N1c-L392 associated with expanding Turkic lineages in Siberia

haplogroup-n1c-tat

Second in popularity for the expansion of haplogroup N1a-L392 (ca. 4400 BC) is, apparently, the association with Turkic, and by extension with Micro-Altaic, after the Uralic link preferred in Europe; at least among certain eastern researchers.

New paper in a recently created journal, by the same main author of the group proposing that Scythians of hg. N1c were Turkic speakers: On the origins of the Sakhas’ paternal lineages: Reconciliation of population genetic / ancient DNA data, archaeological findings and historical narratives, by Tikhonov, Gurkan, Demirdov, and Beyoglu, Siberian Research (2019).

Interesting excerpts:

According to the views of a number of authoritative researchers, the Yakut ethnos was formed in the territory of Yakutia as a result of the mixing of people from the south and the autochthonous population [34].

These three major Sakha paternal lineages may have also arrived in Yakutia at different times and/ or from different places and/or with a difference in several generations instead, or perhaps Y-chromosomal STR mutations may have taken place in situ in Yakutia. Nevertheless, the immediate common ancestor(s) from the Asian Steppe of these three most prevalent Sakha Y-chromosomal STR haplotypes possibly lived during the prominence of the Turkic Khaganates, hence the near-perfect matches observed across a wide range of Eurasian geography, including as far as from Cyprus in the West to Liaoning, China in the East, then Middle Lena in the North and Afghanistan in the South (Table 3 and Figure 5). There may also be haplotypes closely-related to ‘the dominant Elley line’ among Karakalpaks, Uzbeks and Tajiks, however, limitations in the loci coverage for the available dataset (only eight Y-chromosomal STR loci) precludes further conclusions on this matter [25].

yakutia-haplogroup-n1c
17-loci median-joining network analysis of the original/dominant Elley, Unknown and Omogoy Y-chromosomal STR haplotypes with the YHRD matches from outside Yakutia populations.

According to the results presented here, very similar Y-STR haplotypes to that of the original Elley line were found in the west: Afghanistan and northern Cyprus, and in the east: Liaoning Province, China and Ulaanbaator, Northern Mongolia. In the case of the dominant Omogoy line, very closely matching haplotypes differing by a single mutational step were found in the city of Chifen of the Jirin Province, China. The widest range of similar haplotypes was found for the Yakut haplotype Unknown: In Mongolia, China and South Korea. For instance, haplotypes differing by a single step mutation were found in Northern Mongolia (Khalk, Darhad, Uryankhai populations), Ulaanbaator (Khalk) and in the province of Jirin, China (Han population).

n1c-uralic-altaic-siberia
14-loci median-joining network analysis for the original/dominant Elley (Ell), Unknown Clan
(Vil), Omogoy (Omo), Eurasian (Eur) and Xiongnu (Xuo) Y-chromosomal STR haplotypes and that for a representative ancient DNA sample (Ch0 or DSQ04) from the Upper Xiajiadian Culture
recovered from the Inner Mongolia Autonomous Region, China.

Notably, Tat-C-bearing Y-chromosomes were also observed in ancient DNA samples from the 2700-3000 years-old Upper Xiajiadian culture in Inner Mongolia, as well as those from the Serteya II site at the Upper Dvina region in Russia and the ‘Devichyi gory’ culture of long barrow burials at the Nevel’sky district of Pskovsky region in Russia. A 14-loci Y-chromosomal STR median-joining network of the most prevalent Sakha haplotypes and a Tat-C-bearing haplotype from one of the ancient DNA samples recovered from the Upper Xiajiadian culture in Inner Mongolia (DSQ04) revealed that the contemporary Sakha haplotype ‘Xuo’ (Table 2, Haplotype ID “Xuo”) classified as that of ‘the Xiongnu clan’ in our current study, was the closest to the ancient Xiongnu haplotype (Figure 6). TMRCA estimate for this 14-loci Y-chromosomal STR network was 4357 ± 1038 years or 2341 ± 1038 BCE, which correlated well with the Upper Xiajiadian culture that was dated to the Late Bronze Age (700-1000 BCE).

eurasian-n-subclades
Geographical location of ancient samples belonging to major clade N of the Y-chromosome.

NOTE. Also interesting from the paper seems to be the proportion of E1b1b among admixed Russian populations, in a proportion similar to R1a or I2a(xI2a1).

It is tempting to associate the prevalent presence of N1c-L392 in ancient Siberian populations with the expansion of Altaic, by simplistically linking the findings (in chronological order) near Lake Baikal (Damgaard et al. 2018), Upper Xiajiadian (Cui et al. 2013), among Khövsgöl (Jeong et al. 2018), in Huns (Damgaard et al. 2018), and in Mongolic-speaking Avars (Csáky et al. 2019).

However, its finding among Palaeo-Laplandic peoples in the Kola peninsula ca. 1500 BC (Lamnidis et al. 2018) and among Palaeo-Siberian populations near the Yana River (Sikora et al. 2018) ca. AD 1200 should be enough to accept the hypothesis of ancestral waves of expansion of the haplogroup over northern Eurasia, with acculturation and further expansions in the different regions since the Iron Age (see more on its potential expansion waves).

Also, a simple look at the TMRCA and modern distribution was enough to hypothesize long ago the lack of connection of N1c-L392 with Altaic or Uralic peoples. From Ilumäe et al. (2016):

Previous research has shown that Y chromosomes of the Turkic-speaking Yakuts (Sakha) belong overwhelmingly to hg N3 (formerly N1c1). We found that nearly all of the more than 150 genotyped Yakut N3 Y chromosomes belong to the N3a2-M2118 clade, just as in the Turkic-speaking Dolgans and the linguistically distant Tungusic-speaking Evenks and Evens living in Yakutia (Table S2). Hence, the N3a2 patrilineage is a prime example of a male population of broad central Siberian ancestry that is not intrinsic to any linguistically defined group of people. Moreover, the deepest branch of hg N3a2 is represented by a Lebanese and a Chinese sample. This finding agrees with the sequence data from Hallast et al., where one Turkish Y chromosome was also assigned to the same sub-clade. Interestingly, N3a2 was also found in one Bhutan individual who represents a separate sub-lineage in the clade. These findings show that although N3a2 reflects a recent strong founder effect primarily in central Siberia (Yakutia, Sakha), the sub-clade has a much wider distribution area with incidental occurrences in the Near East and South Asia.

haplogroup-n1a-M2118
Frequency-Distribution Maps of Individual Sub-clades of hg N3a2, by Ilumäe et al. (2016).

The most striking aspect of the phylogeography of hg N is the spread of the N3a3’6-CTS6967 lineages. Considering the three geographically most distant populations in our study—Chukchi, Buryats, and Lithuanians—it is remarkable to find that about half of the Y chromosome pool of each consists of hg N3 and that they share the same sub-clade N3a3’6. The fractionation of N3a3’6 into the four sub-clades that cover such an extraordinarily wide area occurred in the mid-Holocene, about 5.0 kya (95% CI = 4.4–5.7 kya). It is hard to pinpoint the precise region where the split of these lineages occurred. It could have happened somewhere in the middle of their geographic spread around the Urals or further east in West Siberia, where current regional diversity of hg N sub-lineages is the highest (Figure 1B). Yet, it is evident that the spread of the newly arisen sub-clades of N3a3’6 in opposing directions happened very quickly. Today, it unites the East Baltic, East Fennoscandia, Buryatia, Mongolia, and Chukotka-Kamchatka (Beringian) Eurasian regions, which are separated from each other by approximately 5,000–6,700 km by air. N3a3’6 has high frequencies in the patrilineal pools of populations belonging to the Altaic, Uralic, several Indo-European, and Chukotko-Kamchatkan language families. There is no generally agreed, time-resolved linguistic tree that unites these linguistic phyla. Yet, their split is almost certainly at least several millennia older than the rather recent expansion signal of the N3a3’6 sub-clade, suggesting that its spread had little to do with linguistic affinities of men carrying the N3a3’6 lineages.

haplogroup_n3a3
Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29.

It was thus clear long ago that N1c-L392 lineages must have expanded explosively in the 5th millennium through Northern Eurasia, probably from a region to the north of Lake Baikal, and that this expansion – and succeeding ones through Northern Eurasia – may not be associated to any known language group until well into the common era.

Related

Common Slavs from the Lower Danube, expanding with haplogroup E1b-V13?

late-iron-age-eastern-europe

Florin Curta has published online his draft for Eastern Europe in the Middle Ages (500-1300), Brill’s Companions to European History, Vol. 10 (2019), apparently due to appear in June.

Some interesting excerpts, relevant for the latest papers (emphasis mine):

The Archaeology of the Early Slavs

(…) One of the most egregious problems with the current model of the Slavic migration is that it is not at all clear where it started. There is in fact no agreement as to the exact location of the primitive homeland of the Slavs, if there ever was one. The idea of tracing the origin of the Slavs to the Zarubyntsi culture dated between the 3rd century BC and the first century AD is that a gap of about 200 years separates it from the Kiev culture (dated between the 3rd and the 4th century AD), which is also attributed to the Slavs. Furthermore, another century separates the Kiev culture from the earliest assemblages attributed to the Prague culture. It remains unclear as to where the (prehistoric) Slavs went after the first century, and whence they could return, two centuries later, to the same region from which their ancestors had left. The obvious cultural discontinuity in the region of the presumed homeland raises serious doubts about any attempts to write the history of the Slavic migration on such a basis. There is simply no evidence of the material remains of the Zarubyntsi, Kiev, or even Prague culture in the southern and southwestern direction of the presumed migration of the Slavs towards the Danube frontier of the Roman Empire.

Moreover, the material culture revealed by excavations of 6th- to 7th-century settlements and, occasionally, cremation cemeteries in northwestern Russia, Belarus, Poland, Moravia, and Bohemia is radically different from that in the lands north of the Danube river, which according to the early Byzantine sources were inhabited at that time by Sclavenes: no settlement layout with a central, open area; no wheel-made pottery or pottery thrown on a tournette; no clay rolls inside clay ovens; few, if any clay pans; no early Byzantine coins, buckles, or remains of amphorae; no fibulae with bent stem, and few, if any bow fibulae. Conversely, those regions have produced elements of material culture that have no parallels in the lands north of the river Danube: oval, trough-like settlement features (which are believed to be remains of above-ground, log-houses); exclusively handmade pottery of specific forms; very large settlements, with over 300 houses; fortified sites that functioned as religious or communal centers; and burials under barrows. With no written sources to inform about the names and identities of the populations living in the 6th and 7th centuries in East Central and Eastern Europe, those contrasting material culture profiles could hardly be interpreted as ethnic commonality. In other words, there is no serious basis for attributing to the Sclavenes (or, at least, to those whom early Byzantine authors called so) any of the many sites excavated in Russia, Belarus, Poland, Moravia, and Bohemia.

slavic-expansion-prague-korchak
Common Slavic expanding with Prague-Korchak from the east…or was it from the west?

Migrations

There is of course evidence of migrations in the 6th and 7th centuries, but not in the directions assumed by historians. For example, there are clear signs of settlement discontinuity in northern Germany and in northwestern Poland. German archaeologists believe that the bearers of the Prague culture who reached northern Germany came from the south (from Bohemia and Moravia), and not from the east (from neighboring Poland or the lands farther to the east). At any rate, no archaeological assemblage attributed to the Slavs either in northern Germany or in northern Poland may be dated earlier than ca. 700. In Poland, settlement discontinuity was postulated, to make room for the new, Prague culture introduced gradually from the southeast (from neighboring Ukraine). However, there is increasing evidence of 6th-century settlements in Lower Silesia (western Poland and the lands along the Middle Oder) that have nothing to do with the Prague culture. Nor is it clear how and when did the Prague culture spread over the entire territory of Poland. No site of any of the three archaeological cultures in Eastern Europe that have been attributed to the Slavs (Kolochin, Pen’kivka, and Prague/Korchak) has so far been dated earlier than the sites in the Lower Danube region where the 6th century sources located the Sclavenes. Neither the Kolochin, nor the Pen’kivka cultures expanded westwards into East Central or Southeastern Europe; on the contrary, they were themselves superseded in the late 7th or 8th century by other archaeological cultures originating in eastern Ukraine. Meanwhile, there is an increasing body of archaeological evidence pointing to very strong cultural influences from the Lower and Middle Danube to the Middle Dnieper region during the 7th century—the opposite of the alleged direction of Slavic migration.

When did the Slavs appear in those regions of East Central and Eastern Europe where they are mentioned in later sources? A resistant stereotype of the current scholarship on the early Slavs is that “Slavs are Slavonic-speakers; Slavonic-speakers are Slavs.”* If so, when did people in East Central and Eastern Europe become “Slavonic speakers”? There is in fact no evidence that the Sclavenes mentioned by the 6th-century authors spoke Slavic (or what linguists now call Common Slavic). Nor can the moment be established (with any precision), at which Slavic was adopted or introduced in any given region of East Central and Eastern Europe.** To explain the spread of Slavic across those regions, some have recently proposed the model of a koiné, others that of a lingua franca. The latter was most likely used within the Avar polity during the last century of its existence (ca. 700 to ca. 800).

