merely give a basic idea of sizeable population replacements by distant peoples.

    Both concepts are important: sizeable and distant peoples. For example, during the Upper Palaeolithic in Europe there was a sizeable population replacement of the Aurignacian Goyet cluster by the Gravettian Vestonice cluster (probably from populations of far eastern Russia) coupled with the arrival of haplogroup I, although during the thousands of years that this material culture lasted, the previously expanded C1a2 lineages did not disappear, and there were probably different resurgence and admixture events.

    Haplogroup I certainly expanded with the Gravettian culture to Iberia, where the Goyet ancestry did not change much – probably because of male-driven migrations -, to the extent that during the Magdalenian expansions haplogroup I expanded with an ancestry closer to Goyet, in what is called a ‘resurge’ of the Goyet cluster – even though there is a clear replacement of male lines.

    The Villabruna (WHG) cluster is another good example. It probably spread with haplogroup R1b-L754, which – based on the extra ‘East Asian’ affinity of some samples and on modern samples from the Middle East – came probably from the east through a southern route, and not too long before the expansion of WHG likely from around the Black Sea, although this is still unclear. The finding of haplogroup I in samples of mostly WHG ancestry could confuse people that do not care about timing, sub-structured populations, and gene flow.

    palaeolithic-expansions-reich
    Image from David Reich’s Who We Are and How We Got Here. Having migrated out of Africa and the Near East, modern human pioneer populations spread throughout Eurasia (1). By at least thirty-nine thousand years ago, one group founded a lineage of European hunter-gatherers that persisted largely uninterrupted for more than twenty thousand years (2). Eventually, groups derived from an eastern branch of this founding population of European huntergatherers spread west (3), displaced previous groups, and were eventually themselves pushed out of northern Europe by the spread of glacial ice, shown at its maximum extent (top right). As the glaciers receded, western Europe was repeopled from the southwest (4) by a population that had managed to persist for tens of thousands of years and was related to an approximately thirty-five-thousand-year old individual from far western Europe. A later human migration, following the first strong warming period, had an even larger impact, with a spread from the southeast (5) that not only transformed the population of western Europe but also homogenized the populations of Europe and the Near East. At a single site—Goyet Caves in Belgium—ancient DNA from individuals spread over twenty thousand years reflects these transformations, with representatives from the Aurignacian, Gravettian, and Magdalenian periods.

    NOTE. If you don’t understand why ‘clusters’ that span thousands of years don’t really matter for the many Palaeolithic population expansions that certainly happened among hunter-gatherers in Europe, just take a look at what happened with Bell Beakers expanding from Yamna into western Europe within 500 years.

    If we don’t thread carefully when talking about population migrations, these terms are bound to confuse people. Just as the fixation on “steppe ancestry” – which marks the arrival in Chalcolithic Europe of peoples from the Pontic-Caspian region – has confused a lot of researchers to this day.

    When I began to write about the Indo-European demic diffusion model, my concern was to find a single spot where a North-West Indo-European proto-language could have expanded from ca. 2000 BC (our most common guesstimate). Based on the 2015 papers, and in spite of their conclusions, I thought it had become clear that Corded Ware was not it, and it was rather Bell Beakers. I assumed that Uralic was spoken to the north (as was the traditional belief), and thus Corded Ware expanded from the forest zone, hence steppe ancestry would also be found there with other R1a lineages.

    With the publication of Mathieson et al. (2017) and Olalde et al. (2017), I changed my mind, seeing how “steppe ancestry” did in fact appear quite late, hence it was likely to be the result of very specific population movements, probably directly from the Caucasus. Later, Mathieson published in a revision the sample from Alexandria of hg R1a-M417 (probably R1a-Z645, possibly Z93+), which further supported the idea that the migration of Corded Ware peoples started near the North Pontic forest-steppe (as I included in a the next revision).

    The question remains the same I repeated recently, though: where do the extra Caucasus components (i.e. beyond EHG) of Eneolithic Ukraine/Corded Ware and Khvalynsk/Yamna come from?

    Steppe ancestry: “EHG” + “CHG”?

    About EHG ancestry

    From Lazaridis et al. (2018):

    Considering 2-way mixtures, we can model Karelia_HG as deriving 34 ± 2.8% of its ancestry from a Villabruna-related source, with the remainder mainly from ANE represented by the AfontovaGora3 (AG3) sample from Lake Baikal ~17kya.

    AG3 was likely of haplogroup Q1a (as reported by YFull, see Genetiker), and probably the ANE ancestry found in Eastern Europe accompanied a Palaeolithic migration of Q1a2-M25 (formed ca. 22600 BC, TMRCA ca. 14300 BC).

