Volosovo hunter-gatherers started to disappear earlier than previously believed

volosovo-corded-ware

Recent paper (behind paywall) Marmot incisors and bear tooth pendants in Volosovo hunter-gatherer burials. New radiocarbon and stable isotope data from the Sakhtysh complex, Upper-Volga region, by Macānea, Nordqvist, and Kostyleva, J. Archaeol. Sci. (2019) 26:101908.

Interesting excerpts (emphasis mine):

The Sakhtysh micro-region is located in the Volga-Oka interfluve, along the headwaters of the Koyka River in the Ivanovo Region, central European Russia (Fig. 1). The area has evidence of human habitation from the Early Mesolithic to the Iron Age, and includes altogether 11 long-term and seasonal settlements (Sakhtysh I–II, IIa, III–IV, VII–XI, XIV) and four artefact scatters (sites V–VI, XII–XIII), in addition to which burials have been detected at five sites (I–II, IIa, VII, VIII) (Kostyleva and Utkin, 2010). The locations have been known since the 1930s and intensively studied since the 1960s under the leadership of D.A. Kraynov, M.G. Zhilin, E.L. Kostyleva, and A.V. Utkin.

Sakhtysh II and IIa are the most extensively studied sites of the complex, with ca. 1500m2 and around 800m2 excavated, respectively. The burial grounds at both sites are considered as fully investigated.

volosovo-sakhtysh-dates
AMS datings from the sites Sakhtysh II and IIa. Sampled contexts are given in parentheses (burial/hoard), “crust” indicates samples of charred organic
residues on pottery from cultural layer. For data, see Tables 1–2.

Sakhtysh chronology

The AMS dates do not support the previously proposed phasing of the Sakhtysh burials to early (4750–4375 BP/3600–3000 cal BCE), late (or developed; 4375–4000 BP/3000–2500 cal BCE), and final (4000–3750 BP/2500–2200 cal BCE): the early and late burials at Sakhtysh IIa do not stand out as two separate groups, and also the burials and hoards from Sakhtysh II, connected to the final phase, are temporally overlapping with these. Neither the use sequence, where the settlement and burial phases are non-overlapping and also complementary between the sites (Kostyleva and Utkin, 2010, 2014), finds support in the present material.

The AMS datings indicate that the Volosovo people started to bury their dead at Sakhtysh IIa after 3700 cal BCE; dates earlier than this may be affected by FRE or suffer from mixed contexts and poor quality of dates. The present data questions the interpretation that the Sakhtysh IIa cemetery was used without interruptions between 4800 and 4080 BP (Kostyleva and Utkin, 2010), i.e. for a millennium between 3550 and 2600 cal BCE. The AMS dates rather suggest a use period of some centuries only around the mid-4th millennium cal BCE, tentatively 3650–3400 cal BCE. This would also be more realistic considering the number of burials at the site.

volosovo-sakhtysh-sites
The core area of Volosovo culture (after Kraynov, 1987) and the sites of the Sakhtysh complex (after Kostyleva and Utkin, 2010). Eurasian map base made with Natural Earth. Illustration: K. Nordqvist.

Volosovo chronology

The absolute dating of Volosovo culture was for a long time hampered by the small number of radiocarbon dates (see Kraynov, 1987). Today,>100 datings connected with it can be found in literature (Korolev and Shalapinin, 2010; Chernykh et al., 2011; Nikitin, 2012; Mosin et al., 2014). Unfortunately, the available dates do not form solid grounds for dating the cultural phenomenon, as many of them have quality-related issues, large measurement errors, and ambiguous cultural or physical contexts. Consequently, particular datings may be connected to different cultural phases by different scholars. Finally, a large part of the newly-published datings are obtained through direct dating of potsherds (Kovaliukh and Skripkin, 2007; Zaitseva et al., 2009), and therefore, their cogency must be faced with reservation (see Van der Plicht et al., 2016; Dolbunova et al., 2017).

The datings connected with Volosovo cover a wide time range between ca. 5500 BP (4400 cal BCE) and ca. 3700 BP (2100 cal BCE). However, datings from secure contexts, with good quality (error ca. 50 years or below) and no probable FRE, place the beginning of Volosovo culture to the first half of the 4th millennium cal BCE, around 3700–3600 cal BCE. This is also supported by the roughly coeval terminal dates given for the preceding Lyalovo (Zaretskaya and Kostyleva, 2011) and Volga-Kama cultures (Lychagina, 2018), as well as the appearance of related neighbouring cultures, for example, in the Kama region (Nikitin, 2012; Lychagina, 2018), the southern forest steppe area (Korolev and Shalapinin, 2014), and north-western Russia and Finland (Nordqvist, 2018). Still, the dating of many of these cultural phases suffers from the same problems as of Volosovo.

A handful of contested datings place the end of Volosovo culture to the final centuries of the 3rd millennium cal BCE, or even later (Kostyleva and Utkin, 2010; Chernykh et al., 2011; Nikitin, 2012). On the other hand, the new AMS dates indicate that Volosovo activities at Sakhtysh II and IIa ceased before or towards the early 3rd millennium cal BCE; if this reflects the general decline of Volosovo culture must be still confirmed by more dates from Sakhtysh and elsewhere. In this context, the general cultural development must be accounted for. To what extent – if at all – the Volosovo people were present after the arrival of the Corded Ware culture-related Fatyanovo-Balanovo populations? Based on the current, albeit scant and inconclusive radiocarbon data this took place from ca. 2700 cal BCE onwards (Krenke et al., 2013).

volosovo-fatyanovo-balanovo
Corded Ware and Comb Ware hunter-gatherer-related populations in north-eastern Europe from ca. 2600 BC. See full map.

Comments

One of the interesting genetic papers in the near future will be the one that finally includes samples from Corded Ware groups in the forest zone (i.e. Fatyanovo-Balanovo and Abashevo), which will most likely confirm that they are the origin of the known genetic profile of Central and East Uralic-speaking peoples, seeing how West Uralic peoples show genetic continuity in the East Baltic area, coinciding with the Battle Axe culture.

Uralicists have come a long way from the 1990s, when the picture of Uralic before Balto-Slavic in the Baltic was already evident, and Uralians were identified with Comb Ware peoples. The linguistic data and relative chronology are still valid, despite the now outdated interpretations of absolute archaeological chronology, as happens with interpretations of Krahe or Villar about Old European.

As an example, here are some relevant excerpts from Languages in the Prehistoric Baltic Sea Region, by Kallio (2003):

NOTE. Kallio’s contribution appeared in the book Languages in Prehistoric Europe (2003), which I hold nostalgically close in my Indo-European library (now almost impossible to read fully). It is still one of my preferred books (from those made up of mostly unconnected chunks on European linguistic prehistory), because it contains Oettinger’s essential update of North-West Indo-European common vocabulary, which led us indirectly to our Modern Indo-European project from 2005 on.

In any case, the Uralic arrival in the region east of the Baltic Sea preceded the Indo-European one (…).

This theory that the ancestors of Finno-Saamic speakers arrived in the Baltic Sea region earlier than those of Balto-Slavic speakers is still rejected by some scholars (e.g. Napolskikh 1993: 41-44), who claim, for instance, that Finno-Saamic speakers would not have known salmons before they met Balts because the Finno-Saamic word for ‘salmon’ (i.e. *losi) is a borrowing from Baltic. Similarly, one could claim that English speakers would not have known salmons before they met Frenchmen because English salmon is a borrowing from French. In other words, Worter und Sachen are not necessarily borrowed hand in hand. Otherwise, it would not be so easy to explain how many Finnish names of body parts are borrowings from Baltic (e.g. hammas ‘tooth’, kaula ‘neck’, reisi ‘thigh’) and from Germanic (e.g. hartia ‘shoulder’, lantio ‘loin’, maha ‘stomach’).

A more probative argument is the fact that Balto-Slavic features in Finno-Saamic are mostly lexical ones (i.e. typical superstrate features), where Finno-Saamic features in Balto-Slavic are mostly non-lexical ones (i.e. typical substrate features). Note that there are more Balto-Slavic features in Finnic than in Saamic and more Finno-Saamic features in Baltic than in Slavic. This fact could be explained by presuming that Pre-Saamic was spoken north of the Corded Ware area and Pre-Slavic was spoken south of the Typical Pit-Comb Ware area, whereas Pre-Finnic and Pre-Baltic alone were spoken in the area, where both the Typical Pit-Comb Ware culture (ca. 4000-3600 BC) and the Corded Ware culture (ca. 3200-2300 BC) were situated. This area was most probably bilingual, until Finnic and Baltic won in the north and in the south, respectively.

