Yekaterinovsky Cape, a link between the Samara culture and early Khvalynsk


We already had conflicting information about the elite individual from the Yekaterinovsky Cape and the materials of his grave, which seemed quite old:

For the burial of 45 in the laboratory of the University of Pennsylvania, a 14C date was obtained: PSUAMS-2880 (Sample ID 16068)> 30 kDa gelatin Russia. 12, Ekaterinovka Grave 45 14C age (BP) 6325 ± 25 δ 13C (‰) –23.6 δ15 N (‰) 14.5. The results of dating suggest chronological proximity with typologically close materials from Yasinovatsky and Nikolsky burial grounds (Telegini et al. 2001: 126). The date obtained also precedes the existing dates for the Khvalynsk culture (Morgunova 2009: 14–15), which, given the dominance of Mariupol traits of the burial rite and inventory, confirms its validity. However, the date obtained for human bones does not exclude the possibility of a “reservoir effect” when the age can increase three or more centuries (Shishlin et al. 2006: 135–140).

Now the same date is being confirmed by the latest study published on the site, by Korolev, Kochkina, and Stachenkov (2019) and it seems it is really going to be old. Abstract (in part the official one, in part newly translated for clarity):

For the first time, pottery of the Early Eneolithic burial ground Ekaterinovsky Cape is published. Ceramics were predominantly located on the sacrificial sites in the form of compact clusters of fragments. As a rule, such clusters were located above the burials, sometimes over the burials, some were sprinkled with ocher. The authors have identified more than 70 vessels, some of which have been partially reconstructed. Ceramic was made with inclusion of the crushed shell into molding mass. The rims of vessels had the thickened «collar»; the bottoms had a rounded shape. The ornament was located on the rims and the upper part of the potteries. Fully decorated vessels are rare. The vessels are ornamented with prints of comb and rope stamps, with small pits. A particularity of ceramics ornamentation is presented by the imprints of soft stamps (leather?) or traces of leather form for the making of vessels. The ornamentation, made up of «walking comb» and incised lines, was used rarely as well as the belts of pits made decoration under «collar» of a rim. Some features of the ceramics decoration under study relate it with ceramics of the Khvalynsk culture. The ceramics of Ekaterinovsky Cape burial ground is attributed by the authors to the Samara culture. The ceramic complex under study has proximity to the ceramics from Syezzhe burial ground and the ceramics of the second phase of Samara culture. The chronological position is determined by the authors as a later period than the ceramics from the Syezzhe burial ground, and earlier than the chronological position of ceramics of the Ivanovka stage of the Samara culture and the Khvalynsk culture.

Ceramics from Ekaterinovsky Cape burial ground. 1–2, 4–5, 7–11 – ceramics from aggregations; 3, 6 – ceramics from the cultural layer.

More specifically:

Based on ceramic fragments from a large vessel from a cluster of sq.m. 14, the date received was: SPb-2251–5673 ± 120 BP. The second date was obtained in fragments from the aggregation [see picture above] from the cluster of sq.m. 45–46: SPb-2252–6372 ± 100 BP. The difference in dating indicates that the process of determining the chronology of the burial ground is far from complete, although we note that the earlier date almost coincided with the date obtained from the human bone from individual 45 (Korolev, Kochkina, Stashenkov, 2018, p. 300).

Therefore, the ceramics of the burial ground Ekaterinovsky Cape possess an originality that determines the chronological position of the burial ground between the earliest materials of the burial type in Syezzhe and the Khvalynsk culture. Techno-typological features of dishes make it possible to attribute it to the Samara culture at the stage preceding the appearance of Ivanovska-Khvalynsk ceramics.

It seems that this site showed cultural influences from the upstream region near the Kama-Vyatka interfluve, too, according to Korolev, Kochkina, Stashenkov, and Khokhlov (2018):

In 2017, excavation of burial ground Ekaterinovsky Cape were continued, located in the area of the confl uence of the Bezenchuk River in the Volga River. During the new excavations, 14 burials were studied. The skeleton of the buried were in a position elongated on the back, less often – crooked on the back with knees bent at the knees. In one burial (No. 90), a special position of the skeleton was recorded. In the burial number 90 in the anatomical order, parts of the male skeleton. This gave grounds for the reconstruction of his original position in a semi-sitting position with the support of elbows on the bottom of the pit. Noteworthy inventory: on the pelvic bones on the left lay a bone spoon, near the right humerus, the pommel of a cruciform club was found. A conclusion is made about the high social status of the buried. The results of the analysis of the burial allow us to outline the closest circle of analogies in the materials of Khvalynsky I and Murzikhinsky burial grounds.

Important sites mentioned in both papers and in this text:

To sum up, it seems that the relative dates we have used until now have to be corrected: older Khvalynsk I Khvalynsk II individuals, supposedly dated ca. 5200-4000 BC (most likely after 4700 BC), and younger Yekaterinovsky individuals, supposedly of the fourth quarter of the 5th millennium (ca. 4250-4000 BC), are possibly to be considered, in fact, roughly reversed, if not chronologically, at least culturally speaking.

Interestingly, this gives a new perspective to the presence of a rare fish- or reptile-headed pommel-scepter, which would be natural in a variable period of expansion of the horse and horse-related symbolism, a cultural trait rooted in the Samara culture attested in Syezzhe before the unification of the symbol of power under the ubiquitous Khvalynsk-Suvorovo horse-headed scepters and related materials.

Ekaterinovsky Cape Burial Ground. Inventory of the burial no 90: 1, 2 – stone pommel of the mace; 3, 4 – bone article.

The Khvalynsk chieftain

If the reported lineages from Yekaterinovsky Cape are within the R1b-P297 tree, but without further clades, as Yleaf comparisons may suggest, there is not much change to what we have, and R1b-M269 could actually represent a part of the local population, but also incomers from the south (e.g. the north Caspian steppe hunter-gatherers like Kairshak), the east (with hunter-gatherer pottery), or the west near the Don River (in contact with Mariupol-related cultures, as the authors inferred initially from material culture).

Just like R1a-M417 became incorporated into the Sredni Stog groups after the Novodanilovka-Suvorovo expansion, probably as incoming hunter-gatherer pottery groups from the north admixing with peoples of “Steppe ancestry”, R1b-M269 lineages might have expanded explosively only during the Repin expansion, and maybe (like R1b-L51 later) they formed just a tiny part of the clans that dominated the steppe during the Khvalynsk-Novodanilovka community.

On the other hand, the potential finding of various R1b-M269/L23 samples in Yekaterinovsky Cape (including an elite individual) would suggest now, as it was supported in the original report by Mathieson et al. (2015), that these ancient R1b lineages found in the Volga – Ural region are in fact most likely all R1b-M269 without enough coverage to obtain proper SNP calls, which would simplify the picture of Neolithic expansions (yet again). From the supplementary materials:

10122 / SVP35 (grave 12). Male (confirmed genetically), age 20-30, positioned on his back with raised knees, with 293 copper artifacts, mostly beads, amounting to 80% of the copper objects in the combined cemeteries of Khvalynsk I and II. Probably a high-status individual, his Y-chromosome haplotype, R1b1, also characterized the high-status individuals buried under kurgans in later Yamnaya graves in this region, so he could be regarded as a founder of an elite group of patrilineally related families. His MtDNA haplotype H2a1 is unique in the Samara series.

Khvalynsk cemetery and grave gifts. Grave 90 contained copper beads and rings, a harpoon, flint blades, and a bird-bone tube. Both graves (90 and 91) were partly covered by Sacrificial Deposit 4 with the bones from a horse, a sheep, and a cow. Center: grave goods from the Khvalynsk cemetery-copper rings and bracelets, polished stone mace heads, polished stone bracelet, Cardium shell ornaments, boars tusk chest ornaments, flint blades, and bifiacial projectile points. Bottom: shell-tempered pottery from the Khvalynsk cemetery. After Agapov, Vasiliev, and Pestrikova 1990; and Ryndina 1998, Figure 31. Modified from Anthony (2007).