    NOTE. You can read more about the expansion of Q lineages during the Palaeolithic.

    Combined with what we know about the Eneolithic Steppe and Caucasus populations – it is likely that ANE ancestry remained the most important component of some of the small ghost populations of the Caucasus until their emergence with the Lola culture.

    pca-caucasus-dzudzuana
    Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here. To understand the drawn potential Caucasus Mesolithic cluster, see above the PCA from Lazaridis et al. (2018).

    The first sample we have now attributed to the EHG cluster is Sidelkino, from the Samara region (ca. 9300 BC), mtDNA U5a2. In Damgaard et al. (Science 2018), Yamnaya could be modelled as a CHG population related to Kotias Klde (54%) and the remaining from ANE population related to Sidelkino (>46%), with the following split events:

    1. A split event, where the CHG component of Yamnaya splits from KK1. The model inferred this time at 27 kya (though we note the larger models in Sections S2.12.4 and S2.12.5 inferred a more recent split time).
    2. A split event, where the ANE component of Yamnaya splits from Sidelkino. This was inferred at about about 11 kya.
    3. A split event, where the ANE component of Yamnaya splits from Botai. We inferred this to occur 17 kya. Note that this is above the Sidelkino split time, so our model infers Yamnaya to be more closely related to the EHG Sidelkino, as expected.
    4. An ancestral split event between the CHG and ANE ancestral populations. This was inferred to occur around 40 kya.

    Other samples classified as of the EHG cluster:

    • Popovo2 (ca. 6250 BC) of hg J1, mtDNA U4d – Po2 and Po4 from the same site (ca. 6550 BC) show continuity of mtDNA.
    • Karelia_HG, from Juzhnii Oleni Ostrov (ca. 6300 BC): I0211/UzOO40 (ca. 6300 BC) of hg J1(xJ1a), mtDNA U4a; and I0061/UzOO74 of hg R1a1(xR1a1a), mtDNA C1
    • UzOO77 and UzOO76 from Juzhnii Oleni Ostrov (ca. 5250 BC) of mtDNA R1b.
    • Samara_HG from Lebyanzhinka (ca. 5600 BC) of hg R1b1a, mtDNA U5a1d.

    From the analysis of Lazaridis et al. (2018), we have some details about their admixture:

    dzudzuana-admixture-sidelkino
    Image modified from Lazaridis et al. (2018). Modeling present-day and ancient West-Eurasians. Mixture proportions computed with qpAdm (Supplementary Information section 4). The proportion of ‘Mbuti’ ancestry represents the total of ‘Deep’ ancestry from lineages that split prior to the split of Ust’Ishim, Tianyuan, and West Eurasians and can include both ‘Basal Eurasian’ and other (e.g., Sub-Saharan African) ancestry. (Left) ‘Conservative’ estimates. Each population 367 cannot be modeled with fewer admixture events than shown. (Right) ‘Speculative’ estimates. The highest number of sources (≤5) with admixture estimates within [0,1] are shown for each population. Some of the admixture proportions are not significantly different from 0 (Supplementary Information section 4).

    About Anatolia_Neolithic ancestry

    About the enigmatic Anatolia_Neolithic-related ancestry found in Pontic-Caspian steppe samples, this is what Wang et al. (2018) had to say:

    We focused on model of mixture of proximal sources such as CHG and Anatolian Chalcolithic for all six groups of the Caucasus cluster (Eneolithic Caucasus, Maykop and Late Makyop, Maykop-Novosvobodnaya, Kura-Araxes, and Dolmen LBA), with admixture proportions on a genetic cline of 40-72% Anatolian Chalcolithic related and 28-60% CHG related (Supplementary Table 7). When we explored Romania_EN and Greece_Neolithic individuals as alternative southeast European sources (30-46% and 36-49%), the CHG proportions increased to 54-70% and 51-64%, respectively. We hypothesize that alternative models, replacing the Anatolian Chalcolithic individual with yet unsampled populations from eastern Anatolia, South Caucasus or northern Mesopotamia, would probably also provide a fit to the data from some of the tested Caucasus groups.