As is well-known, the idea of Uralic substrate features in Balto-Slavic is not new (cf. e.g. Pokorny 1936/1968: 181-185). As recent studies (e.g. Bednarczuk 1997) have shown, their density is the most remarkable in the four Balto-Slavic languages spoken in the earlier Pit-Comb Ware area (i.e. Latvian, Lithuanian, Belorussian, Russian). On the other hand, occasional Uralisms in the other Balto-Slavic languages spoken west of the Vistula and south of the Pripyat may rather be considered adstrate features spread from the northeast.

comb-ware-uralic
Our beliefs from the 2000s. A hypothetic Uralic Comb Ware distribution before the arrival of a hypothetic North-West Indo-European-speaking Corded Ware. “Generalized distribution of the Pit-Comb Ware cultural complex (Mallory & Adams 1997: 430, Carpelan 1999: 257) and the most probable homelands of Saamic, Finnic, Mordvin, Mari, and Permic.”

The idea of Indo-European superstrate features in Finnic is not new either (cf. e.g. Posti 1953). As Jorma Koivulehto (1983) has recently shown, the earliest Indo-European loanword stratum in the westernmost Uralic branches alone can be considered Northwest Indo-European and connected with the Corded Ware culture (ca. 3200-2300 BC). Since this layer, there have been continuous contacts between Baltic and Finnic. According to Koivulehto (1990), the following stratum can be called Proto-Balt(o-Slav)ic and dated to the Late Neolithic period (ca. 2300-1500 BC). Note that this Proto-Balt(o-Slav)ic dating agrees with the established ones (cf. e.g. Shevelov 1964: 613-614, Kortlandt 1982: 181), when we remember the fact that archaeologists have also moved their datings back by centuries during the last decades.

Finally, there is also a Baltic loanword stratum which was not borrowed from the ancestral stage of Latvian, Lithuanian and/or Old Prussian but from some extinct Baltic language or dialect (Nieminen 1957). However, as these words still go back to the early Proto-Finnic stage, they can hardly be dated later than Bronze-Age ( ca. 1500-500 BC). Therefore, we may conclude that they were probably borrowed from a Baltic superstrate, which arrived in the Finnish Gulf area during the Corded Ware period and survived there until the Bronze Age, when it was no longer identical with other Baltic dialects. In any case, as later Baltic loanword strata concern southern Finnic languages alone, we may presume that this ‘North Baltic’superstrate had become extinct.

The traditional association of Uralic with Volosovo hunter-gatherers doesn’t make sense, since they neither miraculously survived for thousands of years nor mixed for hundreds of years with Corded Ware peoples, so we can now more confidently reject the recent assumption by Carpelan & Parpola that their language was adopted by incoming Fatyanovo, Balanovo and Abashevo groups, to develop into the known Uralic languages (more here). This includes one of the many models of the the Copenhagen group, who simplistically follow “Steppe ancestry” for Indo-Europeannes.

If one combines the known relative linguistic chronology with the North-West Indo-European hydrotoponymy layer, now more clearly identified as Old Europeans expanding with East Bell Beakers and derived Early Bronze Age groups, I think there is little space left for maneuvering out of the overwhelming evidence for a Uralic homeland in the forest-steppes, linked to the spread of late Sredni Stog/Corded Ware ancestry into north-eastern Europe and beyond the Urals.

Related

More Hungarian Conquerors of hg. N1c-Z1936, and the expansion of ‘Altaic-Uralic’ N1c

Open access Y-chromosomal connection between Hungarians and geographically distant populations of the Ural Mountain region and West Siberia, by Post et al. Scientific Reports (2019) 9:7786.

Hungarian Conquerors

More interesting than the study of modern populations of the paper is the following excerpt from the introduction, referring to a paper that is likely in preparation, Európai És Ázsiai Apai Genetikai Vonalak A Honfoglaló Magyar Törzsekben, by Fóthi, E., Fehér, T., Fóthi, Á. & Keyser, C., Avicenna Institute of Middle Eastern Studies (2019):

Certain chr-Y lineages from haplogroup (hg) N have been proposed to be associated with the spread of Uralic languages. So far, hg N3 has not been reported for Indo-European speaking populations in Central Europe, but it is present among Hungarians, although the proportion of hg N in the paternal gene pool of present-day Hungarians is only marginal (up to 4%) compared to other Uralic speaking populations. It has been shown earlier that one of the sub-clades of hg N – N3a4-Z1936 – could be a potential link between two Ugric speaking populations: the Hungarians and the Mansi. It is also notable that some ancient Hungarian samples from the 9th and 10th century Carpathian Basin belonged to this hg N sub-clade: Three Z1936 samples were found in the Upper-Tisza area (Karos II, Bodrogszerdahely/Streda nad Bodrogom) and two in the Middle-Tisza basin cemeteries (Nagykörű and Tiszakécske). The haplotype of the Nagykörű sample is identical with one contemporary Hungarian sample from Transylvania that tested positive for B545 marker downstream of N3a4-Z193632. Similar findings come from the maternal gene pool of historical Hungarians: the analyses of early medieval aDNA samples from Karos-Eperjesszög cemeteries revealed the presence of mtDNA hgs of East Asian provenance.

A commenter recently wrote that in a study by Fehér (probably this one) two Hungarian conquerors, from Ormenykut and Tuzser, will be of hg. N1c-2110. Assuming no other lineages will appear, this would leave the proportion of N1c-L392 vs. R1a-Z280/Z93 closer to the reported proportion of hg. N vs. R1a (5 vs. 2) among Sargat samples, and is thus compatible with a direct migration of Hungarians from around the Urals.

However, the sampling of Iron Age populations around the Urals is scarce, and we don’t know what other lineages these studied Magyars will have, but – based on the known variability of the published ones, and on the ca. 50-60 early Magyar males available to date in previous studies to obtain Y-chromosome haplogroups – I would say these reported N1c lineages are just a tiny proportion of what’s to come…

“Altaic-Uralic” N1c

altaic-uralic-n1c-haplogroup
Phylogenetic tree of hg N3a4. Phylogenetic tree of 33 high coverage Y-chromosomes from
haplogroup N3a4 was reconstructed with BEAST v.1.7.5 software package.

Archaeogenetic studies based on mtDNA haplotypes have shown that ancient Hungarians were relatively close to contemporary Bashkirs who are a Turkic speaking population residing in the Volga-Ural region. Another study reported excessive identical-by-descent (IBD) genomic segments shared between the Ob-Ugric speaking Khantys and Bashkirs but a moderate IBD sharing between Turkic speaking Tatars and their neighbours including Bashkirs.

Phylogenetic tree of hg N3a4 has two main sub-clades defined by markers B535 and B539 that diverged around 4.9 kya (95% confidence interval [CI] = 3.7–6.3 kya). Inner sub-clades of N3a4-B539 (defined by markers B540 and B545) split 4.2 kya (95% CI = 3.0–5.6 kya). (…) The phylogenetic tree reveals that all five Hungarian samples belong to N3a4-B539 sub-clade that they share with Ob-Ugric speaking Khanty and Mansi, and Turkic speaking Bashkirs and Tatars from the Volga-Ural region. Hungarian and Bashkir chrY lineages belong to both sub-clades of N3a4-B539.

Modern distribution of the “Ugric N1c”

To test the presence and proportions of hg N3a4 lineages in a more comprehensive sample set and with a higher phylogenetic resolution level compared to earlier studies, we analysed the genotyping data of about 5000 Eurasian individuals, including West Siberian Mansi and Khanty who are linguistically closest to Hungarians

n3a4-n1c-z1936-ugric
Map of the entire hg N3a4.

There is a clear difference in geographic distribution patterns of these two hg N3a4 sub-clades. Hg N3a4-B535 (Fig. 3b) is common mostly among Finnic (Finns, Karelians, Vepsas, Estonians) and Saami speaking populations in North eastern Europe. The highest frequency is detected in Finns (~44%) but it also reaches up to 32% in Vepsas and around 20% in Karelians, Saamis and North Russians. The latter are known to have changed their language or to be an admixed population with reported similar genetic composition to their Finnic speaking neighbors. The frequency of N3a4-B535 rapidly decreases towards south to around 5% in Estonians, being almost absent in Latvians (1%) and not found among Lithuanians. Towards east its frequency is from 1–9% among Eastern European Russians and populations of the Volga-Ural region such as Komis, Mordvins and Chuvashes (…)

n3a4-n1c-z1936-finnic-samic
Map of N3a4 subclades defined by B535.