*Ziółkowski, “When did the Slavs originate?” p. 211. On the basis of the meaning of the Old Church Slavonic word ięzyk (“language,” but also “people” or “nation”), Darden, “Who were the Sclaveni?” p. 138 argues that the meaning of the name the Slavs gave to themselves was closely associated with the language they spoke.

**Uncertainty in this respect dominates even in recent studies of contacts between Slavic and Romance languages (particularly Romanian), even though such contacts are presumed to have been established quite early (Paliga, “When could be dated ‘the earliest Slavic borrowings’?”; Boček, Studie). Recent studies of the linguistic interactions between speakers of Germanic and speakers of Slavic languages suggest that the adoption of place names of Slavic origin was directly linked to the social context of language contact between the 9th and the 13th centuries (Klír, “Sociální kontext”).

Avars

During the 6th century, the area between the Danube and the Tisza in what is today Hungary, was only sparsely inhabited, and probably a “no man’s land” between the Lombard and Gepid territories. It is only after ca. 600 that this area was densely inhabited, as indicated by a number of new cemeteries that came into being along the Tisza and north of present-day Kecskemét. There can therefore be no doubt about the migration of the Avars into the Carpathian Basin, even though it was probably not a single event and did not involve only one group of population, or even a cohesive ethnic group.

The number of graves with weapons and of burials with horses is particularly large in cemeteries excavated in southwestern Slovakia and in neighboring, eastern Austria. This was a region of special status on the border of the qaganate, perhaps a “militarized frontier.” From that region, the Avar mores and fashions spread farther to the west and to the north, into those areas of East Central Europe in which, for reasons that are still not clear, Avar symbols of social rank were particularly popular, as demonstrated by numerous finds of belt fittings. Emulating the success of the Avar elites sometimes involved borrowing other elements of social representation, such as the preferential deposition of weapons and ornamented belts. For example, in the early 8th century, a few males were buried in Carinthia (southern Austria) with richly decorated belts imitating those in fashion in the land of the Avars, but also with Frankish weapons and spurs. Much like in the Avar-age cemeteries in Slovakia and Hungary, the graves of those socially prominent men are often surrounded by many burials without any grave goods whatsoever.

early-avar-khaganate
Territory of the early Avar Qaganate and the location of the investigated sites in the Carpathian Basin in Csáky et al. (2019).

Carantanians

Carantania was a northern neighbor of the Lombard duchy of Friuli, which was inhabited by Slavs. According to Paul the Deacon, who was writing in the late 780s, those Slavs called their country Carantanum, by means of a corruption of the name of ancient Carnuntum (a former Roman legionary camp on the Danube, between Vienna and Bratislava). Carantanians were regarded as Slavs by the author of a report known as the Conversion of the Bavarians and Carantanians, and written in ca. 870 in order to defend the position of the archbishop of Salzburg against the claims of Methodius, the bishop of Pannonia.94 According to this text, a duke named Boruth was ruling over Carantania when he was attacked by Avars in ca. 740. He called for the military assistance of his Bavarian neighbors. The Bavarian duke Odilo (737–748) obliged, defeated the Avars, but in the process also subdued the Carantanians to his authority. Once Bavarian overlordship was established in Carantania, Odilo took with him as hostages Boruth’s son Cacatius and his nephew Chietmar (Hotimir). Both were baptized in Bavaria. During the 743 war between Odilo and Charles Martel’s two sons, Carloman and Pepin (the Mayors of the Palace in Austrasia and Neustria, respectively), Carantanian troops fought on the Bavarian side. The Bavarian domination cleared the field for missions of conversion to Christianity sent by Virgil, the new bishop of Salzburg (746–784). Many missionaries were of Bavarian origin, but some were Irish monks.

Moravians

Several Late Avar cemeteries dated to the last quarter of the 8th century are known from the lands north of the middle course of the river Danube, in what is today southern Slovakia and the valley of the Lower Morava [see image below]. By contrast, only two cemeteries have so far been found in Moravia (the eastern part of the present-day Czech Republic), along the middle and upper course of the Morava and along its tributary, the Dyje. In both Dolní Dunajovice and Hevlín, the latest graves may be dated by means of strap ends and belt mounts with human figures to the very end of the Late Avar period. (…)

The archaeological evidence pertaining to burial assemblages dated to the early 9th century is completely different. Shortly before or after 800, all traces of cremation—with or without barrows—disappear from the valley of the Morava river and southwestern Slovakia, two regions in which cremation had been the preferred burial rite during the previous centuries. This dramatic cultural change has often been interpreted as a direct influence of both Avar and Frankish burial rites, but it coincides in time with the adoption of Christianity by local elites. In spite of conversion, however, the representation of status through furnished burial continued well into the 9th century. Unlike Avar-age sites in Hungary and the surrounding regions, many men were buried in 9th-century Moravia together with their spurs, in addition to such weapons as battle axes, “winged” lance heads, or swords with high-quality steel blades of Frankish production.

morvaian-sites
Relevant Moravian sites mentioned in Curta’s new book.

When the Magyars inflicted a crushing defeat on the Bavarians at Bratislava (July 4, 907), the fate of Moravia was sealed as well. Moravia and the Moravians disappear from the radar of the written sources, and historians and archaeologists alike believe that the polity collapsed as a result of the Magyar raids.

Magyars

(…) although there can be no doubt about the relations between Uelgi and the sites in Hungary attributed to the first generations of Magyars, those relations indicate a migration directly from the Trans-Ural lands, and not gradually, with several other stops in the forest-steppe and steppe zones of Eastern Europe. In the lands west of the Ural Mountains, the Magyars are now associated with the Kushnarenkovo (6th to 8th century) and Karaiakupovo (8th to 10th century) cultures, and with such burial sites as Sterlitamak (near Ufa, Bashkortostan) and Bol’shie Tigany (near Chistopol, Tatarstan).* However, the same problem with chronology makes it difficult to draw the model of a migration from the lands along the Middle Volga. Many parallels for the so typically Magyar sabretache plates found in Hungary are from that region. They have traditionally been dated to the 9th century, but more recent studies point to the coincidence in time between specimens found in Eastern Europe and those from Hungary.

* Ivanov, Drevnie ugry-mad’iary; Ivanov and Ivanova, “Uralo-sibirskie istoki”; Boldog et al., “From the ancient homelands,” p. 3; Ivanov, “Similarities.” Ivanov, “Similarities,” p. 562 points out that the migration out of the lands along of the Middle Volga is implied by the disappearance of both cultures (Kushnarenkovo and Karaiakupovo) in the mid-9th century. For the Kushnarenkovo culture, see Kazakov, “Kushnarenkovskie pamiatniki.” For the Karaiakupovo culture, see Mogil’nikov, “K probleme.”

Given that the Magyars are first mentioned in relation to events taking place in the Lower Danube area in the 830s, the Magyar sojourn in Etelköz must have been no longer than 60 years or so—a generation. (…)

arrival-of-hungarians-feszty-slavs
A detail of the Arrival of the Hungarians, Árpád Feszty’s and his assistants’ vast (1800 m2) cyclorama, painted to celebrate the 1000th anniversary of the Magyar conquest of Hungary, now displayed at the Ópusztaszer National Heritage Park in Hungary. This specific detail is probably based on the account on The Annals of Fulda, which narrates under the year 894 that the Hungarians crossed the Danube into Pannonia where they “killed men and old women outright and carried off the young women alone with them like cattle to satisfy their lusts and reduced the whole” province “to desert”.

It has become obvious by now that one’s impression of the Magyars as “Easterners” and “steppe-like” was (and still is) primarily based on grave finds, while the settlement material is considerably more aligned with what is otherwise known from other contemporary settlement sites in Central and Southeastern Europe. The dominant feature on the 10th- and 11th-century settlements in Hungary is the sunken-floored building of rectangular plan, with a stone oven in a corner. Similarly, the pottery resulting from the excavation of settlement sites is very similar to that known from many other such sites in Eastern Europe. Moreover, while clear changes taking place in burial customs between ca. 900 and ca. 1100 are visible in the archaeological record from cemeteries, there are no substantial differences between 10th- and the 11th-century settlements in Hungary. (…)

As a matter of fact, the increasing quantity of paleobotanical and zooarchaeological data from 10th-century settlements strongly suggests that the economy of the first generations of Magyars in Hungary was anything but nomadic. To call those Magyars “half-nomad” is not only wrong, but also misleading, as it implies that they were half-way toward civilization, with social changes taking place that must have had material culture correlates otherwise visible in the burial customs.

Comments

The origin of “Slavs” (i.e. that of “Slavonic” as a language, whatever the ancestral Proto-Slavic ethnic make-up was) is almost as complicated as the origin of Albanians, Basques, Balts, or Finns. Their entry into history is very recent, with few reliable sources available until well into the Middle Ages. If you add our ignorance of their origin with the desire of every single researcher or amateur out there to connect them to the own region (or, still worse, to all the regions where they were historically attested), we are bound to find contradictory data and a constantly biased selection of information.

Furthermore, it is extremely complicated to connect any recent population to its ancestral (linguistic) one through haplogroups prevalent today, and just absurd to connect them through ancestral components. This, which was already suspected for many populations, has been confirmed recently for Basques in Olalde et al. (2019) and will be confirmed soon for Finns with a study of the Proto-Fennic populations in the Gulf of Finland.

NOTE. Yes, the “my parents look like Corded Ware in this PCA” had no sense. Ever. Why adult people would constantly engage in that kind of false 5,000-year-old connections instead of learning history – or their own family history – escapes all comprehension. But if something is certain about human nature, is that we will still see nativism and ancestry/haplogroup fetishism for any modern region or modern haplogroups and their historically attested ethnolinguistic groups.

balto-slavic-pca
Genetic structure of modern Balto-Slavic populations within a European context according to the three genetic systems. Image from Kushniarevich et al. (2015)

As you can see from my maps and writings, I prefer neat and simple concepts: in linguistics, in archaeology, and in population movements. Hence my aversion to this kind of infinite proto-historical accounts (and interpretations of them) necessary to ascertain the origins of recent peoples (Slavs in this case), and my usual preference for:

  • Clear dialectal classifications, whether or not they can be as clear cut as I describe them. The only thing that sets Slavic apart from other recent languages is its connection with Baltic, luckily for both. Even though this connection is disputed by some linguists, and the question is always far from being resolved, a homeland of Proto-Balto-Slavic would almost necessarily need to be set to the north of the Carpathian Mountains in the Bronze Age (or at least close to them).
  • NOTE. A dismissal of a connection with Baltic would leave Slavic a still more complicated orphan, and its dialectal classification within Late PIE more dubious. Its union with Balto-Slavic locates it close to Germanic, and thus as a Bronze Age North-West Indo-European dialect close to northern Germany. So bear with me in accepting this connection, or enter the linguistic hell of arguing for Indo-Slavonic of R1a-Z93 mixed with Temematic….

  • A priori “pots = people” assumption, which may lead to important errors, but fewer than the usual “pots != people” of modern archaeologists. The traditional identification of the Common Slavic expansion with the Prague-Korchak culture – however undefined this culture may be – has clear advantages: it may be connected (although admittedly with many archaeological holes) with western cultures expanding east during the Bronze Age, and then west again after the Iron Age, and thus potentially also with Baltic.
  • A simplistic “haplogroup expansion = ethnolinguistic expansion”, which is quite useful for prehistoric migrations, but enters into evident contradictions as we approach the Iron Age. Common Slavs may be speculatively (for all we know) associated with an expansion of recent R1a-M458 lineages – among other haplogroups – from the east, and possibly Balto-Slavic as an earlier expansion of older subclades from the west, as I proposed in A Clash of Chiefs.
r1a-m458-underhill-2015
Modern distribution of R1a-M458, after Underhill et al. (2015).

NOTE. The connection of most R1a-Z280 lineages is more obviously done with ancient Finno-Ugric peoples, as it is clear now (see here and here).

Slavs appeared first in the Danube?

No matter what my personal preference is, one can’t ignore the growing evidence, and it seems that Florin Curta‘s long-lasting view of a Danubian origin of expansion for Common Slavic, including its condition as a lingua franca of late Avars, won’t be easy to reject any time soon:

1) Theories concerning Chernyakhov as a Slavic homeland will apparently need to be fully rejected, due to the Germanic-like ancestry that will be reported in the study by Järve et al.

2) Therefore, unless Przeworsk shows the traditionally described mixture of populations in terms of ancestry and/or haplogroups, it will also be a sign of East Germanic peoples expanding south (and potentially displacing the ancestors of Slavs in either direction, east or south).