    Also:

    The first appearance of ‘Near Eastern farmer related ancestry’ in the steppe zone is evident in Steppe Maykop outliers. However, PCA results also suggest that Yamnaya and later groups of the West Eurasian steppe carry some farmer related ancestry as they are slightly shifted towards ‘European Neolithic groups’ in PC2 (Fig. 2D) compared to Eneolithic steppe. This is not the case for the preceding Eneolithic steppe individuals. The tilting cline is also confirmed by admixture f3-statistics, which provide statistically negative values for AG3 as one source and any Anatolian Neolithic related group as a second source

    yamnaya-caucasus-dzudzuana
    Modified image from Wang et al. (2018). In blue, Yamna-related populations. In red, Corded Ware-related populations, and two elevated Anatolia_Neolithic values in Yamna. Notice how only GAC-related admixture increases the Anatolian_N-related ancestry in the Yamna outlier from Ozero, and the late Yamna sample from Hungary, related to the homogeneous Yamna population. “Supplementary Table 14. P values of rank=3 and admixture proportions in modelling Steppe ancestry populations as a four-way admixture of distal sources EHG, CHG, Anatolian_Neolithic and WHG using 14 outgroups.Left populations: Steppe cluster, EHG, CHG, WHG, Anatolian_Neolithic. Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.”

    Detailed exploration via D-statistics in the form of D(EHG, steppe group; X, Mbuti) and D(Samara_Eneolithic, steppe group; X, Mbuti) show significantly negative D values for most of the steppe groups when X is a member of the Caucasus cluster or one of the Levant/Anatolia farmer-related groups (Supplementary Figs. 5 and 6). In addition, we used f- and D-statistics to explore the shared ancestry with Anatolian Neolithic as well as the reciprocal relationship between Anatolian- and Iranian farmer-related ancestry for all groups of our two main clusters and relevant adjacent regions (Supplementary Fig. 4). Here, we observe an increase in farmer-related ancestry (both Anatolian and Iranian) in our Steppe cluster, ranging from Eneolithic steppe to later groups. In Middle/Late Bronze Age groups especially to the north and east we observe a further increase of Anatolian farmer related ancestry consistent with previous studies of the Poltavka, Andronovo, Srubnaya and Sintashta groups and reflecting a different process not especially related to events in the Caucasus.

    (…) Surprisingly, we found that a minimum of four streams of ancestry is needed to explain all eleven steppe ancestry groups tested, including previously published ones (Fig. 2; Supplementary Table 12). Importantly, our results show a subtle contribution of both Anatolian farmer-related ancestry and WHG-related ancestry (Fig.4; Supplementary Tables 13 and 14), which was likely contributed through Middle and Late Neolithic farming groups from adjacent regions in the West. The discovery of a quite old AME ancestry has rendered this probably unnecessary, because this admixture from an Anatolian-like ghost population could be driven even by small populations from the Caucasus.

    yamna-caucasus-cwc-anatolia-neolithic
    Image modified from Wang et al. (2018). Marked are: in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus 1128 cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups (see also Supplementary Tables 10, 14 and 20).”

    NOTE. For a detailed account of the possibilities regarding this differential admixture in the North Pontic area in contrast to the Don-Volga-Ural region, you can read the posts Sredni Stog, Proto-Corded Ware, and their “steppe admixture”, and Corded Ware culture origins: The Final Frontier.

    While it is not yet fully clear, the increased Anatolian_Neolithic-like ancestry in Ukraine_Eneolithic samples (see below) makes it unlikely that all such ancestry in Corded Ware groups comes from a GAC-related contribution. It is likely that at least part of it represents contributions from populations of the Caucasus, based on the mostly westward population movements in the steppe from ca. 4600 BC on, including the Suvorovo-Novodanilovka expansion, and especially the Kuban-Maykop expansion during the final Eneolithic into the North Pontic area.

    NOTE. Since CHG-like groups from the Caucasus may have combinations of AME and ANE ancestry similar to Yamna (which may thus appear as ‘steppe ancestry’ in the North Pontic area), it is impossible to interpret with precision the following ADMIXTURE graphic:

    ukraine-whg-ehg-steppe
    Modified image from Mathieson et al. (2018). Supervised ADMIXTURE analysis, modelling each ancient individual (one per row) as a mixture of population clusters constrained to contain northwestern-Anatolian Neolithic (grey), Yamnaya from Samara (yellow), EHG (pink) and WHG (green) populations. Dates in parentheses indicate approximate range of individuals in each population.

    North-Eastern Technocomplex

    The East Asian contribution to samples from the WHG samples (like Loschbour or La Braña), as specified in Fu et al. (2016), does not seem to be related to Baikal_EN, and appears possibly (in the ADMIXTURE analysis) integrated into he Villabruna component. I guess this implies that the shared alleles with East Asians are quite early, and potentially due to the expansion of R1b-L754 from the East.

    It would be interesting to know the specific material culture Sidelkino belonged to – i.e. if it was related to the expansion of the North-Eastern Technocomplex – , and its Y-DNA. The Post-Swiderian expansion into eastern Europe, probably associated with the expansion of R1b-P297 lineages (including R1b-M73, found later in Botai and in Baltic HG) is supposed to have begun during the 11th millennium BC, but migrations to the Urals and beyond are probably concentrated in the 9th millennium, so this sample is possibly slightly early for R1b.