This remarkable Khvalynsk chieftain, whose rich assemblage may correspond to the period of domination of the culture all over the Pontic-Caspian steppes, has been consistently reported as of hg. R1b-L754 in all publications, including Wang et al. (2018/2019) tentative SNP calls in the supplementary materials (obtained with Yleaf, as the infamous Narasimhan et al. 2018 samples), but has been variously reported by amateurs as within the R1b-M73, R1b-V88, or (lately) R1b-V1636 trees, which makes it unlikely that quality of the sample is allowing for a proper SNP call.

The fact that Mathieson et al. (2015) considered it a member of the R1b-M269 clans appearing later in Yamna seems on point right now, especially if samples from Yekaterinovka are all within this tree. The relevance of R1b-L23 in the expansion of Repin and Yamna is reminiscent of the influence of successful clans among Yamna offshoots, such as Bell Beakers, and among Bell Beaker offshoots during the Bronze Age all over Europe.

Taking these younger expansions as example, it seems quite likely based on cultural links that (at least part of) the main clans of Khvalynsk were of R1b-M269 lineage, stemming from a R1b-dominated Samara culture, in line with the known succeeding expansions and the expected strictly patriarcal and patrilineal society of Proto-Indo-Europeans, which would have exacerbated the usual reduction in Y-chromosome haplogroup variability that happens during population expansions, and the aversion towards foreign groups while the culture lasted.

Cultures of the Pontic-Caspian steppes and forest-steppes and surrounding areas during the Neolithic.

The finding of R1b-L23 in Yekaterinovka, associated with the Samara culture, before or during the Khvalynsk expansion, and close to the Khvalynsk site, would make this Khvalynsk chieftain most likely a member of the M269 tree (paradoxically, the only R1b-L754 branch amateurs have not yet reported for it). Similarly, the sample of a “Samara hunter-gatherer” of Lebyazhinka, of hg. R1b-P297, could also be under this tree, just like most R1b-M269 from Yamna are downstream from R1b-L23, and most reported R1b-M269 or R1b-L23 from Bell Beakers are under R1b-L151.

On the other hand, we know of the shortcomings of attributing a haplogroup expansion to the best known rulers, such as the famous lineages previously wrongly attributed to Niall of the Nine Hostages or Genghis Khan. The known presence of R1b-V1636 up to modern Greeks would be in line with an ancient steppe expansion that we know will show up during the Neolithic, although it could also be a sign of a more recent migration from the Caucasus. The presence of a sister clade of R1b-L23, R1b-PF7562, among modern Balkan populations, may also be attributed to a pre-Yamna steppe expansion.

Y-DNA samples from Khvalynsk and neighbouring cultures. See full version here.

On SNP calls

I reckon that even informal reports on SNP calls, like any other analyses, should be offered in full: not only with a personal or automatic estimation of the result, but with a detailed explanation of the good, dubious, and bad calls, alternatives to that SNP estimation, and a motivated reasoning of why one branch should be preferred over others. Downloading a sample and giving an instruction using a free software tool is never enough, as it became crystal clear recently for the hilariously biased and flawed qpAdm reports on Dutch Bell Beakers as the ‘missing link’ between Corded Ware and Bell Beakers…

Another example I can recall is the report of a R1a-Z93 subclade in the R1a-M417 sample ca. 4000 BC from Alexandria, which seems rather unlikely, seeing how this subclade must have split and expanded explosively with R1a-Z645 to the east with eastern Corded Ware groups, i.e. 1,000 years later, just like Z282 lineages expanded mainly to the north-east. But then again, as with the Khvalynsk chieftain, I have only seen indirect reports of that supposed SNP (including Y26+!), so we should just stick with its officially reported R1a-M417 lineage. This upstream haplogroup was, in fact, repeated with Yleaf’s tentative estimates in Wang et al. (2019) supplementary materials…

The combination of inexperienced, biased, or simply careless design, analyses, and reports, including SNP calls and qpAdm analyses (whether in forums or publications), however well-intentioned (or not) they might be, are hindering a proper analysis of data, adding to the difficulties we already have due to the scarcity of samples, their limited coverage, and the lack of proper context.

Some people like to repeat ad nauseam that archaeology and/or linguistics are ‘not science’ whenever they don’t fit their beliefs and myths based on haplogroup and/or ancestry. But it’s becoming harder and harder to rely on certain genetic data, too, and on their infinite changing interpretations, much more than it is to rely on linguistic and archaeological research, including data, assessments, and discussions that are open for anyone to review…if one is truly interested in them.

The genetic and cultural barrier of the Pontic-Caspian steppe – forest-steppe ecotone


We know that the Caucasus Mountains formed a persistent prehistoric barrier to cultural and population movements. Nevertheless, an even more persistent frontier to population movements in Europe, especially since the Neolithic, is the Pontic-Caspian steppe – forest-steppe ecotone.

Like the Caucasus, this barrier could certainly be crossed, and peoples and cultures could permeate in both directions, but there have been no massive migrations through it. The main connection between both regions (steppe vs. forest-steppe/forest zone) was probably through its eastern part, through the Samara region in the Middle Volga.

The chances of population expansions crossing this natural barrier anywhere else seem quite limited, with a much less porous crossing region in the west, through the Dnieper-Dniester corridor.

A Persistent ecological and cultural frontier

It is very difficult to think about any culture that transgressed this persistent ecological and cultural frontier: many prehistoric and historical steppe pastoralists did appear eventually in the neighbouring forest-steppe areas during their expansions (e.g. Yamna, Scythians, or Turks), as did forest groups who permeated to the south (e.g. Comb Ware, GAC, or Abashevo), but their respective hold in foreign biomes was mostly temporary, because their cultures had to adapt to the new ecological environment. Most if not all groups originally from a different ecological niche eventually disappeared, subjected to renewed demographic pressure from neighbouring steppe or forest populations…

The Samara region in the Middle Volga may be pointed out as the true prehistoric link between forests and steppes (see David Anthony’s remarks), something reflected in its nature as a prehistoric sink in genetics. This strong forest – forest-steppe – steppe connection was seen in the Eurasian technocomplex, during the expansion of hunter-gatherer pottery, in the expansion of Abashevo peoples to the steppes (in one of the most striking cases of population admixture in the area), with Scythians (visible in the intense contacts with Ananyino), and with Turks (Volga Turks).

Simplified map of the distribution of steppes and forest-steppes (Pontic and Pannonian) and xeric grasslands in Eastern Central Europe (with adjoining East European ranges) with their regionalisation as used in the review (Northern—Pannonic—Pontic). Modified from Kajtoch et al. (2016).

Before the emergence of pastoralism, the cultural contacts of the Pontic region (i.e. forest-steppes) with the Baltic were intense. In fact, the connection of the north Pontic area with the Baltic through the Dnieper-Dniester corridor and the Podolian-Volhynian region is essential to understand the spread of peoples of post-Maglemosian and post-Swiderian cultures (to the south), hunter-gatherer pottery (to the north), TRB (to the south), Late Trypillian groups (north), GAC (south), or Comb Ware (south) (see here for Eneolithic movements), and finally steppe ancestry and R1a-Z645 with Corded Ware (north). After the complex interaction of TRB, Trypillia, GAC, and CWC during the expansion of late Repin, this traditional long-range connection is lost and only emerges sporadically, such as with the expansion of East Germanic tribes.

A barrier to steppe migrations into northern Europe

One may think that this barrier was more permeable, then, in the past. However, the frontier is between steppe and forest-steppe ecological niches, and this barrier evolved during prehistory due to climate changes. The problem is, before the drought that began ca. 4000 BC and increased until the Yamna expansion, the steppe territory in the north Pontic region was much smaller, merely a strip of coastal land, compared to its greater size ca. 3300 BC and later.