Hg N3a4-B539, on the other hand, is prevalent among Turkic speaking Bashkirs and also found in Tatars but is entirely missing from other populations of the Volga-Ural region such as Uralic speaking Udmurts, Maris, Komis and Mordvins, and in Northeast Europe, where instead N3a4-B535 lineages are frequent. Besides Bashkirs and Tatars in Volga-Ural region, N3a4-B539 is substantially represented in West Siberia among Ugric speaking Mansis and Khantys. Among Hungarians, however, N3a4-B539 has a subtle frequency of 1–4%.

n3a4-n1c-z1936-ugric-bashkir
Map of N3a4 subclades defined by B539, with a local snapshot showing the N3a4-B539 distribution among Hungarian speakers.

The battle to appropriate N1c-L392

So, basically, the team of Kristiina Tambets is arguing that N1c-VL29 expanded Finnic to the East Baltic (hence from a common Finno-Mordvinic dialect splitting ca. 600 BC on?) because, you know, apparently the agreed separation of known Uralic dialects from ca. 2000 BC, and their Bronze Age presence around the Baltic, is not valid when you follow haplogroups instead of languages or archaeology.

But now this other group of Tambets (co-author of this paper) considers that hg. N1c-Z1936 – which is probably behind the N1c-L392 samples from Lovozero Ware in the Kola Peninsula – represent either the True Uralic-speaking Palaeo-Arctic peoples, or else merely Ugric-speaking peoples which happened to expand to Fennoscandia but left no trace of their language…

To accept this identification you only have to NOT ask why:

  • N1c is first found in ancient cultures close to Lake Baikal.
  • N1c-L392 appears in ancient East Asian populations speaking completely different languages, with Altaic and Uralic being just some among many Palaeo-Siberian populations where the haplogroup will pop up.
  • Turkic populations like Bashkirs and Tatars (who expanded to the Volga through the southern Urals before the expansion of Hungarians) show a shared distribution of the B539 haplotype with Hungarians.
  • The phylogenetic tree and areas of N1c-L392 expansions don’t make any sense in light of the known linguistic and cultural expansions of Uralic-speaking peoples.

In fact, the Hungarian research group of Neparáczki – publishing the recent paper on Hungarian Conquerors – was apparently looking for a connection with Turkic peoples to support some traditional Turanian myths, and they found it in some scattered R1a-Z93 samples which supposedly connect Hungarian Conquerors to Huns (?), instead of looking for this closer link through N1c-Z1936 (especially haplotype B539)…

Also, is it me or are there two opposed trends with completely different interpretations among researchers publishing papers about hg. N1c: one systematically arguing for Altaic origins, and another for Uralic ones?

If somebody sees some complex reasoning behind the discussions of all these recent papers, beyond the simplest “let’s follow N for Uralic/Altaic”, feel free to comment below. Just so I can understand what I might be doing wrong in assessing Neolithic and Bronze Age migrations in linguistics and archaeology with help of ancient haplogroups coupled with ancestral components, but these researchers are doing right by playing with obsessive ideas born out of the 2000s coupled with phylogenetic trees and maps of modern haplogroup distributions…

This is probably going to be this blog’s most used image in 2019:

horse-meme-steppe-ancestry

Related

Baltic Finns in the Bronze Age, of hg. R1a-Z283 and Corded Ware ancestry

estonian-bronze-age-dna

Open access The Arrival of Siberian Ancestry Connecting the Eastern Baltic to Uralic Speakers further East, by Saag et al. Current Biology (2019).

Interesting excerpts:

In this study, we present new genomic data from Estonian Late Bronze Age stone-cist graves (1200–400 BC) (EstBA) and Pre-Roman Iron Age tarand cemeteries (800/500 BC–50 AD) (EstIA). The cultural background of stone-cist graves indicates strong connections both to the west and the east [20, 21]. The Iron Age (IA) tarands have been proposed to mirror “houses of the dead” found among Uralic peoples of the Volga-Kama region [22].

(…) The 33 individuals included 15 from EstBA, 6 from EstIA, 5 from Pre-Roman to Roman Iron Age Ingria (500 BC–450 AD) (IngIA), and 7 from Middle Age Estonia (1200–1600 AD) (EstMA) and yielded endogenous DNA ∼4%–88%, average genomic coverages ∼0.017–0.734×, and contamination estimates <4% (Table S1). We analyzed the data in the context of modern and other ancient individuals, including from Neolithic Estonia [13].

estonian-y-dna-bronze-iron-age
Archaeological Information, Genetic Sex, mtDNA and Y Chromosome Haplogroups, and Average Coverage of the Individuals of This Study. Modified from the paper to mark distinct Y-DNA haplogroups in the LBA and IA.

We identified chrY hgs for 30 male individuals (Tables 1 and S2; STAR Methods). All 16 successfully haplogrouped EstBA males belonged to hg R1a, showing no change from the CWC period, when this was also the only chrY lineage detected in the Eastern Baltic [11, 13, 30, 31]. Three EstIA and two IngIA individuals also belonged to hg R1a, but three EstIA males belonged to hg N3a, the earliest so far observed in the Eastern Baltic. Three EstMA individuals belonged to hg N3a, two to hg R1a, and one to hg J2b. ChrY lineages found in the Baltic Sea region before the CWC belong to hgs I, R1b, R1a5, and Q [10, 11, 12, 13, 17, 32]. Thus, it appears that these lineages were substantially replaced in the Eastern Baltic by hg R1a [10, 11, 12, 13], most likely through steppe migrations from the east [30, 31]. (…) Our results enable us to conclude that, although the expansion time for R1a1 and N3a3′5 in Eastern Europe is similar [25], hg N3a likely reached Estonia or at least became comparably frequent to modern Estonia [1] only during the BA-IA transition.

A clear shift toward West Eurasian hunter-gatherers is visible between European LN and BA (including Baltic CWC) and EstBA individuals, the latter clustering together with Latvian and Lithuanian BA individuals [11]. EstIA, IngIA, and EstMA individuals project between BA individuals and modern Estonians, partially overlapping with both.

(…) EstBA individuals are clearly distinguishable from Estonian CWC individuals as the former have more of the blue component most frequent in WHGs and less of the brown and yellow components maximized in Caucasus hunter-gatherers and modern Khanty, respectively. The individuals of EstBA, EstIA, IngIA, EstMA, and modern Estonia are quite similar to each other on average, indicating that the relatively high proportion of WHG ancestry in modern Eastern Baltic populations compared to other present-day Europeans [15] traces back to the BA.

estonian-pca-published
Detail of the PCA, modified from the paper to label populations. Estonian Bronze Age and Iron Age samples cluster close to Early Corded Ware from the Baltic.. Principal-component analysis results of modern West Eurasians with ancient individuals projected onto the first two components (PC1 and PC2). BA, Bronze Age; EF, early farmers; HG, hunter-gatherers; IA, Iron Age; IMA, Iron/Middle Ages; LN, Late Neolithic; LNBA, Late Neolithic/Bronze Age; MA, Middle Ages

When comparing Estonian CWC and EstBA using autosomal outgroup f3 and Patterson’s D statistics (Table S3), the latter is more similar to other Baltic BA populations, to Baltic IA and Middle Age (MA) populations, and also to populations similar to WHGs and Scandinavian hunter-gatherers (SHGs), but not to Estonian CCC (Figures 2A and S2A; Data S1). The increase in WHG or SHG ancestry could be connected to western influences seen in material culture [20, 21] and facilitated by a decline in local population after the CCC-CWC period [20]. A slight trend of bigger similarity of Estonian CWC to forest or steppe zone populations and of EstBA to European early farmer populations can also be seen.

(…) When comparing to modern populations, Estonian CWC is slightly more similar to Caucasus individuals but EstBA to Baltic populations and Finnic speakers (Figure 2B; Data S1). Outgroup f3 and D statistics do not reveal apparent differences when comparing EstBA to EstIA, EstIA to IngIA, and EstIA to EstMA (Data S1).

estonian-ba-ia-ancestry
qpAdm results. Error bars indicate one SE. Central MN, Central European Middle Neolithic; EstBA, Estonian Bronze Age; EstIA, Estonian Iron Age; IngIA, Ingrian Iron Age; EstMA, Estonian Middle Ages; WHG, western hunter-gatherers.

These results highlight how uniparental and autosomal data can lead to different demographic inferences—the genetic change between CWC and BA not seen in uniparental lineages is clear in autosomal data and the appearance of chrY hg N in the IA is not matched by a clear shift in autosomal profiles.