    NOTE. User Rozenfeld at Anthrogenica posted this, which I think is interesting (in case anyone wants to try a Y-SNP call):

    there is something strange with Sidelkino EHG: first, its archaeological context is not described in the supplementary. Second, its sex is not listed in the supplementary tables. Third, after looking for info about this sample, I found that: “Сиделькино-3. Для снятия вопроса о половой принадлежности индивида была проведена генетическая экспертиза, выявившая принадлежность останков мужчине.”(translation: Sidelkino-3. To resolve the question about sex of the remains, the genetic analysis was conducted, which showed that remains belonged to male), source: http://static.iea.ras.ru/books/7487_Traditsii.pdf

    So either they haven’t mentioned his Y-DNA in the paper for some reason, or there are more than one Sidelkino sample and the male one has not yet been published. The coverage of the Sidelkino sample from the paper is 2.9, more than enough to tell Y-DNA haplogroup.

    zaliznyak-post-swiderian
    The map of spreading of Post-Swiderian and Post-Krasnosillian sites in Mesolithic of Eastern Europe in the 8th millennia BC. From Zaliznyak (see here).

    My speculative guess right now about specific population movements in far eastern Europe, based on the few data we have:

    • The expansion of the North-Eastern Technocomplex first around the 9th millennium BC, most likely expanded R1b-P279 ca. 11300 BC, judging by its TMRCA, with both R1b-M73 (TMRCA 5300) and R1b-M269 (TMRCA 4400 BC) info (with extra El Mirón ancestry) back, and thus Eurasiatic.
    • The expansion of haplogroup J1 to the north may have happened before or after the R1b-P279 expansion. Judging by the increase in AG3-related ancestry near Karelia compared to Baltic_HG, it is possible that it expanded just after R1b-P279 (hence possibly J1-Y6304? TMRCA 9700 BC). Its long-lasting presence in the Caucasus is supported by the Satsurblia (ca. 11300 BC) and the Dolmen BA (ca. 1300 BC) samples.
    • The expansion of R1a-M17 ca. 6600 BC is still likely to have happened from the east, based on the R1a-M17 samples found in Baikalic cultures slightly later (ca. 5300 BC). The presence of elevated Baikal_EN ancestry in Karelia HG and in Samara HG, and the finding of R1a-M417 samples in the Forest Zone after the Mesolithic suggests a connection with the expansion of Hunter-Gatherer pottery, from the Elshanka culture in the Samara region northward into the Forset Zone and westward into the North Pontic area.
    • The expansion of R1b-M73 ca. 5300 BC is likely to be associated with the emergence of a group east of the Urals (related to the later Botai culture, and potentially Pre-Yukaghir). Its presence in a Narva sample from Donkalnis (ca. 5200 BC) suggest either an early split and spread of both R1b-P297 lineages (M73 and M269) through Eastern Europe, or maybe a back-migration with hunter-gatherer pottery.
    • R1b-M269 spread successfully ca. 4400 BC (and R1b-L23 ca. 4100 BC, both based on TMRCA), and this successful expansion is probably to be associated with the Khvalynsk-Novodanilovka expansion. We already know that Samara_HG ca. 5600 was R1b1a, so it is likely that R1b-M269 appeared (or ‘resurged’) in the Volga-Ural region shortly after the expansion of R1a-M17, whose expansion through the region may be inferred by the additional AG3 and Baikal_EN ancestry. Interesting from Samara_HG compared to the previous Sidelkino sample is the introduction of more El Mirón-related ancestry, typical of WHG populations (and thus proper of Baltic groups).

    NOTE. The TMRCA dates are obviously gross approximations, because a) the actual rate of mutation is unknown and b) TMRCA estimates are based on the convergence of lineages that survived. The potential finding of R1a-Z645 (possibly Z93+) in Ukraine Eneolithic (ca. 4000 BC), and the potential finding of R1b-L23 in Khvalynsk ca. 4250 BC complicates things further, in terms of dates and origins of any subclade.

    The question thus remains as it was long ago: did R1b-M269 lineages expand (‘return’) from the east, near the Urals, or directly from the north? Were they already near Samara at the same time as the expansion of hunter-gatherer pottery, and were not much affected by it? Or did they ‘resurge’ from populations admixed with Caucasus-related ancestry after the expansion of R1a-M17 with this pottery (since there are different stepped expansions from the Samara region)? We could even ask, did R1a-M17 really expand from the east, i.e. are the dates on Baikalic subclades from Moussa et al. (2016) reliable? Or did R1a-M17 expand from some pockets in the Pontic-Caspian steppe, taking over the expansion of HG pottery at some point?

    hunger-gatherer-pottery
    Early Neolithic cultures in eastern and central Europe: 1–Yelshanian; 2–North Caspian; 3–Rakushechnyj Yar; 4–Surskian; 5–Dnieper-Donetsian; 6– Bug-Dniesterian; 7–Upper Volga; 8–Narvian; 9–Linear Pottery. White arrows: expansion of early farming; black arrows: spread of pottery-making traditions. From Dolukhanov et al. (2009).