This – apart from the cultural and technological changes associated with nomadic pastoralism – justifies the traditional connection of the north Pontic forest-steppes to the north, broken precisely after the expansion of Khvalynsk, as the north Pontic area became gradually a steppe region. The strips of north Pontic and Azov steppes and Crimea seem to have had stronger connections to the Northern Caucasus and Northern Caspian steppes than with the neighbouring forest-steppe areas during the Upper Palaeolithic, Mesolithic, and Neolithic.

NOTE. We still don’t know the genetic nature of Mikhailovka or Ezero, steppe-related groups possibly derived from Novodanilovka and Suvorovo close to the Black Sea (which possibly include groups from the Pannonian plains), and how they compare to neighbouring typically forest-steppe cultures of the so-called late Sredni Stog groups, like Dereivka or partly Kvityana.

Typical migration routes through European steppes and forest-steppes. Red line represents the persistent cultural and genetic barrier, with the latest evolution in steppe region represented by the shift from dashed line to the north. Arrows show the most common population movements. Modified from Kajtoch et al. (2016).

Despite the Pontic-Caspian steppes and forest-steppes neighbouring each other for ca. 2,000 km, peoples from forested and steppe areas had an obvious advantage in their own regions, most likely due to the specialization of their subsistence economy. While this is visible already in Palaeolithic and Mesolithic hunter-gatherers, the arrival of the Neolithic package in the Pontic-Caspian region incremented the difference between groups, by spreading specialized animal domestication. The appearance of nomadic pastoralism adapted to the steppe, eventually including the use of horses and carts, made the cultural barrier based on the economic know-how even stronger.

Even though groups could still adapt and permeate a different territory (from steppe to forest-steppe/forest and vice-versa), this required an important cultural change, to the extent that it is eventually complicated to distinguish these groups from neighbouring ones (like north-west Pontic Mesolithic or Neolithic groups and their interaction with the steppes, Trypillia-Usatovo, Scythians-Thracians, etc.). In fact, this steppe – forest-steppe barrier is also seen to the east of the Urals, with the distinct expansion of Andronovo and Seima-Turbino/Andronovo-like horizons, which seem to represent completely different ethnolinguistic groups.

As a result of this cultural and genetic barrier, like that formed by the Northern Caucasus:

1) No steppe pastoralist culture (which after the emergence of Khvalynsk means almost invariably horse-riding, chariot-using nomadic herders who could easily pasture their cows in the huge grasslands without direct access to water) has ever been successful in spreading to the north or north-west into northern Europe, until the Mongols. No forest culture has ever been successful in expanding to the steppes, either (except for the infiltration of Abashevo into Sintashta-Potapovka).

2) Corded Ware was not an exception: like hunter-gatherer pottery before it (and like previous population movements of TRB, late Trypillia, GAC, Comb Ware or Lublin-Volhynia settlers) their movements between the north Pontic area and central Europe happened through forest-steppe ecological niches due to their adaptation to them. There is no reason to support a direct connection of CWC with true steppe cultures.

3) The so-called “Steppe ancestry” permeated the steppe – forest-steppe ecotone for hundreds of years during the 5th and early 4th millennium BC, due to the complex interaction of different groups, and probably to the aridization trend that expanded steppe (and probably forest-steppe) to the north. Language, culture, and paternal lineages did not cross that frontier, though.

EDIT (4 FEB 2019): Wang et al. is out in Nature Communications. They deleted the Yamna Hungary samples and related analyses, but it’s interesting to see where exactly they think the trajectory of admixture of Yamna with European MN cultures fits best. This path could also be inferred long ago from the steppe connections shown by the Yamna Hungary -> Bell Beaker evolution and by early Balkan samples:

Prehistoric individuals projected onto a PCA of 84 modern-day West Eurasian populations (open symbols). Dashed arrows indicate trajectories of admixture: EHG—CHG (petrol), Yamnaya—Central European MN (pink), Steppe—Caucasus (green), and Iran Neolithic—Anatolian Neolithic (brown). Modified from the original, a red circle has been added to the Yamna-Central European MN admixture.


Sintashta diet and economy based on domesticated animal products and wild resources


New paper (behind paywall) Bronze Age diet and economy: New stable isotope data from the Central Eurasian steppes (2100-1700 BC), by Hanks et al. J. Arch. Sci (2018) 97:14-25.

Interesting excerpts (emphasis mine):

Previous research at KA-5 was carried out by A. V. Epimakhov in 1994–1995 and 2002–2003 and resulted in the excavation of three Sintashta culture barrows (kurgans) that produced 35 burial pits and a reported 100 skeletons (Epimakhov, 2002, 2005; Epimakhov et al., 2005; Razhev and Epimakhov, 2004). Seven AMS radiocarbon dates on human remains from the cemetery yielded a date range of 2040–1730 cal. BC (2 sigma), which placed the cemetery within the Sintashta phase of the regional Bronze Age (Hanks et al., 2007). Twelve recently obtained AMS radiocarbon dates, taken from short-lived wood and charcoal species recovered from the Kamennyi Ambar settlement, have provided a date range of 2050–1760 cal. BC (2 sigma). Importantly, these dates confirm the close chronological relationship between the settlement and cemetery for the Middle Bronze Age phase and discount the possibility of a freshwater reservoir effect influencing the earlier dating of the human remains from the Kamennyi Ambar 5 cemetery (Epimakhov and Krause, 2013).

Sintashta cemeteries frequently yield fewer than six barrow complexes and the number of skeletons recovered represents a fraction of the total population that would have inhabited the settlements (Judd et al., 2018; Johnson and Hanks, 2012). Scholars have suggested that only members of higher status were afforded interment in these cemeteries and that principles of social organization structured placement of individuals within central or peripheral grave pits (Fig. 2) (Koryakova and Epimakhov, 2007: 75–81). In comparison with other Sintashta cemeteries that have been excavated, KA-5 provides one of the largest skeletal inventories currently available for study.

Upper – plan of Kamennyi Ambar settlement and cemetery; Lower – plan views of Kurgan 2 and Kurgan 4 from KA-5 Cemetery (kurgan plans redrawn from Epimakhov, 2005: 10, 79).

The KA-5 (MBA), Bestamak (MBA) and Lisakovsk (LBA) datasets exhibited a wide range of δ13C and δ15N values for both humans and herbivores (Figs. 5 and 6 & Table 8). This diversity in isotopic signals may be evident for a variety of reasons. For example, the range of values may be associated with a broad spectrum of C3 and C4 plant diversity in the ancient site biome or herbivore grazing patterns that included more diverse environmental niche areas in the microregion around the sampled sites. Herders also may have chosen to graze animals in niche areas due to recognized territorial boundaries between settlements and concomitant patterns of mobility. Importantly, data from Bolshekaragansky represents humans with lower δ15N values that are more closely associated with δ15N values of the sampled domestic herbivores (Fig. 6). When the archaeological evidence from associated settlement sites is considered, Bolshekaragansky, Bestamak, Lisakovsk and KA-5 have been assumed to represent populations that shared similar forms of pastoral subsistence economies with significant dietary reliance upon domesticated herbivore meat and milk. Human diets have δ13C values closely related to those of local herbivores in terms of the slope of the trendline and range of values (Fig. 6). Comparatively, the cemetery of Bolshekaragansky (associated with the Arkaim settlement) reflects individuals with trend lines closer to those of cattle and caprines and may indicate a stronger reliance on subsistence products from these species with less use of wild riverine and terrestrial resources. The site of Čiča is significantly different with elevated human δ15N isotopic values and depleted δ13C values indicative of a subsistence regime more closely associated with the consumption of freshwater resources, such as fish. The stable isotopic data in this instance is strongly supported by zooarchaeological evidence recovered from the Čiča settlement and also is indicative of significant diachronic changes from the LBA phases through the Iron Age (Fig. 6).

Regional analysis and comparison of stable isotope results from humans (adults) and animals recovered from MBA and LBA cemeteries in the Southern Urals (Kamennyi Ambar 5 & Bolshekaragansky) northwestern Kazakhstan (Liskovsk & Bestamak) and southwestern Siberia (Čiča).