It would seem we are stuck in a Danubian vs. Kievan homeland for Common Slavs, then:

3) About the homeland in the Kiev culture, two early Avar females from Szólád have been commented to cluster “among Modern Slavic populations” based on some data in Amorim et al. (2018).

Rather than supporting an origin of Slavs in common with modern Russians, Poles, and Ukranians as observed in the PCA, though, the admixture of AV1 and AV2 (ca. AD 540-640) paradoxically supports an admixture of Modern Slavs of Eastern Europe in common with early Avar peoples (an Altaic-speaking population) and other steppe groups with an origin in East Asia… So this admixture would actually support a western origin of the Common Slavs with which East Asian Avars may have admixed, and whose descendants are necessarily sampled at later times.

pca-medieval-avar-longobards
Procrustes transformed PCA of medieval ancient samples against POPRES imputed SNP dataset. AV1 and Av2 samples have been circled in red. Color coding of medieval samples is same as in Figs 1 and 2. Two letter and three codes for POPRES samples: AL=Albania, AT=Austria, BA=Bosnia-Herzegovina, BE=Belgium, BG=Bulgaria, CH=Switzerland, CY=Cyprus, CZ=Czech Republic, DE=Germany, DK=Denmark, ES=Spain, FI=Finland, FR=France, GB=United Kingdom, GR, Greece, HR=Croatia, HU=Hungary, IE=Ireland, IT=Italy, KS=Kosovo, LV=Latvia, MK=Macedonia, NO=Norway, NL=Netherlands, PL=Poland, PT=Portugal, RO=Romania, SM=Serbia and Montenegro, RU=Russia, Sct=Scotland, SE=Sweden, SI=Slovenia, SK=Slovakia, TR=Turkey, UA=Ukraine.

4) Favouring Curta’s Danubian origin (or even an origin near Bohemia) at the moment are thus:

  • The “western” cluster of Early Slavs from Brandýsek, Bohemia (ca. AD 600-900).
  • Two likely Slavic individuals from Usedom, in Mecklenburg-Vorpommern (AD 1200) show hg. R1a-M458 and E1b-M215 (Freder 2010).
  • An early West Slav individual from Hrádek nad Nisou in Northern Bohemia (ca. AD 1330) also shows E1b-M215 (Vanek et al. 2015).
  • One sample from Székkutas-Kápolnadülő (SzK/239) among middle or late Avars (ca. AD 650-710), a supposed Slavonic-speaking polity, of hg. E1b-V13.
  • Two samples from Karosc (K1/13, and K2/6) among Hungarian conquerors (ca. AD 895-950), likely both of hg. E1b-V13, probably connected to the alliance with Moravian elites.
  • Possibly a West Slavic sample from Poland in the High Middle Ages (see below).

A later Hungarian sample (II/53) from the Royal Basilica, where King Béla was interred, of hg. E1b1, supports the importance of this haplogroup among elite conquerors, although its original relation to the other buried individuals is unknown.

NOTE. You can see all ancient samples of haplogroup E to date on this Map of ancient E samples, with care to identify the proper subclades related to south-eastern Europe. About the ancestral origin of the haplogroup in Europe, you may read Potential extra Iberomaurusian-related gene flow into European farmers, by Chad Rohlfsen.

Even assuming that the R1a sample reported from the late Avar period is of a subclade typically associated with Slavs (I know, circular reasoning here), which is not warranted, we would have already 6 E1b1b vs. 1-2 R1a-M458 in populations that can be actually assumed to represent early Slavonic speakers (unlike many earlier cultures potentially associated with them), clearly earlier than other Slavic-speaking populations that will be sampled in eastern Europe. It is more and more likely that Early Slavs are going to strengthen Curta’s view, and this may somehow complicate the link of Proto-Slavic with eastern European BA cultures like Trzciniec or Lusatian.

NOTE. I am still expecting a clear expansion associated with Prague-Korchak, though, including a connection with bottlenecks based on R1a-M458 in the Middle Ages, whether the expansion is eventually shown to be from the west (i.e. Bohemia -> Prague -> Korchak), or from the east (i.e. Kiev -> Korchack -> Prague), and whether or not this cultural community was later replaced by other ‘true’ Slavonic-speaking cultures through acculturation or population movements.

slavic-origins
Common theories on Slavic origins.. After “The Early Slavs. Culture and Society in Early Medieval Europe” by P. M. Barford, Cornell University Press (2001). Image by Hxseek at Wikipedia.

5) Back to Przeworsk and the “north of the Carpathians” homeland (i.e. between the Upper Oder and the Upper Dniester), but compatible with Curta’s view: Even if Common Slavic is eventually evidenced to be driven by small migrations north and south of the Danube during the Roman Iron Age, before turning into a mostly “R1a-rich” migration or acculturation to the north in Bohemia and then east (which is what this early E1b-V13 connection suggests), this does not dismiss the traditional idea that Late Bronze Age – Iron Age central-eastern Europe was the Proto-Slavic homeland, i.e. likely the Pomeranian culture disturbed by the East Germanic migrations first (in Przeworsk), and the migrations of steppe nomads later (around the Danube).

Even without taking into account the connection with Baltic, the relevance of haplogroup E1b-V13 among Early Slavs may well be a sign of an ancestral population from the northern or eastern Carpathian region, supported by the finding of this haplogroup among the westernmost Scythians. The expansion of some modern E1b-CTS1273 lineages may link Slavic ancestrally with the Lusatian culture, which is an eastern (very specific) Urnfield culture group, stemming from central-east Europe.

An important paper in this respect is the upcoming Zenczak et al., where another hg. E1b1 will be added to the list above: such a sample is expected from Poland (from Kowalewko, Maslomecz, Legowo or Niemcza), either from the Roman Iron Age or Early Middle Ages, close to an early population of likely Scandinavian origin (eight I1 samples), apart from other varied haplogroups, with little relevance of R1a. Whether this E-V13 sample is an Iron Age one (justifying the bottleneck under E-V13 to the south) or, maybe more likely, a late one from the Middle Ages (maybe supporting a connection of the Gothic/Slavic E1b bottleneck with southern Chernyakhov or further west along the Danube) is unclear.

The finding of south-eastern European ancestry and lineages in both, Early Slavs and East Germanic tribes* suggests therefore a Slavonic homeland near (or within) the Przeworsk culture, close to the Albanoid one, as proposed based on topohydronymy. This may point to a complex process of acculturation of different eastern European populations which formed alliances, as was common during the Iron Age and later periods, and which cannot be interpreted as a clear picture of their languages’ original homeland and ancestral peoples (in the case of East Germanic tribes, apparently originally expanding from Scandinavia under strong I1 bottlenecks).

* Iberian samples of the Visigothic period in Spain show up to 25% E1b-V13 samples, with a mixture of haplogroups including local and foreign lineages, as well as some more E1b-V13 samples later during the Muslim period. Out of the two E1b samples from Longobards in Amorim et al. (2018), only SZ18 from Szólád (ca. AD 412-604) is within E1b-V13, in a very specific early branch (SNP M35.2), further locating the expansion of hg. E1b-V13 near the Danube. Samples of haplogroup J (maybe J2a) or G2a among Germanic tribes (and possibly in Poland’s Roman Iron Age / Early Middle Ages) are impossible to compare with early Hungarian ones without precise subclades.

east-slavic-expansion
East Slavic expansion in topo-hydronymy. Image from (Udolph 1997, 2016).

I already interpreted the earlier Slavic samples we had as a sign of a Carpathian origin and very recent bottlenecks under R1a lineages among Modern Slavs:

The finding of haplogroup E1b1b-M215 in two independent early West Slavic individuals further supports that the current distribution of R1a1a1b1a-Z282 lineages in Slavic populations is the product of recent bottlenecks. The lack of a precise subclade within the E1b1b-M215 tree precludes a proper interpretation of a potential origin, but they are probably under European E1b1b1a1b1-L618 subclade E1b1b1a1b1a-V13 (formed ca. 6100 BC, TMRCA ca. 2800 BC), possibly under the mutation CTS1273 (formed ca. 2600 BC, TMRCA ca. 2000 BC), in common with other ancient populations around the Carpathians (see below §viii.11. Thracians and Albanians). This gross geographic origin would support the studies of the Common Slavic homeland based on toponymy (Figure 66), which place it roughly between the Upper Oder and the Upper Dniester, north of the Carpathians (Udolph 1997, 2016).

EDIT (8 APR 2019): Another interesting data is the haplogroup distribution among Modern Slavs and neighbouring peoples (see Wikipedia). For example, the bottleneck seen in Modern Albanians, under Z5017 subclade, also points to an origin of the expansion of E1b-V13 subclades among multiethnic groups around the Lower Danube coinciding with the Roman Iron Age, given the estimates for the arrival of Proto-Albanian close to the Latin and Greek linguistic frontier.

Remarkable is also its distribution among Rusyns, East Slavs from the Carpathians not associated with the Kievan Rus’, isolated thus quite soon from East Slavic expansions to the east. They were reported to show ca. 35% hg. E1b-V13 globally in FTDNA, with a frequency similar to or higher than R1a, in common with South Slavic peoples*, reflecting thus a situation similar to the source of East Slavs before further R1a-based bottlenecks (and/or acculturation events) to the east:

* Although probably due in part to founder effects and biased familial sampling, this should be assumed to be common to all FTDNA sampling, anyway.

rusyns-map
Map showing the full geographic extent of the Rusyn people in Central Europe, prior to World War I (Carpatho Rusyn Society).

Repeating what should be already evident: in complex organizations and/or demographically dense populations (more common since the Iron Age), we can’t expect language change to happen in the same way as during the known Neolithic or Chalcolithic population replacements, be it in Finland, Hungary, Iberia, or Poland. For example, no matter whether Romans (2nd c. BC) brought some R1b-U152 and other Mediterranean lineages to Iberia; Germanic peoples entering Hispania (AD 5th c.) were of typically Germanic lineages or not; Muslims who spoke mainly Berber (AD 8th c.) and were mainly of hg. E1b-M81 (and J?) brought North African ancestry; etc. the language or languages of Iberia changed (or not) with the political landscape: neither with radical population replacements (or full population continuity), nor with the dominant haplogroups’ ancestral language.

Y-chromosome haplogroups are, in those cases, useful for ascertaining a more recent origin of the population. Like the finding of certain R1a-Z645, I2a-L621 & N-L392 lineages among Hungarians shows a recent origin near the Trans-Urals forest-steppes, or the finding of I1, R1b-U106 & E1b-V13 among Visigoths shows a recent origin near the Danube, the finding of Early Slavs (ca. AD 6th-7th c.) originally with small elite groups of hg. R1a-M458 & E1b-V13 from the Lower/Middle Danube – if strengthened with more Early Slavic samples, with Slavonic partially expanding as a lingua franca in some regions – is not necessarily representative of the Proto-Slavic community, just as it is clearly not representative of the later expansion of Slavic dialects. It would be representative, though, of the same processes of acculturation repeated all over Eurasia at least since the Iron Age, where no genetic continuity can be found with ancestral languages.

Related

Scytho-Siberians of Aldy-Bel and Sagly, of haplogroup R1a-Z93, Q1b-L54, and N

iron-age-sakas-aldy-bel-scythians

Recently, a paper described Eastern Scythian groups as “Uralic-Altaic” just because of the appearance of haplogroup N in two Pazyryk samples.

This simplistic identification is contested by the varied haplogroups found in early Altaic groups, by the early link of Cimmerians with the expansion of hg. N and Q, by the link of N1c-L392 in north-eastern Europe with Palaeo-Laplandic, and now (paradoxically) by the clear link between early Mongolic expansion and N1c-L392 subclades.

A new paper (behind paywall) offers insight into the prevalent presence of R1a-Z93 among eastern Scytho-Siberian groups (most likely including Samoyedic speakers in the forest-steppes), and a new hint to the westward expansion of haplogroups Q and N (probably coupled with the so-called “Siberian ancestry”) from the east with different groups of Iron Age steppe nomads:

Genetic kinship and admixture in Iron Age Scytho-Siberians, by Mary et al. Human Genetics (2019).