    Maglemose-related migrations

    The most interesting aspect from the new paper (regarding Indo-Uralic migrations) is that Ancestral Middle Easterner ancestry will probably be a better proxy for the Anatolia_Neolithic component found in Ukraine Mesolithic to Eneolithic, and possibly also for some of the “more CHG-like” component found among Pontic-Caspian steppe populations, all likely derived from different admixture events with groups from the Caucasus.

    NOTE. Even the supposed gene flow of Neolithic Iranian ancestry into the Caucasus can be put into question, since that means possibly a Dzudzuana-like population with greater “deep ancestry” proportion than the one found in CHG, which may still be found within the Caucasus.

    If it was not clear already that following ‘steppe ancestry’ wherever it appears is a rather lame way of following Indo-European migrations, every single sample from the Caucasus and their admixture with Pontic-Caspian steppe populations will probably show that “steppe ancestry” is in fact formed by a variety of steppe-related ancestral components, impossible to follow coherently with a single population. Exactly what is happening already with the Siberian ancestry.

    If the paper on the Dzudzuana samples has shown something, is that the expansion of an ANE-like population shook the entire Caucasus area up to the Zagros Mountains, creating this ANE – AME cline that are CHG and Iran_N, with further contributions of “deep ancestries” (probably from the south) complicating the picture further.

    If this happens with few known samples, and we know of an ANE-like ghost population in the Caucasus (appearing later in the Lola culture), we can already guess that the often repeated “CHG component” found in Ukraine_Eneolithic and Khvalynsk will not be the same (except the part mediated by the Novodanilovka expansion).

    This ANE-like expansion happened probably in the Late Upper Palaeolithic, and reached Northern Europe probably after the expansion of the Villabruna cluster (ca. 12000 BC), judging by the advance of AG3-like and ENA-like ancestry in later WHG samples.

    The population movements during the Mesolithic and Early Neolithic in the North Pontic area are quite complicated: the extra AME ancestry is probably connected to the admixture with populations from the Caucasus, while the close similarity of Ukraine populations with Scandinavian ones (with an increase in Villabruna ancestry from Mesolithic to Neolithic samples), probably reveal population movements related to the expansion of Maglemose-related groups.

    maglemose-mesolithic
    Etno-cultural situation in Central and Eastern Europe in the Late Mesolithic — Early Neolithic (VI—V Mill. BC) (after Конча 2004: 201, карта 1; made after ideas by L. L. Zaliznyak). Legend: 1 — Maglemose circle in the VII Mill. BC (after Gr. Clark); 2—7 — Mesolithic cultures of the Post-Maglemose tradition, VI Mill. BC (after S. Kozłowsky, L. L. Zaliznyak): 2 — de Leyen-Wartena; 3 — Oldesloe — Godenaa; 4 — Chojnice — Peńki; 5 — Janisłavice; 6 — finds of Janisłavice artefacts outside of the main area; 7 — Donets culture; 8 — directions of the settling of Janisłavice people (after S. Kozłowsky and L. L. Zaliznyak); 9 — the south border of Mesolithic and Early Neolithic cultures of post-Swidrian and post-Arensburgian traditions; 10 — northern border of settlement of the Balkan-Danubian farmers; 11 — Bug- Dniester culture; 12 — Neolithic cultures emerged on the ethno-cultural basis of post-Maglemose: Э — Ertebölle-Ellerbeck, Н — Neman, Д — Dnieper-Donets, М — Mariupol (western variants). From Klein (2017).

    These Maglemose-related groups were probably migrants from the north-west, originally from the Northern European Plains, who occupied the previous Swiderian territory, and then expanded into the North Pontic area. The overwhelming presence of I2a (likely all I2a2a1b1b) lineages in Ukraine Neolithic supports this migration.