(…) The isotopic results from KA-5, and recent botanical and archaeological studies from the Kamennyi Ambar settlement, have not produced any evidence for the production or use of domesticated cereals. While this does not definitively answer the question as to whether Sintashta populations engaged in agriculture and/or utilized agricultural products, it does call into serious question the ubiquity of such practices across the region and correlates well with recent archaeological, bioarchaeological, and isotopic studies of human and animal remains from the Southwestern Urals region and Samara Basin (Anthony et al., 2016; Schulting and Richards, 2016). The results substantiate a broader spectrum subsistence diet that in addition to the use of domesticated animal products also incorporated wild flora, wild fauna and fish species. These findings further demonstrate the need to draw on multiple methods and datasets for the reconstruction of late prehistoric subsistence economies in the Eurasian steppes. When possible, this should include datasets from both settlements and associated cemeteries.

Variability in subsistence practices in the central steppes region has been highlighted by other scholars and appears to be strongly correlated with local environmental conditions and adaptations. More comprehensive isotopic studies of human, animal and fish remains are of fundamental importance to achieve more robust and empirically substantiated reconstructions of local biomes and to aid the refinement of regional and micro-regional economic subsistence models. This will allow for a fuller understanding of key diachronic shifts within dietary trends and highlight regional variation of such practices. Ultimately, this will more effectively index the diverse social and environmental variables that contributed to late prehistoric lifeways and the economic strategies employed by these early steppe communities.

Social organization of Sintashta-Petrovka

Interesting to remember now the recent article by Chechushkov et al. (2018) about the social stratificaton in Sintashta-Petrovka, and how it must have caused the long-lasting, peaceful admixture process that led to the known almost full replacement of R1b-L23 (mostly R1b-Z2103) by R1a-Z645 (mostly R1a-Z93) subclades in the North Caspian steppe, coinciding with the formation of the Proto-Indo-Iranian community and language (read my thoughts on this after Damgaard et al. 2018).

Here is another relevant excerpt from Chechushkov et al. (2018), translated from Russian:

The map of the settlement of Kamennyi Ambar with excavations, soil cores, and test pits. Legend: a — cuts of the sides of ravines; b — test pits of 2015—2017; c — test pits of 2004; d — soil-science samples with a cultural layer; e — soil-science samples without cultural layer; f — borders of archaeological sites (interpretation of the plan of magnetic anomalies); g — boundaries of excavated structures (1, 2, 4, 5, 7 — Sintashta-Petrovka culture; 3, 6 — Srubnaya-Alakul’ culture).

The analysis suggests that the Sintashta-Petrovka societies had a certain degree of social stratification, expressed both in selective funeral rituals and in the significant difference in lifestyle between the elite and the immediate producers of the product. The data obtained during the field study suggest that the elite lived within the fortifications, while a part of the population was outside their borders, on seasonal sites, and also in stationary non-fortified settlements. Probably, traces of winter settlements can be found near the walls, while the search for summer ones is a task of a separate study. From our point of view, the elite of the early complex societies of the Bronze Age of the Eurasian steppe originated as a response to environmental challenges that created risks for cattle farming. The need to adapt the team to the harsh and changing climatic conditions created a precedent in which the settled collectives of pastoralists – hunter-gatherers could afford the content and magnificent posthumous celebration of people and their families who were not engaged in the production or extraction of an immediate product. In turn, representatives of this social group directed their efforts to the adoption of socially significant decisions, the organization of collective labor in the construction of settlement-shelters and risked their lives, acting as military leaders and fighters.

Thus, in Bronze Age steppe societies, the formation, development and decline of social complexity are directly related to the intensity of pastoralism and the development of new territories, where collectives had to survive in part a new ecological niche. At the same time, some members of the collective took upon themselves the organization of the collective’s life, receiving in return a privileged status. As soon as the conditions of the environment and management changed, the need for such functions was virtually eliminated, as a result of which the privileged members of society dissolved into the general mass, having lost their lifetime status and the right to be allocated posthumously.

Also interesting for the MLBA haplogroup bottleneck in the region is the paper by Judd et al. (2017) about fast life history in Early Indo-Iranian territories.

On the arrival of haplogroup N1c1-L392

Regarding the special position of the Chicha-1 samples in the change of diet and economy during the Iron Age, it is by now well known that haplogroup N must have arrived quite late to North-East Europe, and possibly not linked with the expansion of Siberian ancestry – or linked only with some waves of Siberian ancestry in the region, but not all of them. See Lamnidis et al. (2018) for more on this.

Also, the high prevalence of haplogroup N among Fennic and Siberian (Samoyedic) peoples is not related: while the latter reflects probably the native (Palaeo-Siberian) population that acquired their Uralic branch during the MLBA expansions associated with Corded Ware groups, the former points to the expansion of Fennic peoples into Saamic territory (i.e. after the Fenno-Saamic split) as the most likely period of expansion of N1c1-L392 subclades (see known recent bottlenecks among Finns, and on Proto-Finnic dialectalization).

Probably related to these late incomers are the ancient DNA samples from the Sargat culture during the Iron Age, which show the arrival of N subclades in the region, replacing most – but not all – R1a lineages (see Pilipenko et al. (2017)). Regarding the site of Chicha-1, the following are relevant excerpts about the cultural situation that could have allowed for such stepped, diachronic admixture events in Northern Eurasia, from the paper Stages in the settlement history of Chicha-1: The Results of ceramic analysis, by Molodin et al. (2008):

The stratigraphic data allows us to make the following inference: originally, the settlement was inhabited by people bearing the Late Irmen culture. Later, the people of the Baraba trend of the Suzgun culture arrived at the site (Molodin, Chemyakina, 1984: 40–62). The Baraba-Suzgun pottery demonstrates features similar to what has been reported from the sites of the transitional Bronze to Iron Age culture in the pre-taiga and taiga zones in the Irtysh basin (Potemkina, Korochkova, Stefanov, 1995; Polevodov, 2003). The major morphological types are slightly and well-profiled pots with a short throat. (…)

Map showing the location of Chicha-1.

During the following stage of development of the site, the Chicha population increased with people who practiced cultures others than those noted in earlier collections. The ceramic materials from layer 5 provide data on possible relationships. In addition to migrants from northwestern regions practicing the Suzgun culture, there were people bearing the Krasnoozerka culture. Available data also suggests that people from the northern taiga region with the Atlym culture visited the site.

However, people from the west and southwest represent the greatest migration to the region under study. In all likelihood they moved from the northern forest-steppe zone of modern Kazakhstan and practiced the Berlik culture. The spatial distribution analysis of the Chicha-1 site suggests that the Berlik population was rather large. The Berlik people formed a single settlement with the indigenous Late Irmen people and apparently waged certain common economic activities, but preserved their own ethnic and cultural specificity (Molodin, Parzinger, 2006: 49–55). Judging by the data on the chronological sequence of deposited artifacts, migration took place roughly synchronously, hence Chicha-1 became a real cultural and economic center.

(…) In sum, the noted distribution of ceramics over the culture-bearing horizons suggests that beginning with layer 5, traditions of ceramic manufacture described above were practiced, hence the relevant population inhabited the site. Apparently, there were two predominant traditions: the local Late Irmen cultural tradition and the Berlik tradition, which was brought by the immigrants. The Late Irmen people mostly populated the citadel, while the Berlik immigrants inhabited the areas to the east and the north of the citadel.

The stratigraphic data also suggest that the Early Sargat ceramics emerged at the site likely as a part of the Late Irmen tradition (…) Early Sargat ceramics is apparently linked with the Late Irmen tradition. Artifacts associated with the Sargat culture proper have been found in several areas of Chicha-1 (e.g., in excavation area 16). However, the Sargat people appeared at the site after it had been abandoned by its previous inhabitants, and had eventually become completely desolated. This happened no earlier than the 6th cent. BC, possibly in the 5th cent. BC (in fact, the radiocarbon dates for that horizon are close to the turn of the Christian era).