EstBA individuals have no Nganasan-related ancestry and EstIA, IngIA, and EstMA individuals on average have 2% or 4% (Figure 3; Data S1). The differentiation remains when using BA or IA Fennoscandian populations [26] instead of Nganasans (Data S1). Notably, the proportion of Nganasan-related ancestry varies between 0% and 12% among sampled EstIA, IngIA, and EstMA individuals (Data S1), which may suggest its relatively recent admixture into the target population. Moreover, two individuals from Kunda (0LS10 and V10) have the highest proportions of Nganasan ancestry among EstIA (6% and 8%), one of them has chrY hg N3a, and isotopic analysis suggests neither individual being born in Kunda [34].

About these two males from Tarand-graves, ‘foreign’ to Kunda:

0LS10: Male from tarand III (burial 9; TÜ 1325: L777), age 17–25 years [34]. He had a fragment of a sheep/goat bone and ceramics as grave goods. This burial has two radiocarbon dates: 2430 ± 35 BP (Poz-10801; 760–400 cal BC) and 2530 ± 41 BP (UBA-26114; 800–530 cal BC) [34]. According to the isotopic analysis, the person was not born in the vicinity of Kunda; his place of birth is still unknown (but south-western Finland and Sweden are excluded) [34]. Sampled tooth r P1.

V10: Male from tarand XI (burial 24; TÜ 1325: L1925), age 25–35 years [34], date 2484 ± 40 BP (UBA-26115; 790–430 cal BC) [34]. He had a few potsherds near the skull. Likewise, this person was not locally born [34]. Sampled tooth l P1.

estonia-bronze-iron-age-steppe-siberian
Autosomal Analyses’ Results for Gyvakarai1 as the closest available Corded Ware source for Balto-Finnic populations.

The paper shows thus:

  • Major continuity of ancestry from Corded Ware to modern Estonians, with only slight changes in different periods. In fact, one of the best fits for the Late Bronze Age ancestry is Gyvakarai1, one of the Corded Ware “outliers” described as “closer to Yamna”, which I already said may be closer to Sredni Stog/EHG populations instead. Another interesting take is that the change from Bronze Age to Iron Age corresponds to an increase in Baltic Corded Ware-related ancestry, rather than being driven by Siberian ancestry.
  • pca-mittnik-gyvakarai
    File modified by me from Mittnik et al. (2018) to include the approximate position of the most common ancestral components, and an identification of potential outliers. Zoomed-in version of the European Late Neolithic and Bronze Age samples. “Principal components analysis of 1012 present-day West Eurasians (grey points, modern Baltic populations in dark grey) with 294 projected published ancient and 38 ancient North European samples introduced in this study (marked with a red outline). From Mittnik et al. (2018).
  • A Volosovo-related migration of hg. N1c with Netted Ware into the area seems to be discarded, based on the full replacement of paternal lines and continuity of R1a-Z283. It is only during the Tarand-grave period when a system of chiefdoms (spread from Ananyino/Akozino) brings haplogroup N1c to the Gulf of Finland. During the Iron Age, the proportion of paternal lineages is still clearly in favour of R1a (50% in the coast, 100% in Ostrobothnia), which indicates a gradual replacement led by elites, likely because of the incorporation of Akozino warrior-traders spreading all over the Baltic, bringing the described shared Mordvinic traits in Fennic.
  • finno-ugric-haplogroup-n
    Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).
  • The arrival of Akozino warrior-traders (bringing N1c and R1a lineages) was probably linked to this minimal “Nganasan-like” ancestry of some samples in the transition to the Iron Age. This arrival is supported by samples 0LS10 (the earliest hg. N1c) and V10 (of hg. R1a), both dated to ca. 800-400 BC, with V10 showing the highest “Nganasan-like” ancestry with 4.8%, both of them neighbouring samples showing 0%. This variable admixture among local and foreign paternal lineages might support the described social system of family alliances with intermarriages. In fact, a medieval sample, 0LS03_1 (hg. R1a) also shows a recent “Nganasan-like” ancestry, which probably points to the integration of different Arctic-related ancestry components among Modern Estonians, in this case related to Finnish expansions and thus integration of Levänluhta-related ancestry, as per the supplementary data.
  • NOTE. Such minimal proportions of “Nganasan-like” ancestry evidence the process of admixture of Volga Finns in Akozino territory through their close interactions with Permians of Ananyino, who in turn acquired this Palaeo-Arctic admixture most likely during the expansion of the linguistic community to hunter-gatherer territories, to the north of the Cis-Urals. This process of stepped infiltration and expansion without language change is not dissimilar to the one seen among Indo-Iranians and Balto-Slavs of hg. R1b, or Vasconic speakers of hg. I2a, although in the case of Baltic Finns of hg. R1a the process of infiltration and expansion of hg. N1c is much less dramatic, with no radical replacement anywhere before the huge bottlenecks observable in Finns.

  • The expansion of haplogroup N1c among Finnic populations, as we are going to see in samples from the Middle Ages such as Luistari, is the consequence of late founder effects after huge bottlenecks expected based on the analysis of modern populations. The expansion of N1c-VL29 is different in origin from that of N1c-Z1936 among Samic (later integrated into Finnish populations), most likely from the east and originally associated with Lovozero Ware.
haplogroup_n3a3
Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29, probably initially with Akozino warrior-traders. Map from Ilumäe et al. (2016).

In spite of all this, the conclusion of the paper is (surprise!) that Siberian ancestry and hg. N heralded the arrival of Finnic to the Gulf of Finland in the Iron Age… However, this conclusion is supposedly* supported, not by their previous papers, but by a recent phylogenetic study by Honkola et al. (2013), which doesn’t actually argue for such a late ‘arrival’: it argues for the split of Balto-Finnic around 1500 BC.

NOTE. I say ‘supposedly’ because Kristiina Tambets, for example, has been following the link of Uralic with haplogroup N since the 2000s, so this is not some conclusion they just happened to misread from some random paper they Googled. In those initial assessments, she argued that the “ancient homeland” of the Tat C mutation suggested that Finno-Ugrians were in Fennoscandia before Indo-Europeans. Apparently, since haplogroup N appears later and from the east, it is now more important to follow this haplogroup than what is established in archaeology and linguistics.

Even in the referred paper, this split is considered an in situ development, since the phylogenetic study takes the information – among others – 1) from Parpola and Carpelan, who consider Netted Ware, a culture derived from Fatyanovo/Abashevo and Volosovo, as the culprit of the Finno-Ugric expansion; and 2) from Kallio (2006), who clearly states that Proto-Balto-Finnic (like Proto-Finno-Samic) was spoken around the Gulf of Finland during the Bronze Age. Both of them set the terminus ante quem of the language presence in the Baltic ca. 1900 BC.

Anyways, as a consequence of geneticists keeping these untenable pre-ancient DNA haplogroup-based arguments today, I expect to see this “Finnic” language expansion also described for the Western Baltic, Scandinavia or northern Europe, when this same proportion of hg. N1c and “Nganasan” ancestry is observed in Iron Age samples around the Baltic Sea. The nativist trends that this domination of “Finns” all over Northern Europe 2,500 years ago will create will be even more fun to read than the current ones…

EDIT (10 May 2019) How I see the reaction of many to ancient DNA, in keeping their old theories:

Related

N1c-L392 associated with expanding Turkic lineages in Siberia

haplogroup-n1c-tat

Second in popularity for the expansion of haplogroup N1a-L392 (ca. 4400 BC) is, apparently, the association with Turkic, and by extension with Micro-Altaic, after the Uralic link preferred in Europe; at least among certain eastern researchers.

New paper in a recently created journal, by the same main author of the group proposing that Scythians of hg. N1c were Turkic speakers: On the origins of the Sakhas’ paternal lineages: Reconciliation of population genetic / ancient DNA data, archaeological findings and historical narratives, by Tikhonov, Gurkan, Demirdov, and Beyoglu, Siberian Research (2019).

Interesting excerpts:

According to the views of a number of authoritative researchers, the Yakut ethnos was formed in the territory of Yakutia as a result of the mixing of people from the south and the autochthonous population [34].

These three major Sakha paternal lineages may have also arrived in Yakutia at different times and/ or from different places and/or with a difference in several generations instead, or perhaps Y-chromosomal STR mutations may have taken place in situ in Yakutia. Nevertheless, the immediate common ancestor(s) from the Asian Steppe of these three most prevalent Sakha Y-chromosomal STR haplotypes possibly lived during the prominence of the Turkic Khaganates, hence the near-perfect matches observed across a wide range of Eurasian geography, including as far as from Cyprus in the West to Liaoning, China in the East, then Middle Lena in the North and Afghanistan in the South (Table 3 and Figure 5). There may also be haplotypes closely-related to ‘the dominant Elley line’ among Karakalpaks, Uzbeks and Tajiks, however, limitations in the loci coverage for the available dataset (only eight Y-chromosomal STR loci) precludes further conclusions on this matter [25].

yakutia-haplogroup-n1c
17-loci median-joining network analysis of the original/dominant Elley, Unknown and Omogoy Y-chromosomal STR haplotypes with the YHRD matches from outside Yakutia populations.