    The likely picture of Mesolithic-Neolithic migrations in the North Pontic area right now is then:

    1. Expansion of R1a-M459 from the east ca. 12000 BC – probably coupled with AG3 and also some Baikal_EN ancestry. First sample is I1819 from Vasilievka (ca. 8700 BC), another is from Dereivka ca. 6900 BC.
    2. Expansion of R1b-V88 from the Balkans in the west ca. 9700 BC, based on its TMRCA and also the Balkan hunter-gatherer population overwhemingly of this haplogroup from the 10th millennium until the Neolithic. First sample is I1734 from Vasilievka (ca. 7252 BC), which suggests that it replaced the male population there, based on their similar EHG-like adxmixture (and lack of sizeable WHG increase), and shared mtDNA U5b2, U5a2.
    3. Expansion of I2a-Y5606 probably ca. 6800 based on its TMRCA with Janislawice culture. Supporting this is the increase in WHG contribution to Neolithic samples, including the spread of U4 subclades compared to the previous period.
    4. Expansion of R1a-M17 starting probably ca. 6600 BC in the east (see above).

    NOTE. The first sample of haplogroup I appears in the Mesolithic: I1763 (ca. 8100 BC) of haplogroup I2a1, probably related to an older Upper Palaeolithic expansion.

    janislawice
    Distribution of archeological cultures in the North Pontic Region during the Mesolithic (7th – 6th millennium BCE). Dotted, dashed and solid lines with corresponding arrows indicate alternative models of the spread of the Grebenyky culture groups. (After Bryuako IV., Samojlova TL., Eds, Drevnie kul’tury Severo-­‐Zapadnogo Prichernomor’ya, Odessa: SMIL, 2013.) Nikitin – Ivanova 2017.

    Conclusion

    It is becoming more and more clear with each new paper that – unless the number of very ancient samples increases – the use of Y-chromosome haplogroups remains one of the most important tools for academics; this is especially so in the steppes, in light of the diversity found in populations from the Caucasus. A clear example comes from the Yamna – Corded Ware similarities:

    After the publication of the 2015 papers, it was likely that Yamna expanded with haplogroup R1b-L23, but it has only become crystal clear that Yamna expanded through the steppes into Bell Beakers, now that we have data about the strict genetic homogeneity of the whole Yamna population from west to east (including Afanasevo), in contrast with contemporary Corded Ware peoples which expanded from a different forest-steppe population.

    The presence of haplogroups Q and R1a-M459 (xM17) in Khvalynsk along with a R1b1a sample, which some interpreted as being akin to modern ‘mixed’ populations in the past, is likely to point instead to a period of Khvalynsk-Novodanilovka expansion with R1b-M269, where different small populations from the steppe were being integrated into the common Khvalynsk stock, but where differences are seen in material culture surrounding their burials, as supported by the finding of R1b1 in the Kuban area already in the first half of the 5th millennium. The case would be similar to the early ‘mixed’ Icelandic population.

    Only after the emergence of the Samara culture (in the second half of the 6th millennium BC), with a sample of haplogroup R1b1a, starts then the obvious connection with Early Proto-Indo-Europeans; and only after the appearance of late Sredni Stog and haplogroup R1a-M417 (ca. 4000 BC) is its connection with Uralic also clear. In previous population movements, I think more haplogroups were involved in migrations of small groups, and only some communities among them were eventually successful, expanding to be dominant, creating ever growing cultures during their expansions.

    Indeed, if you think in terms of Uralic and Indo-European just as converging languages, and forget their potential genetic connection, then the genetic + linguistic picture becomes simplified, and the upper frontier of the 6th millennium BC with a division North Pontic (Mariupol) vs. Volga-Ural (Samara) is enough. However, tracing their movements backwards – with cultural expansions from west to east (with the expansion of farming), and earlier east to west (with hunter-gatherer pottery), and still earlier west to east (with the north-eastern technocomplex), offers an interesting way to prove their potential connection to macrofamilies, at least in terms of population movements.

    corded-ware-uralic-qpgraph
    Modified image from Tambets et al. (2018) Proportions of ancestral components in studied European and Siberian populations and the tested qpGraph model. a The qpGraph model fitting the data for the tested populations. Colour codes for the terminal nodes: pink—modern populations (‘Population X’ refers to test population) and yellow—ancient populations (aDNA samples and their pools). Nodes coloured other than pink or yellow are hypothetical intermediate populations. We putatively named nodes which we used as admixture sources using the main recipient among known populations. The colours of intermediate nodes on the qpGraph model match those on the admixture proportions panel. The NeolL (Neolithic Levant) ancestry selected in this qpGraph is likely to correspond (at least in part) to a specific Dzudzuana-like component present in the CHG-like population that admixed in the North Pontic area.

    I am quite convinced right now that it would be possible to connect the expansion of R1b-L754 subclades with a speculative Nostratic (given the R1b-V88 connection with Afroasiatic, and the obvious connection of R1b-L297 with Eurasiatic). Paradoxically, the connection of an Indo-Uralic community in the steppes (after the separation of Yukaghir) with any lineage expansion (R1a-M17, R1b-M269, or even Q, I or J1) seems somehow blurrier than one year ago, possibly just because there are too many open possibilities.