The end of the Kura-Araxes settlements: large-scale phenomenon but with varied causes


Open access The End of the Kura-Araxes Culture as Seen from Nadir Tepesi in Iranian Azerbaijan, by Alizadeh, Maziar & Mohammadi, American Journal of Archaeology (2018) 122(3):463-477.

Interesting excerpts (emphasis mine):

The test trenches at Nadir Tepesi suggest that the Kura-Araxes occupation ended abruptly in the mid third millennium B.C.E. and that the site was then occupied or visited by a new group of people with new cultural traditions. Evidence for a significant destruction followed by the sharp discontinuity in the material culture could represent a violent termination of the Kura-Araxes occupation at Nadir Tepesi. This possibility provides one hypothesis for the end of the Kura-Araxes culture elsewhere as well in the Mughan Steppe.

It appears that there is no subsequent substantial built settlement until possibly the Late Iron Age in the region. Our intensive and extensive surveys on the Mughan Steppe did not provide evidence for settlements until long after the Kura-Araxes time. For whatever reason, settlements on the Mughan Steppe seem to have reappeared only in the Iron Age and remained sparse until the Sassanian period in late antiquity.45 Although some ceramics with parallels in the Middle and Late Bronze Age and the Iron Age were found at a few sites, they do not seem to represent settlements.

Major Kura-Araxes sites in the Caucasus region and location of Nadir Tepesi (modified from Bourrichon/Wikimedia Commons/CC BY-SA 3.0/GFDL).

Indeed, except for the sites that may possibly contain burials, we do not know much about the Middle and Late Bronze Ages through the Iron Age in the Mughan Steppe. Similarly, archaeological investigations in the southern Caucasus do not provide information on settlements in the Middle Bronze Age.46 From a broad perspective, the abrupt and possibly violent end to the Kura-Araxes occupation at Nadir Tepesi, together with the sudden disappearance of the Kura-Araxes settlements and the scarcity of post–Kura-Araxes sites in the Mughan Steppe,47 may indicate that these changes were part of a larger phenomenon. This evidence could suggest a major sociocultural and demographic transformation at a regional level, at least in the western Caspian littoral plain, in the middle of the third millennium B.C.E. Other archaeological investigations in the southern Caucasus portray a similar picture, that of newcomers with a significantly different lifestyle and means of subsistence possibly associated with a mobile economy. Except in some elements of the ceramic traditions, evidence of continuity of Kura-Araxes traditions and their coexistence with newcomers is scarce and uncertain.48

On one hand, Puturidze argues that there is no evidence supporting the notion of a migration of people into the southern Caucasus.50 Rather, she associates all the changes in the post–Kura-Araxes period with influences from Near Eastern societies as a result of developing interactions by the end of the third millennium B.C.E. On the other hand, Kohl hypothesizes the possibility of a “push-pull process”51 in which new groups of people with wheeled carts and oxen-pulled wagons gradually moved from the steppes of the north into the southern Caucasus, and the Kura-Araxes communities subsequently moved farther south.52.

Early Chalcolithic migrations (3100-2600 BC)

Kohl also reminds us of the evidence of increased militarism from the Early to the Late Bronze Age that is reflected in more fortified sites, new weaponry, and an iconography of war as seen on the Karashamb Cup.53 The appearance of defensive mechanisms such as fortification walls, which can be seen at Köhne Shahar, a Kura-Araxes settlement near Chaldran in Iranian Azerbaijan, further emphasizes the increase of intergroup conflicts and militarism during the Early Bronze Age, before the Kura-Araxes culture came to an end.54 Kohl argues that, while the number of Kura-Araxes settlements decreased in the southern Caucasus, archaeological research indicates that the Kura-Araxes culture spread to western Iran in the Zagros region and to the Levant.55 In Kohl’s view, as new groups of people moved in, the Kura-Araxes communities abandoned the southern Caucasus and moved farther south, where some of them already resided. Although some scholars suggest the possible movement of new groups of people from the northern steppes to the southern Caucasus,56 others associate the cultures of the post–Kura-Araxes period, especially the Trialeti.

We believe that the evidence supports a less uniform scenario. The Kura-Araxes culture may have disappeared in various ways; the transition to the post–Kura-Araxes time may not be explained by a single model. Different Kura-Araxes settlements may have ended differently. The evidence from Nadir Tepesi could support a violent end at that site, and it is possible that similar evidence will be found at other sites in the Mughan Steppe. At some sites, such as Köhne Tepesi in the Khoda Afarin Plain,58 the Kura-Araxes occupation also ended abruptly but without any sign of destruction. In other regions, there may be evidence supporting the coexistence of newcomers with Kura-Araxes communities for some period.59 The results from Gegharot60 in Armenia and recent excavations by one of the authors of this report at Köhne Shahar, do not support any of these models. At Köhne Shahar, the Kura-Araxes culture ended around the middle of the third millennium B.C.E.61 In the last phase of Kura-Araxes occupation at the site, six storage jars in one of the workshop units stood intact, five of them still carefully covered by stone slabs. The evidence from Köhne Shahar may point to a nonviolent end or a planned abandonment of the site.62

Late Chalcolithic migrations (2600-2250 BC)

The picture continues to be somehow blurred for what happened in the Caucasus and North Iran after the Late Indo-European expansions, due to contradictory information.

With the analysis of the dataset from Narasimhan et al. (2018), it seemed that steppe peoples might have migrated into North Iran after the first Khvalynsk/Repin or Early Yamna expansions, because some samples from North Iran were reported to have steppe-related admixture.

NOTE. As I already said, the Hajji Firuz sample of R1b-Z2103 subclade (of uncertain date) clusters closer to the Iron Age sample F38 from Iran (Broushaki et al. 2016), of the same subclade, which is quite likely related to Proto-Armenian speakers, so it is possible that both belong to the same, Late Bronze Age / Iron Age group of migrants.

The other possibility, since it also clusters at a certain distance from the Hajji Firuz I4243 ‘outlier’, dated ca. 2326 BC (from the same archaeological site as other Chalcolithic samples, but being an intrusive Bronze Age burial), is that the Hajji Firuz sample is related to these hypothetical early migrations described here; or, that its date of I4243 is also not reliable…

These initial reports, coupled with archaeological descriptions of potential migrants from the steppe ending the Kura-Araxes culture, may suggest that peoples of steppe origin (or peoples with steppe admixture from the Caucasus) occupied territories further to the south (see here for potential early migration waves).

However, studies of samples from the Caucasus in Wang et al. (2018) have shown that no migrations related to EHG ancestry happened to the south, and that the minimal EHG/WHG contribution in Kura-Araxes individuals is probably part of the Anatolian farmer-related ancestry, and not from the steppe.

In fact, further contribution from Iran Chalcolithic-related ancestry was found intruding to the north during the Early Bronze Age, into Kura-Araxes and Maykop-Novosvobodnaya samples. In the Middle Bronze Age, some peoples from the North Caucasus show steppe ancestry (further to the south than the first steppe ancestry incursions of the North Caucasus piedmont), but most late Caucasus groups studied retain the ‘southern’ Armenian/Iran Chalcolithic profile.

Early Bronze Age migrations (2600-2250 BC)

All this casts doubts on the whole idea of intrusive steppe ancestry found in Iran Chalcolithic and Early Bronze Age (or, alternatively, on the proper dates of the Hajji Firuz ‘outliers’).

Also, the archaeological discontinuity in the region until the Iron Age, and the close relationship of Armenian to Greek (relative to other Palaeo-Balkan languages, which seem to have expanded to the south-west with Yamna settlers), does not support these hypothetical early steppe migrants as the Proto-Armenian community; earlier migrations of LPIE speakers without known modern descendants are obviously possible, but no clear archaeological or linguistic link has been offered to date to support this.