Interesting excerpts (emphasis mine):

From an archeological and historical point of view, the term “Scythians” refers to Iron Age nomadic or seminomadic populations characterized by the presence of three types of artifacts in male burials: typical weapons, specific horse harnesses and items decorated in the so-called “Animal Style”. This complex of goods has been termed the “Scythian triad” and was considered to be characteristic of nomadic groups belonging to the “Scythian World” (Yablonsky 2001). This “Scythian World” includes both the Classic (or European) Scythians from the North Pontic region (7th–3th century BC) and the Southern Siberian (or Asian) populations of the Scythian period (also called Scytho-Siberians). These include, among others, the Sakas from Kazakhstan, the Tagar population from the Minusinsk Basin (Republic of Khakassia), the Aldy-Bel population from Tuva (Russian Federation) and the Pazyryk and Sagly cultures from the Altai Mountains.

mtdna-scytho-siberians
Proportions of Scythian mtDNA haplogroups. Western (blue) and eastern (pink) Eurasian lineages are equally distributed in the Arzhan Scytho-Siberian sample. The U5a2a1 haplogroup shared between the two Scythian groups studied is in bold

In this work, we first aim to address the question of the familial and social organization of Scytho-Siberian groups by studying the genetic relationship of 29 individuals from the Aldy-Bel and Sagly cultures using autosomal STRs. (…) were obtained from 5 archeological sites located in the valley of the Eerbek river in Tuva Republic, Russia (Fig. 1). All the mounds of this archeological site were excavated but DNA samples were not collected from all of them. 14C dates mainly fall within the Hallstatt radiocarbon calibration plateau (ca. 800–400 cal BC) where the chronological resolution is poor. Only one date falls on an earlier segment of calibration curve: Le 9817–2650 ± 25 BP, i.e. 843–792 cal BC with a probability of 94.3% (using the OxCal v4.3.2 program). This sample (Bai-Dag 8, Kurgan 1, grave 10) is not from one of the graves studied but was used to date the kurgan as a whole.

Y-chromosome haplogroups were first assigned using the ISOGG 2018 nomenclature. In order to improve the precision of haplogroup definition, we also analyzed a set of Y-chromosome SNP (Supplementary Table 2). Nine samples belonged to the R1a-M513 haplogroup (defined by marker M513) and two of these nine samples were characterized as belonging to the R1a1a1b2-Z93 haplogroup or one of its subclades. Six samples belonged to the Q1b1a-L54 haplogroup and five of these six samples belonged to the Q1b1a3-L330 subclade. One sample belonged to the N-M231 haplogroup.

haplogroups-scythian-siberians

The distribution of these haplogroups in the population must be confronted with the prevalence of kinship among the samples. Although five individuals belonged to haplogroup Q1b1a3-L330, three of them (ARZ-T18, ARZ-T19 and ARZ-T20) were paternally related (Fig. 2). It must, therefore, be considered that haplogroup Q1b1a3-L330 is present in three independent instances (given that the remaining two instances exhibit no close familial relationship with other samples or one another). All five were buried on the Eki-Ottug 1 archaeological site (although in two different kurgans).

In the same way, although two groups, of two and three individuals, shared haplotypes belonging to the R1a-M513 haplogroup, these groups likely include a father/son pair (ARZ-T2 and ARZ-T12). Therefore, among nine R1a-M513 men, we found six independent haplotypes, one being present in two independent instances. All R1a-M513 haplotypes, however, including those attributed to the R1a1a1b2-Z93 subclade, only differed by one-step mutations, across 5 loci at most. All R1a-M513 individuals were buried on the same site, Eki-Ottug 2, in a single Kurgan.

y-haplogroups-r1a-n-q1b

Haplogroup R1a-M173 was previously reported for 6 Scytho-Siberian individuals from the Tagar culture (Keyser et al. 2009) and one Altaian Scytho-Siberian from the Sebÿstei site (Ricaut et al. 2004a), whereas haplogroup R1a1a1b2-Z93 (or R1a1a1b-S224) was described for one Scythian from Samara (Mathieson et al. 2015) and two Scytho-Siberians from Berel and the Tuva Republic (Unterländer et al. 2017). On the contrary, North Pontic Scythians were found to belong to the R1b1a1a2 haplogroup (Krzewińska et al. 2018), showing a distinction between the two groups of Scythians. (…) The absence of R1b lineages in the Scytho-Siberian individuals tested so far and their presence in the North Pontic Scythians suggest that these 2 groups had a completely different paternal lineage makeup with nearly no gene flow from male carriers between them.

The seven other male individuals studied in this work were found to carry Eastern Eurasian Y haplogroups Q1b1a and one of its subclades (n = 6) and N (n = 1). Haplogroup Q1b1a-L54 was previously described in four males from the Bronze Age in the Altai Mountains (Hollard et al. 2014, 2018) and was clearly associated with Siberian populations (Regueiro et al. 2013).

The N-M231 haplogroup emerged from haplogroup K in Southern Asia around 21,000 years BCE, maybe in Southern China (Shi et al. 2013; Ilumäe et al. 2016). Previous studies attested to its presence in samples from Neolithic and Bronze Age in China (Li et al. 2011; Cui et al. 2013). Waves of northwestern expansion of this haplogroup are described as beginning during the Paleolithic period (Derenko et al. 2006; Shi et al. 2013) but traces of this expansion in archeological samples were reported only in two Scytho-Siberian males from the Altai (Pilipenko et al. 2015).

The sample of haplogroup N comes from the Aldy-Bel culture (ARZ-T15), from the Eerbek site, but has no radiocarbon date. All Q1b-L330 samples come from the Sagly culture, and three are paternally related. The other Q1b-L54 sample is from other tombs in one kurgan at Aldy Bel.

It seems that – exactly as expected – different waves of steppe nomads brought different lineages at a time (the Iron Age) when many regions incorporated different eastern lineages without necessarily changing language. Just like the expansion of N among Ugrians and Samoyeds, and N1c among Finno-Permic peoples, and like many other lineages expanding with federation-like groups in eastern, central, and western Europe

Related

How the genocidal Yamnaya men loved to switch cultures

yamnaya-expansion-bell-beaker

After some really interesting fantasy full of arrows, it seems Kristiansen & friends are coming back to their most original idea from 2015, now in New Scientist’s recent clickbait Story of most murderous people of all time revealed in ancient DNA (2019):

Teams led by David Reich at Harvard Medical School and Eske Willerslev at the University of Copenhagen in Denmark announced, independently, that occupants of Corded Ware graves in Germany could trace about three-quarters of their genetic ancestry to the Yamnaya. It seemed that Corded Ware people weren’t simply copying the Yamnaya; to a large degree they actually were Yamnayan in origin.

If you think you have seen that movie, it’s because you have. They are at it again, Corded Ware from Yamna, and more “steppe ancestry” = “more Indo-European. It seems we haven’t learnt anything about “Steppe ancestry” since 2015. But there’s more:

Genocidal peoples who “switch cultures”

Burial practices shifted dramatically, a warrior class appeared, and there seems to have been a sharp upsurge in lethal violence. “I’ve become increasingly convinced there must have been a kind of genocide,” says Kristian Kristiansen at the University of Gothenburg, Sweden.

The collaboration revealed that the origin and initial spread of Bell Beaker culture had little to do – at least genetically – with the expansion of the Yamnaya or Corded Ware people into central Europe. “It started in It is in that region that the earliest Bell Beaker objects – including arrowheads, copper daggers and distinctive Bell-shaped pots – have been found, in archaeological sites carbon-dated to 4700 years ago. Then, Bell Beaker culture began to spread east, although the people more or less stayed put. By about 4600 years ago, it reached the most westerly Corded Ware people around where the Netherlands now lies. For reasons still unclear, the Corded Ware people fully embraced it. “They simply take on part of the Bell Beaker package and become Beaker people,” says Kristiansen.

The fact that the genetic analysis showed the Britons then all-but disappeared within a couple of generations might be significant. It suggests the capacity for violence that emerged when the Yamnaya lived on the Eurasia steppe remained even as these people moved into Europe, switched identity from Yamnaya to Corded Ware, and then switched again from Corded Ware to Bell Beaker.

Notice what Kristiansen did there? Yamnaya men “switched identities” into Corded Ware, then “switched identities” into Bell Beakers…So, the most aggresive peoples who have ever existed, exterminating all other Europeans, were actually not so violent when embracing wholly different cultures whose main connection is that they built kurgans (yes, Gimbutas lives on).

NOTE. By the way, just so we are clear, only Indo-Europeans are “genocidal”. Not like Neolithic farmers, or Palaeolithic or Mesolithic populations, or more recent Bronze Age or Iron Age peoples, who also replaced Y-DNA from many regions…

yamnaya-corded-ware-bell-beaker

In fact, there is much stronger evidence that these Yamnaya Beakers were ruthless. By about 4500 years ago, they had pushed westwards into the Iberian Peninsula, where the Bell Beaker culture originated a few centuries earlier. Within a few generations, about 40 per cent of the DNA of people in the region could be traced back to the incoming Yamnaya Beakers, according to research by a large team including Reich that was published this month. More strikingly, the ancient DNA analysis reveals that essentially all the men have Y chromosomes characteristic of the Yamnaya, suggesting only Yamnaya men had children.

“The collision of these two populations was not a friendly one, not an equal one, but one where the males from outside were displacing local males and did so almost completely,” Reich told New Scientist Live in September. This supports Kristiansen’s view of the Yamnaya and their descendants as an almost unimaginably violent people. Indeed, he is about to publish a paper in which he argues that they were responsible for the genocide of Neolithic Europe’s men. “It’s the only way to explain that no male Neolithic lines survived,” he says.

So these unimaginably violent Yamnaya men had children exclusively with their Y chromosomes…but not Dutch Single Grave peoples. These great great steppe-like northerners switched culture, cephalic index…and Y-chromosome from R1a (and others) to R1b-L151 to expand Italo-Celtic From The West™.

It’s hilarious how (exactly like their latest funny episode of PIE from south of the Caucasus) this new visionary idea copied by Copenhagen from amateur friends (or was it the other way around?) had been already rejected before this article came out, in Olalde et al. (2019), and that “Corded Ware=Indo-European” fans have become a parody of themselves.

What’s not to love about 2019 with all this back-and-forth hopping between old and new pet theories?

NOTE. I would complain (again) that the obsessive idea of the Danes is that Denmark CWC is (surprise!) the Pre-Germanic community, so it has nothing to do with “steppe ancestry = Indo-European” (or even with “Corded Ware = Indo-European”, for that matter), but then again you have Koch still arguing for Celtic from the West, Kortlandt still arguing for Balto-Slavic from the east, and – no doubt worst of all – “R1a=IE / R1b=Vasconic / N1c=Uralic” ethnonationalists arguing for whatever is necessary right now, in spite of genetic research.

So prepare for the next episode in the nativist and haplogroup fetishist comedy, now with western and eastern Europeans hand in hand: Samara -> Khvalynsk -> Yamnaya -> Bell Beaker spoke Vasconic-Tyrsenian, because R1b. Wait for it…

Vanguard Yamnaya groups

On a serious note, interesting comment by Heyd in the article:

A striking example of this distinction is a discovery made near the town of Valencina de la Concepción in southern Spain. Archaeologists working there found a Yamnaya-like kurgan, below which was the body of a man buried with a dagger and Yamnaya-like sandals, and decorated with red pigment just as Yamnaya dead were. But the burial is 4875 years old and genetic information suggests Yamnaya-related people didn’t reach that far west until perhaps 4500 years ago. “Genetically, I’m pretty sure this burial has nothing to do with the Yamnaya or the Corded Ware,” says Heyd. “But culturally – identity-wise – there is an aspect that can be clearly linked with them.” It would appear that the ideology, lifestyle and death rituals of the Yamnaya could sometimes run far ahead of the migrants.

NOTE. I have been trying to find which kurgan is this, reviewing this text on the archaeological site, but didn’t find anything beyond occasional ochre and votive sandals, which are usual. Does some reader know which one is it?

yamna-expansion-bell-beakers
Yamna expansion and succeeding East Bell Beaker expansion, without color on Bell Beaker territories. Notice vanguard Yamna groups in blue where East Bell Beakers later emerge. See original image with Bell Beaker territories.

Notice how, if you add all those vanguard Yamna findings of Central and Western Europe, including this one from southern Spain, you begin to get a good idea of the territories occupied by East Bell Beakers expanding later. More or less like vanguard Abashevo and Sintashta finds in the Zeravshan valley heralded the steppe-related Srubna-Andronovo expansions in Turan…

It doesn’t seem like Proto-Beaker and Yamna just “crossed paths” at some precise time around the Lower Danube, and Yamna men “switched cultures”. It seems that many Yamna vanguard groups, probably still in long-distance contact with Yamna settlers from the Carpathian Basin, were already settled in different European regions in the first half of the 3rd millennium BC, before the explosive expansion of East Bell Beakers ca. 2500 BC. As Heyd says, there are potentially many Yamna settlements along the Middle and Lower Danube and tributaries not yet found, connecting the Carpathian Basin to Western and Northern Europe.

These vanguard groups would have more easily transformed their weakened eastern Yamna connections with the fashionable Proto-Beaker package expanding from the west (and surrounding all of these loosely connected settlements), just like the Yamna materials from Seville probably represent a close cultural contact of Chalcolithic Iberia with a Yamna settlement (the closest known site with Yamna traits is near Alsace, where high Yamna ancestry is probably going to be found in a Bell Beaker R1b-L151 individual).

This does not mean that there wasn’t a secondary full-scale migration from the Carpathian Basin and nearby settlements, just like Corded Ware shows a secondary (A-horizon?) migration to the east with R1a-Z645. It just means that there was a complex picture of contacts between Yamna and European Chalcolithic groups before the expansion of Bell Beakers. Doesn’t seem genocidal enough for a popular movie, tho.