According to the results presented here, very similar Y-STR haplotypes to that of the original Elley line were found in the west: Afghanistan and northern Cyprus, and in the east: Liaoning Province, China and Ulaanbaator, Northern Mongolia. In the case of the dominant Omogoy line, very closely matching haplotypes differing by a single mutational step were found in the city of Chifen of the Jirin Province, China. The widest range of similar haplotypes was found for the Yakut haplotype Unknown: In Mongolia, China and South Korea. For instance, haplotypes differing by a single step mutation were found in Northern Mongolia (Khalk, Darhad, Uryankhai populations), Ulaanbaator (Khalk) and in the province of Jirin, China (Han population).

n1c-uralic-altaic-siberia
14-loci median-joining network analysis for the original/dominant Elley (Ell), Unknown Clan
(Vil), Omogoy (Omo), Eurasian (Eur) and Xiongnu (Xuo) Y-chromosomal STR haplotypes and that for a representative ancient DNA sample (Ch0 or DSQ04) from the Upper Xiajiadian Culture
recovered from the Inner Mongolia Autonomous Region, China.

Notably, Tat-C-bearing Y-chromosomes were also observed in ancient DNA samples from the 2700-3000 years-old Upper Xiajiadian culture in Inner Mongolia, as well as those from the Serteya II site at the Upper Dvina region in Russia and the ‘Devichyi gory’ culture of long barrow burials at the Nevel’sky district of Pskovsky region in Russia. A 14-loci Y-chromosomal STR median-joining network of the most prevalent Sakha haplotypes and a Tat-C-bearing haplotype from one of the ancient DNA samples recovered from the Upper Xiajiadian culture in Inner Mongolia (DSQ04) revealed that the contemporary Sakha haplotype ‘Xuo’ (Table 2, Haplotype ID “Xuo”) classified as that of ‘the Xiongnu clan’ in our current study, was the closest to the ancient Xiongnu haplotype (Figure 6). TMRCA estimate for this 14-loci Y-chromosomal STR network was 4357 ± 1038 years or 2341 ± 1038 BCE, which correlated well with the Upper Xiajiadian culture that was dated to the Late Bronze Age (700-1000 BCE).

eurasian-n-subclades
Geographical location of ancient samples belonging to major clade N of the Y-chromosome.

NOTE. Also interesting from the paper seems to be the proportion of E1b1b among admixed Russian populations, in a proportion similar to R1a or I2a(xI2a1).

It is tempting to associate the prevalent presence of N1c-L392 in ancient Siberian populations with the expansion of Altaic, by simplistically linking the findings (in chronological order) near Lake Baikal (Damgaard et al. 2018), Upper Xiajiadian (Cui et al. 2013), among Khövsgöl (Jeong et al. 2018), in Huns (Damgaard et al. 2018), and in Mongolic-speaking Avars (Csáky et al. 2019).

However, its finding among Palaeo-Laplandic peoples in the Kola peninsula ca. 1500 BC (Lamnidis et al. 2018) and among Palaeo-Siberian populations near the Yana River (Sikora et al. 2018) ca. AD 1200 should be enough to accept the hypothesis of ancestral waves of expansion of the haplogroup over northern Eurasia, with acculturation and further expansions in the different regions since the Iron Age (see more on its potential expansion waves).

Also, a simple look at the TMRCA and modern distribution was enough to hypothesize long ago the lack of connection of N1c-L392 with Altaic or Uralic peoples. From Ilumäe et al. (2016):

Previous research has shown that Y chromosomes of the Turkic-speaking Yakuts (Sakha) belong overwhelmingly to hg N3 (formerly N1c1). We found that nearly all of the more than 150 genotyped Yakut N3 Y chromosomes belong to the N3a2-M2118 clade, just as in the Turkic-speaking Dolgans and the linguistically distant Tungusic-speaking Evenks and Evens living in Yakutia (Table S2). Hence, the N3a2 patrilineage is a prime example of a male population of broad central Siberian ancestry that is not intrinsic to any linguistically defined group of people. Moreover, the deepest branch of hg N3a2 is represented by a Lebanese and a Chinese sample. This finding agrees with the sequence data from Hallast et al., where one Turkish Y chromosome was also assigned to the same sub-clade. Interestingly, N3a2 was also found in one Bhutan individual who represents a separate sub-lineage in the clade. These findings show that although N3a2 reflects a recent strong founder effect primarily in central Siberia (Yakutia, Sakha), the sub-clade has a much wider distribution area with incidental occurrences in the Near East and South Asia.

haplogroup-n1a-M2118
Frequency-Distribution Maps of Individual Sub-clades of hg N3a2, by Ilumäe et al. (2016).

The most striking aspect of the phylogeography of hg N is the spread of the N3a3’6-CTS6967 lineages. Considering the three geographically most distant populations in our study—Chukchi, Buryats, and Lithuanians—it is remarkable to find that about half of the Y chromosome pool of each consists of hg N3 and that they share the same sub-clade N3a3’6. The fractionation of N3a3’6 into the four sub-clades that cover such an extraordinarily wide area occurred in the mid-Holocene, about 5.0 kya (95% CI = 4.4–5.7 kya). It is hard to pinpoint the precise region where the split of these lineages occurred. It could have happened somewhere in the middle of their geographic spread around the Urals or further east in West Siberia, where current regional diversity of hg N sub-lineages is the highest (Figure 1B). Yet, it is evident that the spread of the newly arisen sub-clades of N3a3’6 in opposing directions happened very quickly. Today, it unites the East Baltic, East Fennoscandia, Buryatia, Mongolia, and Chukotka-Kamchatka (Beringian) Eurasian regions, which are separated from each other by approximately 5,000–6,700 km by air. N3a3’6 has high frequencies in the patrilineal pools of populations belonging to the Altaic, Uralic, several Indo-European, and Chukotko-Kamchatkan language families. There is no generally agreed, time-resolved linguistic tree that unites these linguistic phyla. Yet, their split is almost certainly at least several millennia older than the rather recent expansion signal of the N3a3’6 sub-clade, suggesting that its spread had little to do with linguistic affinities of men carrying the N3a3’6 lineages.

haplogroup_n3a3
Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29.

It was thus clear long ago that N1c-L392 lineages must have expanded explosively in the 5th millennium through Northern Eurasia, probably from a region to the north of Lake Baikal, and that this expansion – and succeeding ones through Northern Eurasia – may not be associated to any known language group until well into the common era.

Related

Magyar tribes brought R1a-Z645, I2a-L621, and N1a-L392(xB197) lineages to the Carpathian Basin

hungarian-conquerors-turks

The Nightmare Week of “N1c=Uralic” proponents continues, now with preprint Y-chromosome haplogroups from Hun, Avar and conquering Hungarian period nomadic people of the Carpathian Basin, by Neparaczki et al. bioRxiv (2019).

Abstract:

Hun, Avar and conquering Hungarian nomadic groups arrived into the Carpathian Basin from the Eurasian Steppes and significantly influenced its political and ethnical landscape. In order to shed light on the genetic affinity of above groups we have determined Y chromosomal haplogroups and autosomal loci, from 49 individuals, supposed to represent military leaders. Haplogroups from the Hun-age are consistent with Xiongnu ancestry of European Huns. Most of the Avar-age individuals carry east Eurasian Y haplogroups typical for modern north-eastern Siberian and Buryat populations and their autosomal loci indicate mostly unmixed Asian characteristics. In contrast the conquering Hungarians seem to be a recently assembled population incorporating pure European, Asian and admixed components. Their heterogeneous paternal and maternal lineages indicate similar phylogeographic origin of males and females, derived from Central-Inner Asian and European Pontic Steppe sources. Composition of conquering Hungarian paternal lineages is very similar to that of Baskhirs, supporting historical sources that report identity of the two groups.