Until we have more samples with a clear archaeological and chronological context from Anatolia, Iran, and the Armenian Highlands during the Bronze and Iron Ages, and until they show clear steppe ancestry assessed in peer-reviewed papers (or at least thoroughly contrasted with other potential sources of such ancestry, and with solid statistical results), the question of intrusive steppe ancestry, and thus maybe LPIE-speakers (which may or may not be associated with Proto-Armenians) remains open.

NOTE. The Armenian question remains open, not because genetics has precedence over linguistics, but because the linguistic classification and date of separation, in this case, is not clear, and may be quite old. The fact that Palaeo-Balkan and Pre-Indo-Iranian might have separated quite early within the Khvalynsk – Volga-Ural (Early Yamna) community adds to the difficulty in assessing migration routes, although I do believe that the close similarity of Armenian with Greek among Palaeo-Balkan languages do not warrant such an early separation, and the Middle to Late Bronze Age period in the Balkans and Anatolia offers a better route for this expansion.

See also

Eurasian steppe dominated by Iranian peoples, Indo-Iranian expanded from East Yamna


The expected study of Eurasian samples is out (behind paywall): 137 ancient human genomes from across the Eurasian steppes, by de Barros Damgaard et al. Nature (2018).

Dicussion (emphasis mine):

Our findings fit well with current insights from the historical linguistics of this region (Supplementary Information section 2). The steppes were probably largely Iranian-speaking in the first and second millennia bc. This is supported by the split of the Indo-Iranian linguistic branch into Iranian and Indian33, the distribution of the Iranian languages, and the preservation of Old Iranian loanwords in Tocharian34. The wide distribution of the Turkic languages from Northwest China, Mongolia and Siberia in the east to Turkey and Bulgaria in the west implies large-scale migrations out of the homeland in Mongolia since about 2,000 years ago35. The diversification within the Turkic languages suggests that several waves of migration occurred36 and, on the basis of the effect of local languages, gradual assimilation to local populations had previously been assumed37. The East Asian migration starting with the Xiongnu accords well with the hypothesis that early Turkic was the major language of Xiongnu groups38. Further migrations of East Asians westwards find a good linguistic correlate in the influence of Mongolian on Turkic and Iranian in the last millennium39. As such, the genomic history of the Eurasian steppes is the story of a gradual transition from Bronze Age pastoralists of West Eurasian ancestry towards mounted warriors of increased East Asian ancestry—a process that continued well into historical times.

This paper will need a careful reading – better in combination with Narasimhan et al. (2018), when their tables are corrected – , to assess the actual ‘Iranian’ nature of the peoples studied. Their wide and long-term dominion over the steppe could also potentially explain some early samples from Hajji Firuz with steppe ancestry.

Principal component analyses. The principal components 1 and 2 were plotted for the ancient data analysed with the present-day data (no projection bias) using 502 individuals at 242,406 autosomal SNP positions. Dimension 1 explains 3% of the variance and represents a gradient stretching from Europe to East Asia. Dimension 2 explains 0.6% of the variance, and is a gradient mainly represented by ancient DNA starting from a ‘basal-rich’ cluster of Natufian hunter-gatherers and ending with EHGs. BA, Bronze Age; EMBA, Early-to-Middle Bronze Age; SHG, Scandinavian hunter-gatherers.

For the moment, at first sight, it seems that, in terms of Y-DNA lineages:

  • R1b-Z93 (especially Z2124 subclades) dominate the steppes in the studied periods.
  • R1b-P312 is found in Hallstatt ca. 810 BC, which is compatible with its role in the Celtic expansion.
  • R1b-U106 is found in a West Germanic chieftain in Poprad (Slovakia) ca. 400 AD, during the Migration Period, hence supporting once again the expansion of Germanic tribes especially with R1b-U106 lineages.
  • A new sample of N1c-L392 (L1025) lineage dated ca. 400 AD, now from Lithuania, points again to a quite late expansion of this lineage to the region, believed to have hosted Uralic speakers for more than 2,000 years before this.
  • A sample of haplogroup R1a-Z282 (Z92) dated ca. 1300 AD in the Golden Horde is probably not quite revealing, not even for the East Slavic expansion.
  • Also, interestingly, some R1b(xM269) lineages seem to be associated with Turkic expansions from the eastern steppe dated around 500 AD, which probably points to a wide Eurasian distribution of early R1b subclades in the Mesolithic.

NOTE. I have referenced not just the reported subclades from the paper, but also (and mainly) further Y-SNP calls studied by Open Genomes. See the spreadsheet here.

Interesting also to read in the supplementary materials the following, by Michaël Peyrot (emphasis mine):

1. Early Indo-Europeans on the steppe: Tocharians and Indo-Iranians

The Indo-European language family is spread over Eurasia and comprises such branches and languages as Greek, Latin, Germanic, Celtic, Sanskrit etc. The branches relevant for the Eurasian steppe are Indo-Aryan (= Indian) and Iranian, which together form the Indo-Iranian branch, and the extinct Tocharian branch. All Indo-European languages derive from a postulated protolanguage termed Proto-Indo-European. This language must have been spoken ca 4500–3500 BCE in the steppe of Eastern Europe21. The Tocharian languages were spoken in the Tarim Basin in present-day Northwest China, as shown by manuscripts from ca 500–1000 CE. The Indo-Aryan branch consists of Sanskrit and several languages of the Indian subcontinent, including Hindi. The Iranian branch is spread today from Kurdish in the west, through a.o. Persian and Pashto, to minority languages in western China, but was in the 2nd and 1st millennia BCE widespread also on the Eurasian steppe. Since despite their location Tocharian and Indo-Iranian show no closer relationship within Indo-European, the early Tocharians may have moved east before the Indo-Iranians. They are probably to be identified with the Afanasievo Culture of South Siberia (ca 2900 – 2500 BCE) and have possibly entered the Tarim Basin ca 2000 BCE103.

The Indo-Iranian branch is an extension of the Indo-European Yamnaya Culture (ca 3000–2400 BCE) towards the east. The rise of the Indo-Iranian language, of which no direct records exist, must be connected with the Abashevo / Sintashta Culture (ca 2100 – 1800 BCE) in the southern Urals and the subsequent rise and spread of Andronovo-related Culture (1700 – 1500 BCE). The most important linguistic evidence of the Indo-Iranian phase is formed by borrowings into Finno-Ugric languages104–106. Kuz’mina (2001) identifies the Finno-Ugrians with the Andronoid cultures in the pre-taiga zone east of the Urals107. Since some of the oldest words borrowed into Finno-Ugric are only found in Indo-Aryan, Indo-Aryan and Iranian apparently had already begun to diverge by the time of these contacts, and when both groups moved east, the Iranians followed the Indo-Aryans108. Being pushed by the expanding Iranians, the Indo-Aryans then moved south, one group surfacing in equestrian terminology of the Anatolian Mitanni kingdom, and the main group entering the Indian subcontinent from the northwest.

Summary map. Depictions of the five main migratory events associated with the genomic history of the steppe pastoralists from 3000 bc to the present. a, Depiction of Early Bronze Age migrations related to the expansion of Yamnaya and Afanasievo culture. b, Depiction of Late Bronze Age migrations related to the Sintashta and Andronovo horizons. c, Depiction of Iron Age migrations and sources of admixture. d, Depiction of Hun-period migrations and sources of admixture. e, Depiction of Medieval migrations across the steppes.

2. Andronovo Culture: Early Steppe Iranian

Initially, the Andronovo Culture may have encompassed speakers of Iranian as well as Indo-Aryan, but its large expansion over the Eurasian steppe is most probably to be interpreted as the spread of Iranians. Unfortunately, there is no direct linguistic evidence to prove to what extent the steppe was indeed Iranian speaking in the 2nd millennium BCE. An important piece of indirect evidence is formed by an archaic stratum of Iranian loanwords in Tocharian34,109. Since Tocharian was spoken beyond the eastern end of the steppe, this suggests that speakers of Iranian spread at least that far. In the west of the Tarim Basin the Iranian languages Khotanese and Tumshuqese were spoken. However, the Tocharian B word etswe ‘mule’, borrowed from Iranian *atswa- ‘horse’, cannot derive from these languages, since Khotanese has aśśa- ‘horse’ with śś instead of tsw. The archaic Iranian stratum in Tocharian is therefore rather to be connected with the presence of Andronovo people to the north and possibly to the east of the Tarim Basin from the middle of the 2nd millennium BCE onwards110.