Related

ASoSaH Reread (I): Y-DNA haplogroups among Indo-Europeans (apart from R1b-L23)

eneolithic-early-admixture-steppe-ancestry

Given my reduced free time in these months, I have decided to keep updating the text on Indo-European and Uralic migrations and/or this blog, simultaneously or alternatively, to make the most out of the time I can dedicate to this. I will add the different ‘A Song of Sheep and Horses (ASoSaH) reread’ posts to the original post announcing the books. I would be especially interested in comments and corrections to the book chapters rather than the posts, but any comments are welcome (including in the forum, where comments are more likely to stick).

This is mainly a reread of iv.2. Indo-Anatolians and vi.1. Disintegrating Indo-Europeans.

Indo-Anatolians and Late Indo-Europeans

I have often written about R1b-L23 as the majority haplogroup among Late Proto-Indo-Europeans (see my predictions for 2018 and my summary of 2018), but always expected other haplogroups to pop up somewhere along the way, in Khvalynsk, in Repin, in Yamna, and in Bell Beakers (see e.g. the post on common fallacies of R1a/IE-fans).

Luckily enough – for those of us who want precise answers to our previous infinite models of Indo-European language expansions (viz. GAC-associated expansion, IE-speaking Old Europe, Anatolian homeland, Iran homeland, Maykop as Proto-Anatolian, Palaeolithic Continuity Theory, Celtic in the Atlantic façade, etc.) – the situation has been more clear-cut than expected: it turns out that, especially during population expansions, acute Y-chromosome bottlenecks were very common in the past, at least until the Iron Age.

Khvalynsk and Repin-Yamna expansions were no different, and that seems quite natural in hindsight, given the strong familial ties and aversion to foreigners proper of the Late Proto-Indo-European society and culture – probably not really that different from other contemporary societies, like the neighbouring Late Proto-Uralic or Trypillian ones.

y-dna-khvalynsk
Y-DNA samples from Khvalynsk and neighbouring cultures. See full version here.

Y-DNA haplogroups

During the expansion of early Khvalynsk, the most likely Indo-Anatolian culture, the society of the Don-Volga area was probably made up of different lineages including R1b-V1636, R1b-M269, R1a-YP1272, Q1a-M25, and I2a-L699 (and possibly some R1b-V88?), a variability possibly greater than that of the contemporary north Pontic area, probably a sign of this region being a sink of different east and west migrations from steppe and forest areas.

During its expansion, the Khvalynsk society saw its haplogroup variability reduced, as evidenced by the succeeding expansive Repin culture:

Afanasevo, representing Pre-Tocharian (the earliest Late PIE dialect to branch off), expanded with R1b-L23 – especially R1b-Z2103 – lineages, while early Yamna expanded with R1b-L23 and I2a-L699 lineages, which suggests that these are the main haplogroups that survived the Y-DNA bottleneck undergone during the Khvalynsk expansion, and especially later during the late Repin expansion. Nevertheless, other old haplogroups might still pop up during the Repin and early Yamna period, such as the R1b-V1636 sample from Yamna in the Northern Caucasus.

It is still unclear if R1b-L23 sister clade R1b-PF7562 (formed ca. 4400 BC, TMRCA ca. 3400 BC), prevalent among modern Albanians, expanded with Yamna migrants, or if it was part of an earlier expansion of R1b-M269 into the Balkans, and represent thus Indo-Anatolian speakers who later hitchhiked the expansion of the Late PIE language from the north or west Pontic area. The early TMRCA seems to suggest an association with Repin (and therefore Yamna), rather than later movements in the Balkans.

chalcolithic-early-y-dna
Y-DNA samples from Yamnaya and neighbouring cultures. See full version here.

‘Yamnaya’ or ‘steppe’ ancestry?

After the early years when population genetics relied mainly on modern Y-DNA haplogroups, geneticists and amateurs have been recently playing around with testing “ancestry percentages”, based on newly developed free statistical tools, which offer obviously just one among many types of data to achieve a proper interpretation of the past.

Today we have quite a lot Y-DNA haplogroups reported for ancient samples of more recent prehistoric periods, and they seem to offer (at least since the 2015 papers, but more evidently since the 2018 papers on Bell Beakers and Europeans, Corded Ware, or Fennoscandia among others) the most straightforward interpretation of all results published in population genomics research.

NOTE. The finding of a specific type of ancestry in one isolated 40,000-year-old sample from Tianyuan can offer very interesting information on potential population movements to the region. However, the identification of ethnolinguistic communities and their migrations among neighbouring groups in Neolithic or Bronze Age groups is evidently not that simple.

PCA-caucasus-steppe-all
Yamnaya (Indo-European peoples) and their evolution in the steppes, together with North Pontic (eventually Uralic) peoples.Notice how little Indo-European ancestry changes from Khvalynsk (Indo-Anatolian) to Yamna Hungary (North-West Indo-Europeans) Image modified from Wang et al. (2018). See more on the evolution of “steppe ancestry”.

It is becoming more and more clear with each paper that the true “Yamnaya ancestry” – not the originally described one – was in fact associated with Indo-Europeans (see more on the very Yamnaya-like Yamna Hungary and early East Bell Beaker R1b samples, all of quite similar ancestry and PCA cluster before their further admixture with EEF- and CWC-like groups).

The so-called “steppe ancestry”, on the other hand, reflects the contribution of a Northern Caucasus-related ancestry to expanding Khvalynsk settlers, who spread through the steppes more than a thousand years before the expansion of Late Proto-Indo-Europeans with late Repin, and can thus be found among different groups related to the Pontic-Caspian steppes (see more on the emergence and evolution of “steppe ancestry”).

In fact, after the Yamna/Indo-European and Corded Ware/Uralic expansions, it is more likely to find “steppe ancestry” to the north and east in territories traditionally associated with Uralic languages, whereas to the south and west – i.e. in territories traditionally associated with Indo-European languages – it is more likely to find “EEF ancestry” with diminished “steppe ancestry”, among peoples patrilineally descended from Yamna settlers.

Y-DNA haplogroups, the only uniparental markers (see exceptions in mtDNA inheritance) – unlike ancestry percentages based on the comparison of a few samples and flawed study designs – do not admix, do not change, and therefore they do not lend themselves to infinite pet theories (see e.g. what David Reich has to say about R1b-P312 in Iberia directly derived from Yamna migrants in spite of their predominant EEF ancestry): their cultural continuity can only be challenged with carefully threaded linguistic, archaeological, and genetic data.

Related

“Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

dzudzuana_pca-large

Wang et al. (2018) is obviously a game changer in many aspects. I have already written about the upcoming Yamna Hungary samples, about the new Steppe_Eneolithic and Caucasus Eneolithic keystones, and about the upcoming Greece Neolithic samples with steppe ancestry.

An interesting aspect of the paper, hidden among so many relevant details, is a clearer picture of how the so-called Yamnaya or steppe ancestry evolved from Samara hunter-gatherers to Yamna nomadic pastoralists, and how this ancestry appeared among Proto-Corded Ware populations.

anatolia-neolithic-steppe-eneolithic
Image modified from Wang et al. (2018). Marked are in orange: equivalent Steppe_Maykop ADMIXTURE; in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups.”

Please note: arrows of “ancestry movement” in the following PCAs do not necessarily represent physical population movements, or even ethnolinguistic change. To avoid misinterpretations, I have depicted arrows with Y-DNA haplogroup migrations to represent the most likely true ethnolinguistic movements. Admixture graphics shown are from Wang et al. (2018), and also (the K12) from Mathieson et al. (2018).

1. Samara to Early Khvalynsk

The so-called steppe ancestry was born during the Khvalynsk expansion through the steppes, probably through exogamy of expanding elite clans (eventually all R1b-M269 lineages) originally of Samara_HG ancestry. The nearest group to the ANE-like ghost population with which Samara hunter-gatherers admixed is represented by the Steppe_Eneolithic / Steppe_Maykop cluster (from the Northern Caucasus Piedmont).

Steppe_Eneolithic samples, of R1b1 lineages, are probably expanded Khvalynsk peoples, showing thus a proximate ancestry of an Early Eneolithic ghost population of the Northern Caucasus. Steppe_Maykop samples represent a later replacement of this Steppe_Eneolithic population – and/or a similar population with further contribution of ANE-like ancestry – in the area some 1,000 years later.

PCA-caucasus-steppe-samara

This is what Steppe_Maykop looks like, different from Steppe_Eneolithic:

steppe-maykop-admixture

NOTE. This admixture shows how different Steppe_Maykop is from Steppe_Eneolithic, but in the different supervised ADMIXTURE graphics below Maykop_Eneolithic is roughly equivalent to Eneolithic_Steppe (see orange arrow in ADMIXTURE graphic above). This is useful for a simplified analysis, but actual differences between Khvalynsk, Sredni Stog, Afanasevo, Yamna and Corded Ware are probably underestimated in the analyses below, and will become clearer in the future when more ancestral hunter-gatherer populations are added to the analysis.

2. Early Khvalynsk expansion

We have direct data of Khvalynsk-Novodanilovka-like populations thanks to Khvalynsk and Steppe_Eneolithic samples (although I’ve used the latter above to represent the ghost Caucasus population with which Samara_HG admixed).

We also have indirect data. First, there is the PCA with outliers:

PCA-khvalynsk-steppe

Second, we have data from north Pontic Ukraine_Eneolithic samples (see next section).

Third, there is the continuity of late Repin / Afanasevo with Steppe_Eneolithic (see below).

3. Proto-Corded Ware expansion

It is unclear if R1a-M459 subclades were continuously in the steppe and resurged after the Khvalynsk expansion, or (the most likely option) they came from the forested region of the Upper Dnieper area, possibly from previous expansions there with hunter-gatherer pottery.

Supporting the latter is the millennia-long continuity of R1b-V88 and I2a2 subclades in the north Pontic Mesolithic, Neolithic, and Early Eneolithic Sredni Stog culture, until ca. 4500 BC (and even later, during the second half).

Only at the end of the Early Eneolithic with the disappearance of Novodanilovka (and beginning of the steppe ‘hiatus’ of Rassamakin) is R1a to be found in Ukraine again (after disappearing from the record some 2,000 years earlier), related to complex population movements in the north Pontic area.

NOTE. In the PCA, a tentative position of Novodanilovka closer to Anatolia_Neolithic / Dzudzuana ancestry is selected, based on the apparent cline formed by Ukraine_Eneolithic samples, and on the position and ancestry of Sredni Stog, Yamna, and Corded Ware later. A good alternative would be to place Novodanilovka still closer to the Balkan outliers (i.e. Suvorovo), and a source closer to EHG as the ancestry driven by the migration of R1a-M417.

PCA-sredni-stog-steppe

The first sample with steppe ancestry appears only after 4250 BC in the forest-steppe, centuries after the samples with steppe ancestry from the Northern Caucasus and the Balkans, which points to exogamy of expanding R1a-M417 lineages with the remnants of the Novodanilovka population.

steppe-ancestry-admixture-sredni-stog

4. Repin / Early Yamna expansion

We don’t have direct data on early Repin settlers. But we do have a very close representative: Afanasevo, a population we know comes directly from the Repin/late Khvalynsk expansion ca. 3500/3300 BC (just before the emergence of Early Yamna), and which shows fully Steppe_Eneolithic-like ancestry.

afanasevo-admixture

Compared to this eastern Repin expansion that gave Afanasevo, the late Repin expansion to the west ca. 3300 BC that gave rise to the Yamna culture was one of colonization, evidenced by the admixture with north Pontic (Sredni Stog-like) populations, no doubt through exogamy:

PCA-repin-yamna

This admixture is also found (in lesser proportion) in east Yamna groups, which supports the high mobility and exogamy practices among western and eastern Yamna clans, not only with locals:

yamnaya-admixture

5. Corded Ware

Corded Ware represents a quite homogeneous expansion of a late Sredni Stog population, compatible with the traditional location of Proto-Corded Ware peoples in the steppe-forest/forest zone of the Dnieper-Dniester region.

PCA-latvia-ln-steppe

We don’t have a comparison with Ukraine_Eneolithic or Corded Ware samples in Wang et al. (2018), but we do have proximate sources for Abashevo, when compared to the Poltavka population (with which it admixed in the Volga-Ural steppes): Sintashta, Potapovka, Srubna (with further Abashevo contribution), and Andronovo:

sintashta-poltavka-andronovo-admixture

The two CWC outliers from the Baltic show what I thought was an admixture with Yamna. However, given the previous mixture of Eneolithic_Steppe in north Pontic steppe-forest populations, this elevated “steppe ancestry” found in Baltic_LN (similar to west Yamna) seems rather an admixture of Baltic sub-Neolithic peoples with a north Pontic Eneolithic_Steppe-like population. Late Repin settlers also admixed with a similar population during its colonization of the north Pontic area, hence the Baltic_LN – west Yamna similarities.