    David Reich says about the admixture with Neanderthals, which he helped discover:

    At the conclusion of the Neanderthal genome project, I am still amazed by the surprises we encountered. Having found the first evidence of interbreeding between Neanderthals and modern humans, I continue to have nightmares that the finding is some kind of mistake. But the data are sternly consistent: the evidence for Neanderthal interbreeding turns out to be everywhere. As we continue to do genetic work, we keep encountering more and more patterns that reflect the extraordinary impact this interbreeding has had on the genomes of people living today.

    I think this is a shared feeling among many of us who have made proposals about anything, to fear that we have made a gross, evident mistake, and constantly look for flaws. However, it seems to me that geneticists are more preoccupied with being wrong in their developed statistical methods, in the theoretical models they are creating, and not so much about errors in the true ancient ethnolinguistic picture human population genetics is (at least in theory) concerned about. Their publications are, after all, constantly associating genetic finds with cultures and (whenever possible) languages, so this aspect of their research should not be taken lightly.

    Seeing how David Anthony or Razib Khan (among many others) have changed their previously preferred migration models as new data was published, and they continue to be respected in their own fields, I guess we can be confident that professionals with integrity are going to accept whatever new picture appears. While I don’t think that genetic finds can change what we can reconstruct with comparative grammar, I am also ready to revise guesstimates and routes of expansion of certain dialects if R1a-Z645 is shown to have accompanied Late Proto-Indo-Europeans during their expansion with Yamna, and later integrated somehow with Corded Ware.

    However, taking into account the obsession of some with an ancestral, uninterrupted R1a—Indo-European association, and the lack of actual political repercussion of Neanderthal admixture, I think the most common nightmare that all genetic researchers should be worried about is to keep inflating this “Yamnaya ancestry”-based hornet’s nest, which has been constantly stirred up for the past two years, by rejecting it – or, rather, specifying it into its true complex nature.

    This succession of corrections and redefinitions, coupled with the distinct Y-DNA bottleneck of each steppe population, will eventually lead to a completely different ethnolinguistic picture of the Pontic-Caspian region during the Eneolithic, which is likely to eventually piss off not only reasonable academics stubbornly attached to the CWC-IE idea, but also a part of those interested in daydreaming about their patrilineal ancestors.

    Sometimes it’s better to just rip off the band-aid once and for all…

    Featured image from The oldest pottery in hunter-gatherer communitiesand models of Neolithisation of Eastern Europe (2015), by Andrey Mazurkevich and Ekaterina Dolbunova.

    Related

    Interesting is today’s post in Ancient DNA Era: Is Male-driven Genetic Replacement always meaning Language-shift?

    Resurge of local populations in the final Corded Ware culture period from Poland

    poland-kujawy

    Open access A genomic Neolithic time transect of hunter-farmer admixture in central Poland, by Fernandes et al. Scientific Reports (2018).

    Interesting excerpts (emphasis mine, stylistic changes):

    Most mtDNA lineages found are characteristic of the early Neolithic farmers in south-eastern and central Europe of the Starčevo-Kőrös-Criş and LBK cultures. Haplogroups N1a, T2, J, K, and V, which are found in the Neolithic BKG, TRB, GAC and Early Bronze Age samples, are part of the mitochondrial ‘Neolithic package’ (which also includes haplogroups HV, V, and W) that was introduced to Europe with farmers migrating from Anatolia at the onset of the Neolithic17,31.

    A noteworthy proportion of Mesolithic haplogroup U5 is also found among the individuals of the current study. The proportion of haplogroup U5 already present in the earliest of the analysed Neolithic groups from the examined area differs from the expected pattern of diversity of mtDNA lineages based on a previous archaeological view and on the aDNA findings from the neighbouring regions which were settled by post-Linear farmers similar to BKG at that time. A large proportion of Mesolithic haplogroups in late-Danubian farmers in Kuyavia was also shown in previous studies concerning BKG samples based on mtDNA only, although these frequencies were derived on the basis of very small sample sizes.

    y-dna-poland

    A significant genetic influence of HG populations persisted in this region at least until the Eneolithic/Early Bronze Age period, when steppe migrants arrived to central Europe. The presence of two outliers from the middle and late phases of the BKG in Kuyavia associated with typical Neolithic burial contexts provides evidence that hunter-farmer contacts were not restricted to the final period of this culture and were marked by various episodes of interaction between two societies with distinct cultural and subsistence differences.