Since Kristiansen and Allentoft sign the paper (and Peyrot is a colleague of Kroonen), it seems that they needed to expressly respond to the growing criticism about their recent Indo-European – Corded Ware Theory. That’s nice.

They are obviously trying to reject the Corded Ware – Uralic links that are on the rise lately among Uralicists, now that Comb Ware is not a suitable candidate for the expansion of the language family.

IECWT-proponents are apparently not prepared to let it go quietly, and instead of challenging the traditional Neolithic Uralic homeland in Eastern Europe with a recent paper on the subject, they selected an older one which partially fit, from Kuz’mina (2001), now shifting the Uralic homeland to the east of the Urals (when Kuz’mina asserts it was south of the Urals).

Different authors comment later in this same paper about East Uralic languages spreading quite late, so even their text is not consistent among collaborating authors.

Also interesting is the need to resort to the questionable argument of early Indo-Aryan loans – which may have evidently been Indo-Iranian instead, since there is no way to prove a difference between both stages in early Uralic borrowings from ca. 4,500-3,500 years ago…

EDIT (10/5/2018) The linguistic supplement of the Science paper deals with different Proto-Indo-Iranian stages in Uralic loans, so on the linguistic side at least this influence is clear to all involved.

A rejection of such proposals of a late, eastern homeland can be found in many recent writings of Finnic scholars; see e.g. my references to Parpola (2017), Kallio (2017), or Nordqvist (2018).

NOTE. I don’t mind repeating it again: Uralic is one possibility (the most likely one) for the substrate language that Corded Ware migrants spread, but it could have been e.g. another Middle PIE dialect, similar to Proto-Anatolian (after the expansion of Suvorovo-Novodanilovka chiefs). I expressly stated this in the Corded Ware substrate hypothesis, since the first edition. What was clear since 2015, and should be clear to anyone now, is that Corded Ware did not spread Late PIE languages to Europe, and that some east CWC groups only spread languages to Asia after admixing with East Yamna. If they did not spread Uralic, then it was a language or group of languages phonetically similar, which has not survived to this day.

Their description of Yamna migrations is already outdated after Olalde et al. & Mathieson et al. (2018), and Narasimhan et al. (2018), so they will need to update their model (yet again) for future papers. As I said before, Anthony seems to be one step behind the current genetic data, and the IECWT seems to be one step behind Anthony in their interpretations.

At least we won’t have the Yamna -> Corded Ware -> BBC nonsense anymore, and they expressly stated that LPIE is to be associated with Yamna, and in particular the “Indo-Iranian branch is an extension of the Indo-European Yamnaya Culture (ca 3000–2400 BCE) to the East” (which will evidently show an East Yamna / Poltavka society of R1b-L23 subclades), so that earlier Eneolithic cultures have to be excluded, and Balto-Slavic identification with East Europe is also out of the way.


Recent archaeological finds near Indo-European and Uralic homelands


The latest publication of Documenta Praehistorica, vol. 44 (2017) is a delight for anyone interested in Indo-European and Uralic studies, whether from a linguistic, archaeological, anthropological, or genetic point of view. Articles are freely downloadable from the website.

The following is a selection of articles I deem more interesting, but almost all are.

On the Corded Ware culture

Do 14C dates always turn into an absolute chronology? The case of the Middle Neolithic in western Lesser Poland, by Marek Novak:

In the late 5th, 4th, and early 3rd millennia BC, different archaeological units are visible in western Lesser Poland. According to traditional views, local branches of the late Lengyel-Polgár complex, the Funnel Beaker culture, and the Baden phenomena overlap chronologically in great measure. The results of investigations done with new radiocarbon dating show that in some cases a discrete mode and linearity of cultural transformation is recommended. The study demonstrates that extreme approaches in which we either approve only those dates which fit with our concepts or accept with no reservation all dates as such are incorrect.

Territory of western Lesser Poland and the main archaeological units in the late 5th, 4th and early 3rd millennia BC: 1 borders of the area discussed in the paper; 2 sites of the Lublin-Volhynian culture; 3 the Wyciąże-Złotniki group; 4 the Funnel Beaker culture (a dense settlement typical of ‘loess’ upland; b more dispersed settlement typical of foothills, alluvial plains/basins and ‘jurassic zones; c highly dispersed settlement typical mainly of mountainous zone); 5 sites with the Wyciąże/Niedźwiedź materials; 6 the Baden culture, 7 the Beaker/Baden assemblages; 8 Corded Ware culture (a relatively dense settlement typical mainly of ‘loess’ upland; b highly dispersed settlement typical of other ecological zones).

This article brings new data against David Anthony’s new IECWT model, suggesting later dates for the Corded Ware Culture group of Lesser Poland, and thus an earlier origin of their nomadic herders in the steppe, forest-steppe or forest zone to the east and south-east.

On the Pontic-Caspian steppe and forest-steppe

First isotope analysis and new radiocarbon dating of Trypillia (Tripolye) farmers from Verteba Cave, Bilche Zolote, Ukraine, by Lillie et al.:

This paper presents an analysis of human and animal remains from Verteba cave, near Bilche Zolote, western Ukraine. This study was prompted by a paucity of direct dates on this material and the need to contextualise these remains in relation both to the transition from hunting and gathering to farming in Ukraine, and their specific place within the Cucuteni-Trypillia culture sequence. The new absolute dating places the remains studied here in Trypillia stages BII/CI at c. 3900–3500 cal BC, with one individual now redated to the Early Scythian period. As such, these finds are even more exceptional than previously assumed, being some of the earliest discovered for this culture. The isotope analyses indicate that these individuals are local to the region, with the dietary stable isotopes indicating a C3 terrestrial diet for the Trypillia-period humans analysed. The Scythian period individual has δ13C ratios indicative of either c. 50% marine, or alternatively C4 plant inputs into the diet, despite δ18O and 87Sr/86Sr ratios that are comparable to the other individuals studied.

Map showing the extent of the Trypillia culture of Ukraine and
neighbouring countries, key sites and the location of Verteba Cave ©WAERC
University of Hull.

New data on one of the cultures that was very likely a close neighbour of Corded Ware peoples.

Chronology of Neolithic sites in the forest-steppe area of the Don River, by Smolyaninov, Skorobogatov, and Surkov:

The first ceramic complexes appeared in the forest-steppe and forest zones of Eastern Europe at the end of the 7th–5th millennium BC. They existed until the first half of the 5th millennium BC in the Don River basin. All these first ceramic traditions had common features and also local particularities. Regional cultures, distinguished nowadays on the basis of these local particularities, include the Karamyshevskaya and Middle Don cultures, as well pottery of a new type found at sites on the Middle Don River (Cherkasskaya 3 and Cherkasskaya 5 sites).

Radiocarbon chronology of Neolithic in the Lower Don and North-eastern Azov Sea, by Tsybryi et al.:

So far, four different cultural-chronological groups of sites have been identified in the North-eastern Azov Sea and Lower Don River areas, including sites of the Rakushechny Yar culture, Matveev Kurgan culture, Donets culture, and sites of the Caspian-Ciscaucasian region. An analysis of all known dates, as well as the contexts and stratigraphies of the sites, allowed us to form a new perspective of the chronology of southern Russia, to revise the chronology of this region, and change the concept of unreliability of dates for this area.