NOTE. A direct admixture with west Yamna populations through exogamy by the ancestors of this Baltic population cannot be ruled out yet (without direct access to more samples), though, because of the contacts of Corded Ware with west Yamna settlers in the forest-steppe regions.

steppe-ancestry-admixture-latvia

A similar case is found in the Yamna outlier from Mednikarovo south of the Danube. It would be absurd to think that Yamna from the Balkans comes from Corded Ware (or vice versa), just because the former is closer in the PCA to the latter than other Yamna samples. The same error is also found e.g. in the Corded Ware → Bell Beaker theory, because of their proximity in the PCA and their shared “steppe ancestry”. All those theories have been proven already wrong.

NOTE. A similar fallacy is found in potential Sintashta→Mycenaean connections, where we should distinguish statistically that result from an East/West Yamna + Balkans_BA admixture. In fact, genetic links of Mycenaeans with west Yamna settlers prove this (there are some related analyses in Anthrogenica, but the site is down at this moment). To try to relate these two populations (separated more than 1,000 years before Sintashta) is like comparing ancient populations to modern ones, without the intermediate samples to trace the real anthropological trail of what is found…Pure numbers and wishful thinking.

Conclusion

Yamna and Corded Ware show a similar “steppe ancestry” due to convergence. I have said so many times (see e.g. here). This was clear long ago, just by looking at the Y-chromosome bottlenecks that differentiate them – and Tomenable noticed this difference in ADMIXTURE from the supplementary materials in Mathieson et al. (2017), well before Wang et al. (2018).

This different stock stems from (1) completely different ancestral populations + (2) different, long-lasting Y-chromosome bottlenecks. Their similarities come from the two neighbouring cultures admixing with similar populations.

If all this does not mean anything, and each lab was going to support some pre-selected archaeological theories from the 1960s or the 1980s, coupled with outdated linguistic models no matter what – Anthony’s model + Ringe’s glottochronological tree of the early 2000s in the Reich Lab; and worse, Kristiansen’s CWC-IE + Germano-Slavonic models of the 1940s in the Copenhagen group – , I have to repeat my question again:

What’s (so much published) ancient DNA useful for, exactly?

Related

The Tungusic Ulchi population probably linked to haplogroup C2b1a

ulchi-marital

New paper (behind paywall) Demographic and Genetic Portraits of the Ulchi Population, by Balanovska et al. Russian Journal of Genetics (2018) 54(10):1245–1253.

Interesting excerpts (emphasis mine):

Marital structure. The intensity of interethnic marriages puts the existence of the Ulchi population at risk. The colorful ethnic composition of the Ulchi settlements is reflected in the marriage structure [see featured image]. We found that the proportion of single-ethnic marriages of the Ulchi is on average 51%. The greatest number of such marriages takes place in the village of Bulava. Marriages of Ulchi with Russians are in second place. Marriages with indigenous peoples of the Far East, Nanais, Nivkhs, Evenks, and others, are in third place. Thus, almost half of the Ulchi marriages are with representatives of other nationalities. Such a significant level of interethnic mixing makes it possible to talk about intense processes of assimilation of this indigenous people and puts to the forefront the problem of loss of the unique gene pool of the Ulchi.

Haplogroup C (its branch M48) was genotyped for its five subbranches with markers M86, B470, F13686, B93, and the marker at position 16645386 (GRCh37), which was found by our team for the first time. Variant B93 is rare in the Ulchi, and 14 samples (that is, more than a quarter of the entire gene pool of the Ulchi, Fig. 2) belong to M86 and its subvariants. Therefore, we genotyped STR markers of C-M86 carriers for the Ulchi and neighboring Amur populations and analyzed the relationships of detected haplotypes on the phylogenetic network (Fig. 3, STR haplotypes are available from authors upon request).

(…) On the network, different clusters are associated with different populations: most Mongols belong to F13686, all Evenks of the Amur River region with this haplogroup form a subcluster within F13686, and part of Upper Nanais is the basis of cluster B470.

ulchi-y-chromosome
Frequencies of haplogroups of Y chromosome in the Ulchi population. The nomenclature of haplogroups is given according to [9]. Markers that are not in bold type were not typed, but are ancestral for these nodes.

An estimate of the age of the entire haplogroup C-F12355 obtained from the data of genome-wide sequencing of seven specimens is 2400 ± 500 years (O.P. Balanovsky, unpublished data). That is, the common ancestor of all the studied representatives of various peoples with this haplogroup lived not so long ago, the first millennium BC. The formation time of cluster F13686 is somewhat later: 1990 ± 600 years.

(…) obvious traces of the interaction of the gene pool of the Ulchi with neighboring and remote peoples of the Far East and Central Asia in the time range of the last one to three thousand years were revealed. This shows that the results of work [4] on the similarity of the gene pool of the ancient (age of 7500 years) Neolithic genomes of the Amur River region to the Ulchi probably indicate not the uniqueness of the Ulchi, but the fact that this ancient gene pool was preserved in a vast circle of populations of the Far East interwoven with gene flows both with each other and, to a lesser extent, with populations of Central Asia.

The expansion of C2b1a2a-M86 (among many basal C2-M217 samples) is thus possibly associated with the spread of Tungusic, which puts C2b1a at the root of the Micro-Altaic expansion, with a formation date ca. 12700 BC, TMRCA 12500 BC (and not only Mongolian). This shows that Micro-Altaic is connected with a local population which shows a clear continuity since at least 3500 BC. This, however, tells us little about the origin of the language.

See also the recent ISBA presentation on the Houtaomuga site, Neolithic transition in Northeast Asia; and also Bronze Age population dynamics and rise of dairy pastoralism in Mongolia, Impact of colonization in north-eastern Siberia

That leaves the ancestral N lineages found among Far East Asians as Palaeo-Siberian in origin, and their late expansions to the west not particularly linked with any of the known Palaeo-Siberian ethnolinguistic groups, let alone a supposed “Uralo-Altaic” language…

Related

Dzudzuana, Sidelkino, and the Caucasus contribution to the Pontic-Caspian steppe

hunter-gatherer-pottery

It has been known for a long time that the Caucasus must have hosted many (at least partially) isolated populations, probably helped by geographical boundaries, setting it apart from open Eurasian areas.

David Reich writes in his book the following about India:

The genetic data told a clear story. Around a third of Indian groups experienced population bottlenecks as strong or stronger than the ones that occurred among Finns or Ashkenazi Jews. We later confirmed this finding in an even larger dataset that we collected working with Thangaraj: genetic data from more than 250 jati groups spread throughout India (…)

Rather than an invention of colonialism as Dirks suggested, long-term endogamy as embodied in India today in the institution of caste has been overwhelmingly important for millennia. (…)

The Han Chinese are truly a large population. They have been mixing freely for thousands of years. In contrast, there are few if any Indian groups that are demographically very large, and the degree of genetic differentiation among Indian jati groups living side by side in the same village is typically two to three times higher than the genetic differentiation between northern and southern Europeans. The truth is that India is composed of a large number of small populations.

There is little doubt now, based on findings spanning thousands of years, that the Mesolithic and Neolithic Caucasus hosted various very small populations, even if the ancestral components may be reduced to the few known to date (such as ANE, EHG, AME*, ENA, CHG, and other “deep” ancestral components).

NOTE. I will call the ancestral component of Dzudzuana/Anatolian hunter-gatherers Ancient Middle Easterner (AME), to give a clear idea of its likely extension during the Late Upper Palaeolithic, and to avoid using the more simplistic Dzudzuana, unless it is useful to mention these specific local samples.

dzudzuana-pca
Image modified from Lazaridis et al. (2018), including Caucasus, Don-Volga-Ural, and North Pontic Mesolithic-Neolithic populations. “Ancient West Eurasian population structure. (a) Geographical distribution of key ancient West Eurasian populations. (b) Temporal distribution of key ancient West Eurasian populations (approximate date in ky BP). (c) PCA of key ancient West Eurasians, including additional populations (shown with grey shells), in the space of outgroup f4-statistics (Methods).”

Genetic labs have a strong fixation with ancestry. I guess the use of complex statistical methods gives professionals and laymen alike the feeling of dealing with “Science”, as opposed to academic fields where you have to interpret data. I think language reveals a lot about the way people think, and the fact that ancestral components are called ‘lineages’ – while not wrong per se – is a clear symptom of the lack of interest in the true lineages: Y-DNA haplogroups.

Y-DNA bottlenecks

It has become quite clear that male-biased migrations are often the ones which can be confidently followed for actual population movements and ethnolinguistic identification, at least until the Iron Age. The frequently used Palaeolithic clusters offer a clear example of why ancestry does not represent what some people believe: They merely give a basic idea of sizeable population replacements by distant peoples.

Both concepts are important: sizeable and distant peoples. For example, during the Upper Palaeolithic in Europe there was a sizeable population replacement of the Aurignacian Goyet cluster by the Gravettian Vestonice cluster (probably from populations of far eastern Russia) coupled with the arrival of haplogroup I, although during the thousands of years that this material culture lasted, the previously expanded C1a2 lineages did not disappear, and there were probably different resurgence and admixture events.

Haplogroup I certainly expanded with the Gravettian culture to Iberia, where the Goyet ancestry did not change much – probably because of male-driven migrations -, to the extent that during the Magdalenian expansions haplogroup I expanded with an ancestry closer to Goyet, in what is called a ‘resurge’ of the Goyet cluster – even though there is a clear replacement of male lines.

The Villabruna (WHG) cluster is another good example. It probably spread with haplogroup R1b-L754, which – based on the extra ‘East Asian’ affinity of some samples and on modern samples from the Middle East – came probably from the east through a southern route, and not too long before the expansion of WHG likely from around the Black Sea, although this is still unclear. The finding of haplogroup I in samples of mostly WHG ancestry could confuse people that do not care about timing, sub-structured populations, and gene flow.

palaeolithic-expansions-reich
Image from David Reich’s Who We Are and How We Got Here. Having migrated out of Africa and the Near East, modern human pioneer populations spread throughout Eurasia (1). By at least thirty-nine thousand years ago, one group founded a lineage of European hunter-gatherers that persisted largely uninterrupted for more than twenty thousand years (2). Eventually, groups derived from an eastern branch of this founding population of European huntergatherers spread west (3), displaced previous groups, and were eventually themselves pushed out of northern Europe by the spread of glacial ice, shown at its maximum extent (top right). As the glaciers receded, western Europe was repeopled from the southwest (4) by a population that had managed to persist for tens of thousands of years and was related to an approximately thirty-five-thousand-year old individual from far western Europe. A later human migration, following the first strong warming period, had an even larger impact, with a spread from the southeast (5) that not only transformed the population of western Europe but also homogenized the populations of Europe and the Near East. At a single site—Goyet Caves in Belgium—ancient DNA from individuals spread over twenty thousand years reflects these transformations, with representatives from the Aurignacian, Gravettian, and Magdalenian periods.

NOTE. If you don’t understand why ‘clusters’ that span thousands of years don’t really matter for the many Palaeolithic population expansions that certainly happened among hunter-gatherers in Europe, just take a look at what happened with Bell Beakers expanding from Yamna into western Europe within 500 years.

If we don’t thread carefully when talking about population migrations, these terms are bound to confuse people. Just as the fixation on “steppe ancestry” – which marks the arrival in Chalcolithic Europe of peoples from the Pontic-Caspian region – has confused a lot of researchers to this day.

When I began to write about the Indo-European demic diffusion model, my concern was to find a single spot where a North-West Indo-European proto-language could have expanded from ca. 2000 BC (our most common guesstimate). Based on the 2015 papers, and in spite of their conclusions, I thought it had become clear that Corded Ware was not it, and it was rather Bell Beakers. I assumed that Uralic was spoken to the north (as was the traditional belief), and thus Corded Ware expanded from the forest zone, hence steppe ancestry would also be found there with other R1a lineages.

With the publication of Mathieson et al. (2017) and Olalde et al. (2017), I changed my mind, seeing how “steppe ancestry” did in fact appear quite late, hence it was likely to be the result of very specific population movements, probably directly from the Caucasus. Later, Mathieson published in a revision the sample from Alexandria of hg R1a-M417 (probably R1a-Z645, possibly Z93+), which further supported the idea that the migration of Corded Ware peoples started near the North Pontic forest-steppe (as I included in a the next revision).

The question remains the same I repeated recently, though: where do the extra Caucasus components (i.e. beyond EHG) of Eneolithic Ukraine/Corded Ware and Khvalynsk/Yamna come from?

Steppe ancestry: “EHG” + “CHG”?

About EHG ancestry

From Lazaridis et al. (2018):

Considering 2-way mixtures, we can model Karelia_HG as deriving 34 ± 2.8% of its ancestry from a Villabruna-related source, with the remainder mainly from ANE represented by the AfontovaGora3 (AG3) sample from Lake Baikal ~17kya.