Interesting excerpts (emphasis mine):

All N-Hg-s identified in the Avars and Conquerors belonged to N1a1a-M178. We have tested 7 subclades of M178; N1a1a2-B187, N1a1a1a2-B211, N1a1a1a1a3-B197, N1a1a1a1a4-M2118, N1a1a1a1a1a-VL29, N1a1a1a1a2-Z1936 and the N1a1a1a1a2a1c1-L1034 subbranch of Z1936. The European subclades VL29 and Z1936 could be excluded in most cases, while the rest of the subclades are prevalent in Siberia 23 from where this Hg dispersed in a counter-clockwise migratory route to Europe (…). All the 5 other Avar samples belonged to N1a1a1a1a3-B197, which is most prevalent in Chukchi, Buryats, Eskimos, Koryaks and appears among Tuvans and Mongols with lower frequency.

haplogroup-n-pca
First two components of PCA from Hg N1a subbranch distribution in 51 populations including Avars and Conquerors. Colors indicate geographic regions. Three letter codes are given in Supplementary Table S5.

By contrast two Conquerors belonged to N1a1a1a1a4-M2118, the Y lineage of nearly all Yakut males, being also frequent in Evenks, Evens and occurring with lower frequency among Khantys, Mansis and Kazakhs.

Three Conqueror samples belonged to Hg N1a1a1a1a2-Z1936 , the Finno-Permic N1a branch, being most frequent among northeastern European Saami, Finns, Karelians, as well as Komis, Volga Tatars and Bashkirs of the Volga-Ural region.Nevertheless this Hg is also present with lower frequency among Karanogays, Siberian Nenets, Khantys, Mansis, Dolgans, Nganasans, and Siberian Tatars.

The west Eurasian R1a1a1b1a2b-CTS1211 subclade of R1a is most frequent in Eastern Europe especially among Slavic people. This Hg was detected just in the Conqueror group (K2/18, K2/41 and K1/10). Though CTS1211 was not covered in K2/36 but it may also belong to this sub-branch of Z283.

Hg I2a1a2b-L621 was present in 5 Conqueror samples, and a 6th sample form Magyarhomorog (MH/9) most likely also belongs here, as MH/9 is a likely kin of MH/16 (see below). This Hg of European origin is most prominent in the Balkans and Eastern Europe, especially among Slavic speaking groups. It might have been a major lineage of the Cucuteni-Trypillian culture and it was present in the Baden culture of the Chalcolithic Carpathian Basin.

hungarian-conquerors-y-dna
Image modified from the paper, with drawn red square around lineages of likely Ugric origin, and squares around R1a-Z93, R1a-Z283, N1a-Z1936, and N1a-M2004 samples. Y-Hg-s determined from 46 males grouped according to sample age, cemetery and Hg. Hg designations are given according to ISOGG Tree 2019. Grey shading designate distinguished individuals with rich grave goods, color shadings denote geographic origin of Hg-s according to Fig. 1. For samples K3/1 and K3/3 the innermost Hg defining marker U106* was not covered, but had been determined previously.

We identified potential relatives within Conqueror cemeteries but not between them. The uniform paternal lineages of the small Karos3 (19 graves) and Magyarhomorog (17 graves) cemeteries approve patrilinear organization of these communities. The identical I2a1a2b Hg-s of Magyarhomorog individuals appears to be frequent among high-ranking Conquerors, as the most distinguished graves in the Karos2 and 3 cemeteries also belong to this lineage. The Karos2 and Karos3 leaders were brothers with identical mitogenomes 11 and Y-chromosomal STR profiles (Fóthi unpublished). The Sárrétudvari commoner cemetery seems distinct from the others, containing other sorts of European Hg-s. Available Y-chromosomal and mtDNA data from this cemetery suggest that common people of the 10th century rather represented resident population than newcomers. The great diversity of Y Hg-s, mtDNA Hg-s, phenotypes and predicted biogeographic classifications of the Conquerors indicate that they were relatively recently associated from very diverse populations.

Surprising about the Hungarian conquerors – although in line with the historical accounts – is the varied patrilineal origin of clans, including Q1a, G2a2b, I1, E1b1b, R1b, J1, or J2 – some of which (depending on specific lineages) may have appeared earlier in the Carpathian Basin or south-eastern Europe.

However, out of the 27 conqueror elite samples, 17 are of haplogroups most likely related to Ugric populations beyond the Urals: R1a-Z645, I2-L621, and two specific N1a-L392 lineages (see below). In fact, there are three high-ranking conqueror elites of hg. I2-L621 (one of them termed a “leader”, brother to an unpublished leader of Karos3, and all of them possibly family), one of hg. R1a-Z280, one of hg. R1a-Z93 (which should be added to the Árpáds), and one of hg. N1a-Z1936, which gives a good idea of the ruling class among the elite Ugric settlers.

NOTE. The Q1a sample is also likely to be found in the mixed population of the West Siberian forest-steppes, since it was found in Mesolithic-Neolithic samples from eastern Europe to Lake Baikal, and in Bronze Age Siberian groups, although admittedly it may have formed part of an Avar Transtisza group, or even earlier Hunnic or Scythian groups along the steppes. Without precise subclades it’s impossible to know.

arrival-of-hungarians-arpad
The seven chieftains of the Hungarians, detail of Arrival of the Hungarians, from Árpád Feszty’s and his assistants’ vast (1800 m2) cyclorama, painted to celebrate the 1000th anniversary of the Magyar conquest of Hungary, now displayed at the Ópusztaszer National Heritage Park in Hungary. Image from Wikipedia.

I2a-L621

I2a-L621 (xS17250) or I2a1b2 in the old nomenclature, is found in 6 early conquerors (including one leader), on a par with R1a and N samples. This haplogroup is found widely distributed in ancient samples, due to its early split (formed ca. 9200 BC, TMRCA ca. 4500 BC) and expansion, probably with Neolithic populations. I can’t seem to find samples of this early haplogroup from the Carpathian Basin, as mentioned in the text, although it wouldn’t be strange, because it appears also in Neolithic Iberia, and in modern populations from western Europe.

Nevertheless, I2a-L621 samples seem to be concentrated mainly in Mesolithic-Neolithic cultures of Fennoscandia, and appeared also in Sikora et al. (2017) in a sample of the High Middle Ages from Sunghir (ca. AD 1100-1200), probably from the Vladimir-Suzdalian Rus’, in a region where clearly tribes of Volga Finns were being assimilated at the time. The reported SNP call by Genetiker is A16681 (see Yfull), deep within I2a-CTS10228. It is possibly also behind a modern Saami from Chalmny Varre (ca. AD 1800) of hg. I2a in Lamnidis et al. (2018).

Lacking precise subclades from Hungarian conquerors this is pure speculation, but modern samples may also point to I2a-CTS10228 (formed ca. 3100 BC, TMRCA ca. 1800 BC) as a Finno-Ugric lineage in common with R1a, which must have expanded to the Urals and beyond with eastern Corded Ware groups or (more likely) succeeding cultures. This is in line with the association of certain I2a lineages with modern Uralic peoples or populations from their historical regions in eastern Europe, and linked thus to the most likely homeland of Uralians in the eastern European forests:

uralic-groups-haplogroup-r1a
Additional file 6: Table S5. Y chromosome haplogroup frequencies in Eurasia. Modified by me: in bold haplogroup N1c and R1a from Uralic-speaking populations, with those in red showing where R1a is the major haplogroup. Observe that all Uralic subgroups – Finno-Permic, Ugric, and Samoyedic – have some populations with a majority of R1a, and also of I lineages. Data from Tambets et al. (2018).

R1a-Z645

Regarding the important question of the ethnic makeup of Ugric populations stemming from the Urals, the most interesting (and expected) data is the presence of R1a-Z645 lineages among high-ranking conquerors, in particular four R1a-Z280 subclades proper of Finno-Ugrians.

This proves that, in line with the old split and expansion of R1a-CTS1211 (formed ca. 2600 BC, TMRCA ca. 2400 BC), and its finding in Bronze Age Fennoscandian samples, only some late R1a-Z280 (xZ92) lineages (see Z280 on YFull) may show a clear identification with early acculturated Uralic speakers, with the main early acculturated Balto-Slavic R1a haplogroup remaining R1a-M458.

I recently hypothesized this late connection of Slavs with very specific R1a-Z280 (xZ92) lineages based on analyses of modern populations (like Slovenians), because the connection of ancient Finno-Ugrians with modern Z92 samples was already evident:

(…) subclades of hg. R1a1a1b1a2-Z280 (xR1a1a1b1a2a-Z92) seem to have also been involved in early Slavic expansions, like R1a1a1b1a2b3a-CTS3402 (formed ca. 2200 BC, TMRCA ca. 2200 BC), found among modern West, South, and East Slavic populations and in Fennoscandia, prevalent e.g. among modern Slovenians which points to a northern origin of its expansion (Maisano Delser et al. 2018).

This finding also supports the expected shared R1a-Z280 lineages among ancient Finno-Ugric populations, as predicted from the study of modern Permic and Ugric peoples in Dudás et al. (2019).