On the Forest Zone

The past in the past in the mortuary practice of hunter-gatherers: an example from a settlement and cemetery site in northern Latvia, by Lars Olof Georg Larsson:

During excavations of burials at Zvejnieki in northern Latvia, it transpired that the grave fill included occupation material brought to the grave. It contained tools of a type that could not be contemporaneous with the grave. This is confirmed by the dating of bone tools and other bone finds in the fill. The fill was taken from an older settlement site a short distance away. The fill also included skeletal parts of humans whose graves had been destroyed with the digging of the grave for a double burial. This provides an interesting view of the mortuary practice of hunter-gatherers and an insight into the use of the past in the past.

The Zvejnieki site with the location of the burial ground, the settlements,
the farmhouse on the site and the gravel pit.

I keep expecting that more information is given regarding the important sample labelled “Late Neolithic/Corded Ware Culture” from Zvejnieki ca. 2880 BC. It seems too early for the Corded Ware culture in the region, clusters too close to steppe samples, and the information on it from genetic papers is so scarce… My ad hoc explanation of these data – as a product of recent exogamy from Eastern Yamna -, while possibly enough to explain one sample, is not satisfying without further data, so we need to have more samples from the region to have a clearer picture of what happened there and when. Another possibility is a new classification of the sample, compatible with later migration events (a later date of the sample would explain a lot). Anyway, this article won’t reveal anything about this matter, but is interesting for other, earlier samples from the cemetery.

Other articles on the Forest Zone include:

Other articles include studies on Neolithic sites, potentially relevant for Indo-European migrations, such as Anatolia, Greece, southern or south-eastern sites in Europe. Check it out!


Globular Amphora not linked to Pontic steppe migrants – more data against Kristiansen’s Kurgan model of Indo-European expansion


New open access article, Genome diversity in the Neolithic Globular Amphorae culture and the spread of Indo-European languages, by Tassi et al. (2017).


It is unclear whether Indo-European languages in Europe spread from the Pontic steppes in the late Neolithic, or from Anatolia in the Early Neolithic. Under the former hypothesis, people of the Globular Amphorae culture (GAC) would be descended from Eastern ancestors, likely representing the Yamnaya culture. However, nuclear (six individuals typed for 597 573 SNPs) and mitochondrial (11 complete sequences) DNA from the GAC appear closer to those of earlier Neolithic groups than to the DNA of all other populations related to the Pontic steppe migration. Explicit comparisons of alternative demographic models via approximate Bayesian computation confirmed this pattern. These results are not in contrast to Late Neolithic gene flow from the Pontic steppes into Central Europe. However, they add nuance to this model, showing that the eastern affinities of the GAC in the archaeological record reflect cultural influences from other groups from the East, rather than the movement of people.

(a) Principal component analysis on genomic diversity in ancient and modern individuals. (b) K = 3,4 ADMIXTURE analysis based only on ancient variation. (a) Principal component analysis of 777 modern West Eurasian samples with 199 ancient samples. Only transversions considered in the PCA (to avoid confounding effects of post-mortem damage). We represented modern individuals as grey dots, and used coloured and labelled symbols to represent the ancient individuals. (b) Admixture plots at K = 3 and K = 4 of the analysis conducted only considering the ancient individuals. The full plot is shown in electronic supplementary material, figure S7. The ancient populations are sorted by a temporal scale from Pleistocene to Iron Age. The GAC samples of this study are displayed in the box on the right.

Excerpt, from the discussion:

In its classical formulation, the Kurgan hypothesis, i.e. a late Neolithic spread of proto-Indo-European languages from the Pontic steppes, regards the GAC people as largely descended from Late Neolithic ancestors from the East, most likely representing the Yamna culture; these populations then continued their Westward movement, giving rise to the later Corded Ware and Bell Beaker cultures. Gimbutas [23] suggested that the spread of Indo-European languages involved conflict, with eastern populations spreading their languages and customs to previously established European groups, which implies some degree of demographic change in the areas affected by the process. The genomic variation observed in GAC individuals from Kierzkowo, Poland, does not seem to agree with this view. Indeed, at the nuclear level, the GAC people show minor genetic affinities with the other populations related with the Kurgan Hypothesis, including the Yamna. On the contrary, they are similar to Early-Middle Neolithic populations, even geographically distant ones, from Iberia or Sweden. As already found for other Late Neolithic populations [18], in the GAC people’s genome there is a component related to those of much earlier hunting-gathering communities, probably a sign of admixture with them. At the nuclear level, there is a recognizable genealogical continuity from Yamna to Corded Ware. However, the view that the GAC people represented an intermediate phase in this large-scale migration finds no support in bi-dimensional representations of genome diversity (PCA and MDS), ADMIXTURE graphs, or in the set of estimated f3-statistics.

Scheme summarizing the five alternative models compared via ABC random forest. We generated by coalescent simulation mtDNA sequences under five models, differing as to the number of migration events considered. The coloured lines represent the ancient samples included in the analysis, namely Unetice (yellow line), Bell Beaker (purple line), Corded Ware (green line) and Globular Amphorae (red line) from Central Europe, Yamnaya (light blue line) and Srubnaya (brown line) from Eastern Europe. The arrows refer to the three waves of migration tested. Model NOMIG was the simplest one, in which the six populations did not have any genetic exchanges; models MIG1, MIG2 and MIG1, 2 differed from NOMIG in that they included the migration events number 1, 2 (from Eastern to Central Europe, respectively before and after the onset of the GAC), or both. Model MIG2, 3 represents a modification of MIG2 model also including a back migration from Central to Eastern Europe after the development of the Corded Ware culture.

Together with Globular Amphora culture samples from Mathieson et al. (2017), this suggests that Kristiansen’s Indo-European Corded Ware Theory is wrong, even in its latest revised models of 2017.

The background shading indicates the tree migratory waves proposed by Marija Gimbutas, and personally
checked by her in 1995. The symbols refer to the ancient populations considered in the ABC analysis

On the other hand, the article’s genetic finds have some interesting connections in terms of mtDNA phylogeography, but without a proper archaeological model it is difficult to explain them.

Haplogroup frequencies were obtained for Early Neolithic (EN), Middle Neolithic (MN), Chalcolithic (CA), and Late Neolithic (LN). The color assigned to each haplogroup is represented on the lower right part of each plot. Haplogroup frequencies were plotted geographically using QGIS v2.14.

Text and images from the article under Creative Commons Attribution 4.0 license.

Discovered first via Bernard Sécher’s blog.

See also:

Collapse of the European ice sheet caused chaos in northern and eastern Europe until about 8000 BC


A new paper with open access has appeared in Quaternary Science Reviews, authored by Patton et al.: Deglaciation of the Eurasian ice sheet complex, which offers a new model investigating the retreat of this ice sheet and its many impacts.

According to the comments of professor Alun Hubbard, the paper’s second author and a leading glaciologist:

To place it in context, this is almost 10 times the current rates of ice lost from Greenland and Antarctica today. What’s fascinating is that not all Eurasian ice retreat was from surface melting alone. Its northern and western sectors across the Barents Sea, Norway and Britain terminated directly into the sea. They underwent rapid collapse through calving of vast armadas of icebergs and undercutting of the ice margin by warm ocean currents.

Some speculate that at some points during the European deglaciation, this river system had a discharge twice that of the Amazon today. Based on our latest reconstruction of this system, we have calculated that its catchment area was similar to that of the Mississippi. It was certainly the largest river system to have ever drained the Eurasian continent.

One thing that we show pretty well in this study is that our simulation is relevant to a range of different research disciplines, not only glaciology. It can even be useful for archaeologists who look at human migration routes, and are interested to see how the European environment developed over the last 20,000 years.

Interesting is its effect on population movements in eastern Europe, including the steppe, the forest-steppe, and the Forest Zone, during the Younger Dryas period and thereafter.

Another, recent build-up article on this model also by Patton and cols. of december 2016, in the same journal, is The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing. A summary is found at the University of Tromso website.

Discovered via News at

Featured image: Younger Dryas period, from the article.