AG3 was likely of haplogroup Q1a (as reported by YFull, see Genetiker), and probably the ANE ancestry found in Eastern Europe accompanied a Palaeolithic migration of Q1a2-M25 (formed ca. 22600 BC, TMRCA ca. 14300 BC).

NOTE. You can read more about the expansion of Q lineages during the Palaeolithic.

Combined with what we know about the Eneolithic Steppe and Caucasus populations – it is likely that ANE ancestry remained the most important component of some of the small ghost populations of the Caucasus until their emergence with the Lola culture.

pca-caucasus-dzudzuana
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here. To understand the drawn potential Caucasus Mesolithic cluster, see above the PCA from Lazaridis et al. (2018).

The first sample we have now attributed to the EHG cluster is Sidelkino, from the Samara region (ca. 9300 BC), mtDNA U5a2. In Damgaard et al. (Science 2018), Yamnaya could be modelled as a CHG population related to Kotias Klde (54%) and the remaining from ANE population related to Sidelkino (>46%), with the following split events:

  1. A split event, where the CHG component of Yamnaya splits from KK1. The model inferred this time at 27 kya (though we note the larger models in Sections S2.12.4 and S2.12.5 inferred a more recent split time).
  2. A split event, where the ANE component of Yamnaya splits from Sidelkino. This was inferred at about about 11 kya.
  3. A split event, where the ANE component of Yamnaya splits from Botai. We inferred this to occur 17 kya. Note that this is above the Sidelkino split time, so our model infers Yamnaya to be more closely related to the EHG Sidelkino, as expected.
  4. An ancestral split event between the CHG and ANE ancestral populations. This was inferred to occur around 40 kya.

Other samples classified as of the EHG cluster:

  • Popovo2 (ca. 6250 BC) of hg J1, mtDNA U4d – Po2 and Po4 from the same site (ca. 6550 BC) show continuity of mtDNA.
  • Karelia_HG, from Juzhnii Oleni Ostrov (ca. 6300 BC): I0211/UzOO40 (ca. 6300 BC) of hg J1(xJ1a), mtDNA U4a; and I0061/UzOO74 of hg R1a1(xR1a1a), mtDNA C1
  • UzOO77 and UzOO76 from Juzhnii Oleni Ostrov (ca. 5250 BC) of mtDNA R1b.
  • Samara_HG from Lebyanzhinka (ca. 5600 BC) of hg R1b1a, mtDNA U5a1d.

From the analysis of Lazaridis et al. (2018), we have some details about their admixture:

dzudzuana-admixture-sidelkino
Image modified from Lazaridis et al. (2018). Modeling present-day and ancient West-Eurasians. Mixture proportions computed with qpAdm (Supplementary Information section 4). The proportion of ‘Mbuti’ ancestry represents the total of ‘Deep’ ancestry from lineages that split prior to the split of Ust’Ishim, Tianyuan, and West Eurasians and can include both ‘Basal Eurasian’ and other (e.g., Sub-Saharan African) ancestry. (Left) ‘Conservative’ estimates. Each population 367 cannot be modeled with fewer admixture events than shown. (Right) ‘Speculative’ estimates. The highest number of sources (≤5) with admixture estimates within [0,1] are shown for each population. Some of the admixture proportions are not significantly different from 0 (Supplementary Information section 4).

About Anatolia_Neolithic ancestry

About the enigmatic Anatolia_Neolithic-related ancestry found in Pontic-Caspian steppe samples, this is what Wang et al. (2018) had to say:

We focused on model of mixture of proximal sources such as CHG and Anatolian Chalcolithic for all six groups of the Caucasus cluster (Eneolithic Caucasus, Maykop and Late Makyop, Maykop-Novosvobodnaya, Kura-Araxes, and Dolmen LBA), with admixture proportions on a genetic cline of 40-72% Anatolian Chalcolithic related and 28-60% CHG related (Supplementary Table 7). When we explored Romania_EN and Greece_Neolithic individuals as alternative southeast European sources (30-46% and 36-49%), the CHG proportions increased to 54-70% and 51-64%, respectively. We hypothesize that alternative models, replacing the Anatolian Chalcolithic individual with yet unsampled populations from eastern Anatolia, South Caucasus or northern Mesopotamia, would probably also provide a fit to the data from some of the tested Caucasus groups.

Also:

The first appearance of ‘Near Eastern farmer related ancestry’ in the steppe zone is evident in Steppe Maykop outliers. However, PCA results also suggest that Yamnaya and later groups of the West Eurasian steppe carry some farmer related ancestry as they are slightly shifted towards ‘European Neolithic groups’ in PC2 (Fig. 2D) compared to Eneolithic steppe. This is not the case for the preceding Eneolithic steppe individuals. The tilting cline is also confirmed by admixture f3-statistics, which provide statistically negative values for AG3 as one source and any Anatolian Neolithic related group as a second source

yamnaya-caucasus-dzudzuana
Modified image from Wang et al. (2018). In blue, Yamna-related populations. In red, Corded Ware-related populations, and two elevated Anatolia_Neolithic values in Yamna. Notice how only GAC-related admixture increases the Anatolian_N-related ancestry in the Yamna outlier from Ozero, and the late Yamna sample from Hungary, related to the homogeneous Yamna population. “Supplementary Table 14. P values of rank=3 and admixture proportions in modelling Steppe ancestry populations as a four-way admixture of distal sources EHG, CHG, Anatolian_Neolithic and WHG using 14 outgroups.Left populations: Steppe cluster, EHG, CHG, WHG, Anatolian_Neolithic. Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.”

Detailed exploration via D-statistics in the form of D(EHG, steppe group; X, Mbuti) and D(Samara_Eneolithic, steppe group; X, Mbuti) show significantly negative D values for most of the steppe groups when X is a member of the Caucasus cluster or one of the Levant/Anatolia farmer-related groups (Supplementary Figs. 5 and 6). In addition, we used f- and D-statistics to explore the shared ancestry with Anatolian Neolithic as well as the reciprocal relationship between Anatolian- and Iranian farmer-related ancestry for all groups of our two main clusters and relevant adjacent regions (Supplementary Fig. 4). Here, we observe an increase in farmer-related ancestry (both Anatolian and Iranian) in our Steppe cluster, ranging from Eneolithic steppe to later groups. In Middle/Late Bronze Age groups especially to the north and east we observe a further increase of Anatolian farmer related ancestry consistent with previous studies of the Poltavka, Andronovo, Srubnaya and Sintashta groups and reflecting a different process not especially related to events in the Caucasus.

(…) Surprisingly, we found that a minimum of four streams of ancestry is needed to explain all eleven steppe ancestry groups tested, including previously published ones (Fig. 2; Supplementary Table 12). Importantly, our results show a subtle contribution of both Anatolian farmer-related ancestry and WHG-related ancestry (Fig.4; Supplementary Tables 13 and 14), which was likely contributed through Middle and Late Neolithic farming groups from adjacent regions in the West. The discovery of a quite old AME ancestry has rendered this probably unnecessary, because this admixture from an Anatolian-like ghost population could be driven even by small populations from the Caucasus.

yamna-caucasus-cwc-anatolia-neolithic
Image modified from Wang et al. (2018). Marked are: in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus 1128 cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups (see also Supplementary Tables 10, 14 and 20).”

NOTE. For a detailed account of the possibilities regarding this differential admixture in the North Pontic area in contrast to the Don-Volga-Ural region, you can read the posts Sredni Stog, Proto-Corded Ware, and their “steppe admixture”, and Corded Ware culture origins: The Final Frontier.

While it is not yet fully clear, the increased Anatolian_Neolithic-like ancestry in Ukraine_Eneolithic samples (see below) makes it unlikely that all such ancestry in Corded Ware groups comes from a GAC-related contribution. It is likely that at least part of it represents contributions from populations of the Caucasus, based on the mostly westward population movements in the steppe from ca. 4600 BC on, including the Suvorovo-Novodanilovka expansion, and especially the Kuban-Maykop expansion during the final Eneolithic into the North Pontic area.

NOTE. Since CHG-like groups from the Caucasus may have combinations of AME and ANE ancestry similar to Yamna (which may thus appear as ‘steppe ancestry’ in the North Pontic area), it is impossible to interpret with precision the following ADMIXTURE graphic:

ukraine-whg-ehg-steppe
Modified image from Mathieson et al. (2018). Supervised ADMIXTURE analysis, modelling each ancient individual (one per row) as a mixture of population clusters constrained to contain northwestern-Anatolian Neolithic (grey), Yamnaya from Samara (yellow), EHG (pink) and WHG (green) populations. Dates in parentheses indicate approximate range of individuals in each population.

North-Eastern Technocomplex

The East Asian contribution to samples from the WHG samples (like Loschbour or La Braña), as specified in Fu et al. (2016), does not seem to be related to Baikal_EN, and appears possibly (in the ADMIXTURE analysis) integrated into he Villabruna component. I guess this implies that the shared alleles with East Asians are quite early, and potentially due to the expansion of R1b-L754 from the East.

It would be interesting to know the specific material culture Sidelkino belonged to – i.e. if it was related to the expansion of the North-Eastern Technocomplex – , and its Y-DNA. The Post-Swiderian expansion into eastern Europe, probably associated with the expansion of R1b-P297 lineages (including R1b-M73, found later in Botai and in Baltic HG) is supposed to have begun during the 11th millennium BC, but migrations to the Urals and beyond are probably concentrated in the 9th millennium, so this sample is possibly slightly early for R1b.

NOTE. User Rozenfeld at Anthrogenica posted this, which I think is interesting (in case anyone wants to try a Y-SNP call):

there is something strange with Sidelkino EHG: first, its archaeological context is not described in the supplementary. Second, its sex is not listed in the supplementary tables. Third, after looking for info about this sample, I found that: “Сиделькино-3. Для снятия вопроса о половой принадлежности индивида была проведена генетическая экспертиза, выявившая принадлежность останков мужчине.”(translation: Sidelkino-3. To resolve the question about sex of the remains, the genetic analysis was conducted, which showed that remains belonged to male), source: http://static.iea.ras.ru/books/7487_Traditsii.pdf

So either they haven’t mentioned his Y-DNA in the paper for some reason, or there are more than one Sidelkino sample and the male one has not yet been published. The coverage of the Sidelkino sample from the paper is 2.9, more than enough to tell Y-DNA haplogroup.

zaliznyak-post-swiderian
The map of spreading of Post-Swiderian and Post-Krasnosillian sites in Mesolithic of Eastern Europe in the 8th millennia BC. From Zaliznyak (see here).

My speculative guess right now about specific population movements in far eastern Europe, based on the few data we have:

  • The expansion of the North-Eastern Technocomplex first around the 9th millennium BC, most likely expanded R1b-P279 ca. 11300 BC, judging by its TMRCA, with both R1b-M73 (TMRCA 5300) and R1b-M269 (TMRCA 4400 BC) info (with extra El Mirón ancestry) back, and thus Eurasiatic.
  • The expansion of haplogroup J1 to the north may have happened before or after the R1b-P279 expansion. Judging by the increase in AG3-related ancestry near Karelia compared to Baltic_HG, it is possible that it expanded just after R1b-P279 (hence possibly J1-Y6304? TMRCA 9700 BC). Its long-lasting presence in the Caucasus is supported by the Satsurblia (ca. 11300 BC) and the Dolmen BA (ca. 1300 BC) samples.
  • The expansion of R1a-M17 ca. 6600 BC is still likely to have happened from the east, based on the R1a-M17 samples found in Baikalic cultures slightly later (ca. 5300 BC). The presence of elevated Baikal_EN ancestry in Karelia HG and in Samara HG, and the finding of R1a-M417 samples in the Forest Zone after the Mesolithic suggests a connection with the expansion of Hunter-Gatherer pottery, from the Elshanka culture in the Samara region northward into the Forset Zone and westward into the North Pontic area.
  • The expansion of R1b-M73 ca. 5300 BC is likely to be associated with the emergence of a group east of the Urals (related to the later Botai culture, and potentially Pre-Yukaghir). Its presence in a Narva sample from Donkalnis (ca. 5200 BC) suggest either an early split and spread of both R1b-P297 lineages (M73 and M269) through Eastern Europe, or maybe a back-migration with hunter-gatherer pottery.
  • R1b-M269 spread successfully ca. 4400 BC (and R1b-L23 ca. 4100 BC, both based on TMRCA), and this successful expansion is probably to be associated with the Khvalynsk-Novodanilovka expansion. We already know that Samara_HG ca. 5600 was R1b1a, so it is likely that R1b-M269 appeared (or ‘resurged’) in the Volga-Ural region shortly after the expansion of R1a-M17, whose expansion through the region may be inferred by the additional AG3 and Baikal_EN ancestry. Interesting from Samara_HG compared to the previous Sidelkino sample is the introduction of more El Mirón-related ancestry, typical of WHG populations (and thus proper of Baltic groups).