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups. Notice the distribution of R1a-Z280 (xZ92), i.e. R1a-M558, compared to the ancient Finno-Ugric distribution.

Furthermore, while we don’t have precise R1a-Z93 lineages to compare with the new Hunnic sample reported, we already know that some archaic R1a-Z2124 subclades stem from the forest-steppe areas of the Cis- and Trans-Urals, and the two newly reported R1a-Z93 Hungarian conqueror elites, like those of the Árpád dynasty, probably belong to them.

There is an obvious lack of continuity in specific paternal lineages among the Hunnic, the Avar, and the Conqueror periods, which makes any simplistic identification of all R1a-Z93 lineages as stemming from Avars, Huns, or the Iron Age Pontic-Caspian steppes clearly flawed. Comparing R1a-Z93 in Hungarian Conquerors with Huns is like comparing them with samples of the Srubna or earlier periods… Similarly, comparing the Hunnic R1b-U106 or the early Avar I1 to later Hungarian samples is not warranted without precise subclades, because they most likely correspond to different Germanic populations: Goths among Huns, then Longobards, then likely peoples descended from Franks and Irish Monks (the latter with R1b-P312).

N1a-L392

Second behind R1a subclades are, as expected, N1a-L392 (N1c in the old nomenclature).

Avars are dominated by a specific N1a-L392 subclade, N1a-B197, as we recently discovered in Csáky et al. (2019).

Hungarian conquerors show three N1a-Z1936 subclades, which is known to stem from the northern Ural region, including the Arctic (likely Palaeo-Laplandic peoples) and cross-stamped cultures of the northern Eurasian forests.

haplogroup_n3a4
Frequency-Distribution Maps of Individual Subclade N3a4 / N1a1a1a1a2-Z1936, probably with the Samic (first) and Fennic (later) expansions into Paleo-Lakelandic and Palaeo-Laplandic territories.

On the other hand, the two N1a-M2118 lineages are more clearly associated with Palaeo-Siberian populations east of the Urals, but became incorporated into the Ugric stock in the Trans-Urals region probably in the same way as N1a-Z1936, by infiltration from (and acculturation of) hunter-gatherers of forest and taiga cultures.

NOTE. You can read more about the infiltration of N1a lineages in the recent post Corded Ware—Uralic (IV): Hg R1a and N in Finno-Ugric and Samoyedic expansions, and in the specific sections for each Uralic group in A Clash of Chiefs.

haplogroup-n1a-M2118
Frequency-Distribution Maps of Individual Sub-clades of hg N3a2, by Ilumäe et al. (2016).

Conclusion

The picture offered by the paper on Hungarian Conquerors, while in line with historical accounts of multi-ethnic tribes incorporating regional lineages, shows nevertheless patrilineal clans clearly associated with Uralic peoples, in a distribution which could have been easily inferred from ancient Trans-Uralian forest-steppe cultures and modern samples (even regarding I2a-L621).

In spite of this, there is a great deal of discussion in the paper about specific N1a subclades in Hungarian conquerors, while the presence of R1a-Z280 (among early Magyar elites!) is interpreted, as always, as recently acculturated Slavs. This is sadly coupled with the simplistic identification of I2a-L621 as of local origin around the Carpathians.

The introduction of the paper to the history of Hungarians is also weird, for example giving credibility to the mythic accounts of the Árpád dynasty’s origin in Attila, which is in line, I guess, with what the authors intended to support all along, i.e. the association of Magyars with Turks from the Eurasian steppes, which they are apparently willing to achieve by relating them to haplogroup R1a-Z93

The conclusion is thus written to appease modern nation-building myths more than anything else, like many other papers before it:

It is generally accepted that the Hungarian language was brought to the Carpathian Basin by the Conquerors. Uralic speaking populations are characterized by a high frequency of Y-Hg N, which have often been interpreted as a genetic signal of shared ancestry. Indeed, recently a distinct shared ancestry component of likely Siberian origin was identified at the genomic level in these populations, modern Hungarians being a puzzling exception36. The Conqueror elite had a significant proportion of N Hgs, 7% of them carrying N1a1a1a1a4-M2118 and 10% N1a1a1a1a2-Z1936, both of which are present in Ugric speaking Khantys and Mansis. At the same time none of the examined Conquerors belonged to the L1034 subclade of Z1936, while all of the Khanty Z1936 lineages reported in 37 proved to be L1034 which has not been tested in the 23 study. Population genetic data rather position the Conqueror elite among Turkic groups, Bashkirs and Volga Tatars, in agreement with contemporary historical accounts which denominated the Conquerors as “Turks”. This does not exclude the possibility that the Hungarian language could also have been present in the obviously very heterogeneous, probably multiethnic Conqueror tribal alliance.

So, back to square one, and new circular reasoning: If ancient populations from north-eastern Europe believed to represent ancient Finno-Ugrians are of R1a-Z645 lineages, it’s because they were not Finno-Ugric speakers. If ancient and modern populations known to be of Finno-Ugric language show clear connections with R1a-Z645, it’s because they are “multi-ethnic”.

The only stable basis for discussion in genetic papers, apparently, is the own making of geneticists, with their traditional 2000s “R1a=Indo-European” and “N1c=Uralic”, coupled with national beliefs. It does not matter how many predictions based on that have been proven wrong, or how many predictions based on the Corded Ware = Uralic expansion have been proven right.

Related

R1a-Z280 and R1a-Z93 shared by ancient Finno-Ugric populations; N1c-Tat expanded with Micro-Altaic

Two important papers have appeared regarding the supposed link of Uralians with haplogroup N.

Avars of haplogroup N1c-Tat

Preprint Genetic insights into the social organisation of the Avar period elite in the 7th century AD Carpathian Basin, by Csáky et al. bioRxiv (2019).

Interesting excerpts (emphasis mine):

After 568 AD the Avars settled in the Carpathian Basin and founded the Avar Qaganate that was an important power in Central Europe until the 9th century. Part of the Avar society was probably of Asian origin, however the localisation of their homeland is hampered by the scarcity of historical and archaeological data.

Here, we study mitogenome and Y chromosomal STR variability of twenty-six individuals, a number of them representing a well-characterised elite group buried at the centre of the Carpathian Basin more than a century after the Avar conquest.

The Y-STR analyses of 17 males give evidence on a surprisingly homogeneous Y chromosomal composition. Y chromosomal STR profiles of 14 males could be assigned to haplogroup N-Tat (also N1a1-M46). N-Tat haplotype I was found in four males from Kunpeszér with identical alleles on at least nine loci. The full Y-STR haplotype I, reconstructed from AC17 with 17 detected STRs, is rare in our days. Only nine matches were found among haplotypes in YHRD database, such as samples from the Ural Region, Northern Europe (Estonia, Finland), and Western Alaska (Yupiks). We performed Median Joining (MJ) network analysis using N-Tat haplotypes with ten shared STR loci (Fig. 3, Table S9). All modern N-Tat samples included in the network had derived allele of L708 as well. Haplotype I (Cluster 1 in Fig. 3) is shared by eight populations on the MJ network among the 24 identical haplotypes. Cluster 1 represents the founding lineage, as it is described in Siberian populations, because this haplotype is shared by the most populations and it is more diverse than Cluster 2.

Nine males share N-Tat haplotype II (on a minimum of eight detected alleles), all of them buried in the Danube-Tisza Interfluve. We found 30 direct matches of this N-Tat haplotype II in the YHRD database, using the complete 17 STR Y-filer profile of AC1, AC12, AC14, AC15, AC19 samples. Most hits came from Mongolia (seven Buryats and one Khalkh) and from Russia (six Yakuts), but identical haplotypes also occur in China (five in Xinjiang and four in Inner Mongolia provinces). On the MJ network, this haplotype II is represented by Cluster 2 and is composed of 45 samples (including 32 Buryats) from six populations (Fig. 3).

y-str-haplogroup-n-mongolian-ugrians
Median Joining network of 162 N-Tat Y-STR haplotypes Allelic information of ten Y-STR loci were used for the network. Only those Avar samples were included, which had results for these ten Y-STR loci. The founder haplotype I (Cluster 1) is shared by eight populations including three Mongolian, three Székely, three northern Mansi, two southern Mansi, two Hungarian, eight Khanty, one Finn and two Avar (AC17, AC26) chromosomes. Haplotype II (Cluster 2) includes 45 haplotypes from six populations studied: 32 Buryats, two Mongolians, one Székely, one Uzbek, one Uzbek Madjar, two northern Mansi and six Avars (AC1, AC12, AC14, AC15, AC19 and KSZ 37). Haplotype III (indicated by a red arrow) is AC8. Information on the modern reference samples is seen in Table S9.