    The identification of both mitochondrial and Y-chromosome haplogroup lineages of Mesolithic provenance (U5 and I, respectively) in the BKG support the theory that both male and female hunter-gatherers became part of these Neolithic agricultural societies, as has been reported for similar cases from the Carpathian Basin, and the Balkans. The identification of an individual with WHG affinity, dated to ca. 4300 BCE, in a Middle Neolithic context within a BKG settlement, provides direct evidence for the regional existence of HG enclaves that persisted and coexisted at least for over 1000 years, from the arrival of the LBK farmers ca. 5400 BCE until ca. 4300 BCE, in proximity with Neolithic settlements, but without admixing with their inhabitants.

    poland-pca
    Principal component analysis with modern populations greyed out on the background (top), ADMIXTURE results with K = 10 with samples from this study amplified (bottom).

    The analysis of two Late Neolithic cultures, the GAC and CWC, shows that steppe ancestry was present only among the CWC individuals analysed, and that the single GAC individual had more WHG ancestry than previous local Neolithic individuals. (…) The CWC’s affinity to WHG, however, contrasts with results from published CWC individuals that identified steppe ancestry related to Yamnaya as the major contributor to the CWC genomes, while here we report also substantial contributions from WHG that could relate to the late persistence of pockets of WHG populations, as supported by the admixture results of N42 and the finding of the 4300-year-old N22 HG individual. These results agree with archaeological theories that suggest that the CWC interaction with incoming steppe cultures was complex and that it varied by region.

    Some comments

    About the analyzed CWC samples, it is remarkable that, even though they are somehow related to each other, they do not form a tight cluster. Also, their Y-DNA (I2a), and this:

    When compared to previously published CWC data, our CWC group (not individuals) is genetically significantly closer to WHG than to steppe individuals (Z = −4.898), a result which is in contrast with those for CWC from Germany (Z = 2.336), Estonia (Z = 0.555), and Latvia (Z = 1.553).

    ancestry-proportions-poland
    Ancestry proportions based on qpAdm. Visual representation of the main results presented in Supplementary Table S5. Populations from this study marked with an asterisk. Values and populations in brackets show the nested model results marked in green in Supplementary Table S5.

    Włodarczak (2017) talks about the CWC period in Poland after ca. 2600 BC as a time of emergence of an allochthnous population, marked by the rare graves of this area, showing infiltrations initially mainly from Lesser Poland, and later (after 2500 BC) from the western Baltic zone.

    Since forest sub-Neolithic populations would have probably given more EHG to the typical CWC population, these samples support the resurge of ‘local’ pockets of GAC- or TRB-like groups with more WHG (and also Levant_Neolithic) ancestry.

    The known presence of I2a2a1b lineages in GAC groups in Poland also supports this interpretation, and the subsistence of such pockets of pre-steppe-like populations is also seen with the same or similar lineages appearing in comparable ‘resurge’ events in Central Europe, e.g. in samples from the Únětice and Tumulus culture.

    About the Bronze Age sample, we have at last official confirmation of haplogroup R1a1a (sadly no subclade*) at the very beginning of the Trzciniec period – in a region between western (Iwno) and eastern (Strzyżów) groups related to Mierzanowice – , which has to be put in relation with the samples from the final Trzciniec period in the Baltic published in Mittnik et al. (2018).

    EDIT (8 OCT 2018): More specific subclades have been published, including a R1a-Z280 lineage for the Bronze Age sample (see spreadsheet).

    This confirms the early resurge of R1a-Z645 (probably R1a-Z282) lineages at the core of the developing East European Bronze Age, a province of the European Bronze Age that emerged from evolving Bell Beaker groups in Poland.

    bell-beakers-poland-kujawy
    Arrival of Bell Beakers in Poland after ca. 2400 BC, and their origin in other BBC centres (Czebreszuk and Szmyt 2011).

    I don’t have any hope that the Balto-Slavic evolution through BBC Poland → Mierzanowice/Iwno → Trzciniec → Lusatian cultures is going to be confirmed any time soon, until we have a complete trail of samples to follow all the way to historic Slavs of the Prague culture. However, I do think that the current data on central-east Europe – and the recent data we are receiving from north-east Europe and the Iranian steppes, at odds with the Indo-Slavonic alternative – supports this model.

    I guess that, in the end, similar to how the Yamna vs. Corded Ware question is being solved, the real route of expansion of Proto-Balto-Slavic (supposedly spoken ca. 1500-1000 BC) is probably going to be decided by the expansion of either R1a-M458 (from the west) or R1a-Z280 lineages (from the east), because the limited precision of genetic data and analyses available today are going to show ‘modern Slavic’-like populations from the whole eastern half of Europe for the past 4,000 years…

    Related