NOTE. The TMRCA dates are obviously gross approximations, because a) the actual rate of mutation is unknown and b) TMRCA estimates are based on the convergence of lineages that survived. The potential finding of R1a-Z645 (possibly Z93+) in Ukraine Eneolithic (ca. 4000 BC), and the potential finding of R1b-L23 in Khvalynsk ca. 4250 BC complicates things further, in terms of dates and origins of any subclade.

The question thus remains as it was long ago: did R1b-M269 lineages expand (‘return’) from the east, near the Urals, or directly from the north? Were they already near Samara at the same time as the expansion of hunter-gatherer pottery, and were not much affected by it? Or did they ‘resurge’ from populations admixed with Caucasus-related ancestry after the expansion of R1a-M17 with this pottery (since there are different stepped expansions from the Samara region)? We could even ask, did R1a-M17 really expand from the east, i.e. are the dates on Baikalic subclades from Moussa et al. (2016) reliable? Or did R1a-M17 expand from some pockets in the Pontic-Caspian steppe, taking over the expansion of HG pottery at some point?

hunger-gatherer-pottery
Early Neolithic cultures in eastern and central Europe: 1–Yelshanian; 2–North Caspian; 3–Rakushechnyj Yar; 4–Surskian; 5–Dnieper-Donetsian; 6– Bug-Dniesterian; 7–Upper Volga; 8–Narvian; 9–Linear Pottery. White arrows: expansion of early farming; black arrows: spread of pottery-making traditions. From Dolukhanov et al. (2009).

Maglemose-related migrations

The most interesting aspect from the new paper (regarding Indo-Uralic migrations) is that Ancestral Middle Easterner ancestry will probably be a better proxy for the Anatolia_Neolithic component found in Ukraine Mesolithic to Eneolithic, and possibly also for some of the “more CHG-like” component found among Pontic-Caspian steppe populations, all likely derived from different admixture events with groups from the Caucasus.

NOTE. Even the supposed gene flow of Neolithic Iranian ancestry into the Caucasus can be put into question, since that means possibly a Dzudzuana-like population with greater “deep ancestry” proportion than the one found in CHG, which may still be found within the Caucasus.

If it was not clear already that following ‘steppe ancestry’ wherever it appears is a rather lame way of following Indo-European migrations, every single sample from the Caucasus and their admixture with Pontic-Caspian steppe populations will probably show that “steppe ancestry” is in fact formed by a variety of steppe-related ancestral components, impossible to follow coherently with a single population. Exactly what is happening already with the Siberian ancestry.

If the paper on the Dzudzuana samples has shown something, is that the expansion of an ANE-like population shook the entire Caucasus area up to the Zagros Mountains, creating this ANE – AME cline that are CHG and Iran_N, with further contributions of “deep ancestries” (probably from the south) complicating the picture further.

If this happens with few known samples, and we know of an ANE-like ghost population in the Caucasus (appearing later in the Lola culture), we can already guess that the often repeated “CHG component” found in Ukraine_Eneolithic and Khvalynsk will not be the same (except the part mediated by the Novodanilovka expansion).

This ANE-like expansion happened probably in the Late Upper Palaeolithic, and reached Northern Europe probably after the expansion of the Villabruna cluster (ca. 12000 BC), judging by the advance of AG3-like and ENA-like ancestry in later WHG samples.

The population movements during the Mesolithic and Early Neolithic in the North Pontic area are quite complicated: the extra AME ancestry is probably connected to the admixture with populations from the Caucasus, while the close similarity of Ukraine populations with Scandinavian ones (with an increase in Villabruna ancestry from Mesolithic to Neolithic samples), probably reveal population movements related to the expansion of Maglemose-related groups.

maglemose-mesolithic
Etno-cultural situation in Central and Eastern Europe in the Late Mesolithic — Early Neolithic (VI—V Mill. BC) (after Конча 2004: 201, карта 1; made after ideas by L. L. Zaliznyak). Legend: 1 — Maglemose circle in the VII Mill. BC (after Gr. Clark); 2—7 — Mesolithic cultures of the Post-Maglemose tradition, VI Mill. BC (after S. Kozłowsky, L. L. Zaliznyak): 2 — de Leyen-Wartena; 3 — Oldesloe — Godenaa; 4 — Chojnice — Peńki; 5 — Janisłavice; 6 — finds of Janisłavice artefacts outside of the main area; 7 — Donets culture; 8 — directions of the settling of Janisłavice people (after S. Kozłowsky and L. L. Zaliznyak); 9 — the south border of Mesolithic and Early Neolithic cultures of post-Swidrian and post-Arensburgian traditions; 10 — northern border of settlement of the Balkan-Danubian farmers; 11 — Bug- Dniester culture; 12 — Neolithic cultures emerged on the ethno-cultural basis of post-Maglemose: Э — Ertebölle-Ellerbeck, Н — Neman, Д — Dnieper-Donets, М — Mariupol (western variants). From Klein (2017).

These Maglemose-related groups were probably migrants from the north-west, originally from the Northern European Plains, who occupied the previous Swiderian territory, and then expanded into the North Pontic area. The overwhelming presence of I2a (likely all I2a2a1b1b) lineages in Ukraine Neolithic supports this migration.

The likely picture of Mesolithic-Neolithic migrations in the North Pontic area right now is then:

  1. Expansion of R1a-M459 from the east ca. 12000 BC – probably coupled with AG3 and also some Baikal_EN ancestry. First sample is I1819 from Vasilievka (ca. 8700 BC), another is from Dereivka ca. 6900 BC.
  2. Expansion of R1b-V88 from the Balkans in the west ca. 9700 BC, based on its TMRCA and also the Balkan hunter-gatherer population overwhemingly of this haplogroup from the 10th millennium until the Neolithic. First sample is I1734 from Vasilievka (ca. 7252 BC), which suggests that it replaced the male population there, based on their similar EHG-like adxmixture (and lack of sizeable WHG increase), and shared mtDNA U5b2, U5a2.
  3. Expansion of I2a-Y5606 probably ca. 6800 based on its TMRCA with Janislawice culture. Supporting this is the increase in WHG contribution to Neolithic samples, including the spread of U4 subclades compared to the previous period.
  4. Expansion of R1a-M17 starting probably ca. 6600 BC in the east (see above).

NOTE. The first sample of haplogroup I appears in the Mesolithic: I1763 (ca. 8100 BC) of haplogroup I2a1, probably related to an older Upper Palaeolithic expansion.

janislawice
Distribution of archeological cultures in the North Pontic Region during the Mesolithic (7th – 6th millennium BCE). Dotted, dashed and solid lines with corresponding arrows indicate alternative models of the spread of the Grebenyky culture groups. (After Bryuako IV., Samojlova TL., Eds, Drevnie kul’tury Severo-­‐Zapadnogo Prichernomor’ya, Odessa: SMIL, 2013.) Nikitin – Ivanova 2017.

Conclusion

It is becoming more and more clear with each new paper that – unless the number of very ancient samples increases – the use of Y-chromosome haplogroups remains one of the most important tools for academics; this is especially so in the steppes, in light of the diversity found in populations from the Caucasus. A clear example comes from the Yamna – Corded Ware similarities:

After the publication of the 2015 papers, it was likely that Yamna expanded with haplogroup R1b-L23, but it has only become crystal clear that Yamna expanded through the steppes into Bell Beakers, now that we have data about the strict genetic homogeneity of the whole Yamna population from west to east (including Afanasevo), in contrast with contemporary Corded Ware peoples which expanded from a different forest-steppe population.

The presence of haplogroups Q and R1a-M459 (xM17) in Khvalynsk along with a R1b1a sample, which some interpreted as being akin to modern ‘mixed’ populations in the past, is likely to point instead to a period of Khvalynsk-Novodanilovka expansion with R1b-M269, where different small populations from the steppe were being integrated into the common Khvalynsk stock, but where differences are seen in material culture surrounding their burials, as supported by the finding of R1b1 in the Kuban area already in the first half of the 5th millennium. The case would be similar to the early ‘mixed’ Icelandic population.

Only after the emergence of the Samara culture (in the second half of the 6th millennium BC), with a sample of haplogroup R1b1a, starts then the obvious connection with Early Proto-Indo-Europeans; and only after the appearance of late Sredni Stog and haplogroup R1a-M417 (ca. 4000 BC) is its connection with Uralic also clear. In previous population movements, I think more haplogroups were involved in migrations of small groups, and only some communities among them were eventually successful, expanding to be dominant, creating ever growing cultures during their expansions.

Indeed, if you think in terms of Uralic and Indo-European just as converging languages, and forget their potential genetic connection, then the genetic + linguistic picture becomes simplified, and the upper frontier of the 6th millennium BC with a division North Pontic (Mariupol) vs. Volga-Ural (Samara) is enough. However, tracing their movements backwards – with cultural expansions from west to east (with the expansion of farming), and earlier east to west (with hunter-gatherer pottery), and still earlier west to east (with the north-eastern technocomplex), offers an interesting way to prove their potential connection to macrofamilies, at least in terms of population movements.

corded-ware-uralic-qpgraph
Modified image from Tambets et al. (2018) Proportions of ancestral components in studied European and Siberian populations and the tested qpGraph model. a The qpGraph model fitting the data for the tested populations. Colour codes for the terminal nodes: pink—modern populations (‘Population X’ refers to test population) and yellow—ancient populations (aDNA samples and their pools). Nodes coloured other than pink or yellow are hypothetical intermediate populations. We putatively named nodes which we used as admixture sources using the main recipient among known populations. The colours of intermediate nodes on the qpGraph model match those on the admixture proportions panel. The NeolL (Neolithic Levant) ancestry selected in this qpGraph is likely to correspond (at least in part) to a specific Dzudzuana-like component present in the CHG-like population that admixed in the North Pontic area.

I am quite convinced right now that it would be possible to connect the expansion of R1b-L754 subclades with a speculative Nostratic (given the R1b-V88 connection with Afroasiatic, and the obvious connection of R1b-L297 with Eurasiatic). Paradoxically, the connection of an Indo-Uralic community in the steppes (after the separation of Yukaghir) with any lineage expansion (R1a-M17, R1b-M269, or even Q, I or J1) seems somehow blurrier than one year ago, possibly just because there are too many open possibilities.

David Reich says about the admixture with Neanderthals, which he helped discover:

At the conclusion of the Neanderthal genome project, I am still amazed by the surprises we encountered. Having found the first evidence of interbreeding between Neanderthals and modern humans, I continue to have nightmares that the finding is some kind of mistake. But the data are sternly consistent: the evidence for Neanderthal interbreeding turns out to be everywhere. As we continue to do genetic work, we keep encountering more and more patterns that reflect the extraordinary impact this interbreeding has had on the genomes of people living today.

I think this is a shared feeling among many of us who have made proposals about anything, to fear that we have made a gross, evident mistake, and constantly look for flaws. However, it seems to me that geneticists are more preoccupied with being wrong in their developed statistical methods, in the theoretical models they are creating, and not so much about errors in the true ancient ethnolinguistic picture human population genetics is (at least in theory) concerned about. Their publications are, after all, constantly associating genetic finds with cultures and (whenever possible) languages, so this aspect of their research should not be taken lightly.

Seeing how David Anthony or Razib Khan (among many others) have changed their previously preferred migration models as new data was published, and they continue to be respected in their own fields, I guess we can be confident that professionals with integrity are going to accept whatever new picture appears. While I don’t think that genetic finds can change what we can reconstruct with comparative grammar, I am also ready to revise guesstimates and routes of expansion of certain dialects if R1a-Z645 is shown to have accompanied Late Proto-Indo-Europeans during their expansion with Yamna, and later integrated somehow with Corded Ware.

However, taking into account the obsession of some with an ancestral, uninterrupted R1a—Indo-European association, and the lack of actual political repercussion of Neanderthal admixture, I think the most common nightmare that all genetic researchers should be worried about is to keep inflating this “Yamnaya ancestry”-based hornet’s nest, which has been constantly stirred up for the past two years, by rejecting it – or, rather, specifying it into its true complex nature.

This succession of corrections and redefinitions, coupled with the distinct Y-DNA bottleneck of each steppe population, will eventually lead to a completely different ethnolinguistic picture of the Pontic-Caspian region during the Eneolithic, which is likely to eventually piss off not only reasonable academics stubbornly attached to the CWC-IE idea, but also a part of those interested in daydreaming about their patrilineal ancestors.

Sometimes it’s better to just rip off the band-aid once and for all…

Featured image from The oldest pottery in hunter-gatherer communitiesand models of Neolithisation of Eastern Europe (2015), by Andrey Mazurkevich and Ekaterina Dolbunova.

Related

Interesting is today’s post in Ancient DNA Era: Is Male-driven Genetic Replacement always meaning Language-shift?