A third N-Tat lineage (type III) was represented only once in the Avar dataset (AC8), and has no direct modern parallels from the YHRD database. This haplotype on the MJ network (see red arrow in Fig. 3) seems to be a descendent from other haplotype cluster that is shared by three populations (two Buryat from Mongolia, three Khanty and one Northern Mansi samples). This haplotype cluster also differs one molecular step (locus DYS393) from haplotype II. We classified the Avar samples to downstream subgroup N-F4205 within the N-Tat haplogroup, based on the results of ours and Ilumäe et al.18 and constructed a second network (Fig. S4). The N-F4205 network results support the assumption that the N-Tat Avar samples belong to N-F4205 subgroup (see SI chapter 1d for more details).

Based on our calculation, the age of accumulated STR variance (TMRCA) within N-Tat lineage for all samples is 7.0 kya (95% CI: 4.9 – 9.2 kya), considering the core haplotype (Cluster 1) to be the founding lineage. Y haplogroup N-Tat was not detected by large scale Eurasian ancient DNA studies but it occurs in late Bronze Age Inner Mongolia and late medieval Yakuts, among them N-Tat has still the highest frequency.

Two males (AC4 and AC7) from the Transtisza group belong to two different haplotypes of Y-haplogroup Q1. Both Q1a-F1096 and Q1b-M346 haplotypes have neither direct nor one step neighbour matches in the worldwide YHRD database. A network of the Q1b-M346 haplotype shows that this male had a probable Altaian or South Siberian paternal genetic origin.

EDIT (5 APR 2019): The paper offers an interesting late sample before the arrival of Hungarian conquerors, although we don’t know which precise lineage the sample belongs to:

One sample in our dataset (HC9) comes from this population, and both his mtDNA (T1a1b) and Y chromosome (R1a) support Eastern European connections. (…) Furthermore, we excluded sample HC9 from population-genetic statistical analyses because it belongs to a later period (end of 7th – early 9th centuries)

Apparently, then, results are consistent with what was already known from studies of modern populations:

According to Ilumäe et al. study, the frequency peak of N-F4205 (N3a5-F4205) chromosomes is close to the Transbaikal region of Southern Siberia and Mongolia, and we conclude that most Avar N-Tat chromosomes probably originated from a common source population of people living in this area, completely in line with the results of Ilumäe et al.

haplogroup_n1
Geographic-Distribution Map of hg N3 from Ilumäe et al.

Finno-Ugrians share haplogroup R1a-Z280

Another paper, behind paywall, Genetic history of Bashkirian Mari and Southern Mansi ethnic groups in the Ural region, by Dudás et al. Molecular Genetics and Genomics (2019).

Interesting excerpts (emphasis mine):

Y‑chromosome diversity

The most frequent haplogroups of the Bashkirian Maris were N1b-P43 (42%), R1a-Z280 (16%), R1a-Z93 (16%), N1c-Tat (13%), and J2-M172 (7%). Furthermore, subgroup R1b-M343 accounted for 4% and I2a-P37 covered 2% of the lineages. None of the Mari N1c Y chromosomes belonged to the N1c subgroups investigated (L1034, VL29, Z1936).

In the case of the Southern Mansi males, the most frequent haplogroups were N1b-P43 (33%), N1c-L1034 (28%) and R1a-Z280 (19%). The frequencies of the remaining haplogroups were as follows: R1a-M458 (6%), I1-L22 (3%), I2a-P37 (3%), and R1b-P312 (3%). The haplotype and haplogroup diversities of the Bashkirian Mari group were 0.9929 and 0.7657, whereas these values for the Southern Mansi were 0.9984 and 0.7873, respectively. The results show that, in both populations, haplotypes are much more diverse than haplogroups.

bashkir-mari-southern-mansi
Haplogroup frequencies of the Bashkirian Mari and the Southern Mansi ethnic groups in Ural region

Genetic structure

(..) the studied Bashkirian Mari and Southern Mansi population groups formed a compact cluster along with two Khanty, Northern Mansi, Mari, and Estonian populations based on close Fst-genetic distances (< 0.05), with nonsignificant p values (p > 0.05) except for the Estonian population. All of these populations belong to the Finno-Ugric language family. Interestingly, the other Mansi population studied by Pimenoff et al. (2008) (pop # 38) was located a great distance from the Southern Mansi group (0.268). In addition, the Bashkir population (pop # 6) did not show a close genetic affinity to the Bashkirian Mari group (0.194), even though it is the host population. However, the Russian population from the Eastern European region of Russia (pop # 49) showed a genetic distance of 0.055 with the Southern Mansi group. All Hungarian speaking populations (pops 13, 22, 23, 24, 50, and 51) showed close genetic affinities to each other and to the neighbouring populations, but not to the two studied populations.

y-dna-hungarians-ugric-mansi
Multidimensional scaling (MDS) plot constructed on Fstgenetic distances of Y haplogroup frequencies of 63 populations compared. The haplogroup frequency data used for population comparison together with references are seen in Online Resource 2 (ESM_2). Pairwise Fst-genetic distances and p values between 63 populations were calculated as shown in Online Resource 3 (ESM_3) Fig. 4 Multidimensional scaling (MDS) plot constructed on Rstgenetic distances of 10 STR-based Y haplotype frequencies of 21 populations compared. Image modified to include labels of modern populations.

Phylogenetic analysis

Median-joining networks were constructed for:

N-P43 (earlier N1b):

(…) TMRCA estimates for this haplogroup were made for all P43 samples (n = 157) 8.7 kya (95% CI 6.7–10.8 kya), for the N-P43 Asian.

N1c-Tat:

(…) 75% of Buryats belonged to Haplotype 2, indicating that the Buryats studied by us is a young and isolated population (Bíró et al. 2015). Bashkirian Mari samples derive from Haplotype 2 via Haplotype 3 (see dark purple circles on the top of Fig. 6a). Haplotype 3 contained six males (2 Buryat, 1 Northern Mansi, and 3 Khanty samples from Pimenoff et al. 2008). The biggest Bashkirian Mari haplotype node (3 Mari samples) was positioned three mutational steps away from Haplotype 1 and the remaining Mari samples can be derived from this haplotype. Southern Mansi haplotypes were scattered within the network except for two, which formed a smaller haplotype node with two Northern Mansi and two Khanty samples from Pimenoff et al. (2008).

n1c-n-tat-uralic-ugric
Median-Joining Networks (MJ) of 153 N-Tat (a) and 26 N-L1034 (b) haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. For N-Tat network, we used data from Southern Mansi (n = 11), Bashkirian Mari (n = 6) samples with Hungarian (n = 12), Hungarian speaking Székely (n = 6), Northern Mansi (n = 14), Mongolian (n = 16), Buryat (n = 44), Finnish (n = 13), Uzbek Madjar (n = 2), Uzbek (n = 3), Khanty (n = 4) populations studied earlier by us (Fehér et al. 2015; Bíró et al. 2015) and Khanty (n = 18) and Mansi (n = 4) studied by Pimenoff et al. (2008)

R1a-Z280 haplotypes, shared by Maris, Mansis, and Hungarians, hence ancient Finno-Ugrians:

The founder R1a-Z280 haplotype was shared by four samples from four populations (1 Bashkirian Mari; 1 Southern Mansi; 1 Hungarian speaking Székely; and 1 Hungarian), as presented in Fig. 7 (Haplotype 1). Haplotype 2 included five males (3 Bashkirian Mari and 2 Hungarian), as it can be seen in Fig. 7. Haplotype 4 included two shared haplotypes (1 Bashkirian Mari and one Hungarian speaking Csángó). The remaining two Bashkirian Mari haplotypes differ from the founder haplotype (Haplotype 1) by two mutational steps via Hungarian or Hungarian and Bashkirian Mari shared haplotypes. Beside Haplotype 1, the remaining Southern Mansi haplotypes were shared with Hungarians (Haplotype 5 or turquoise blue and red-coloured circles above Haplotype 7) or with Hungarians and Hungarian speaking Székely group (Haplotypes 3, 5, and 6). Haplotype 7 included ten Hungarian speakers (Hungarian, Székely, and Csángó). One Hungarian and one Uzbek Khwarezm shared haplotype can be found in Fig. 7 as well (red and white-coloured circle). All the other haplotypes were scattered in the network. The age of accumulated STR variation within R1a-Z280 lineage for 93 samples is estimated to be 9.4 kya (95% CI 6.5–12.4 kya) considering Haplotype 1 (Fig. 7) to be the founder.

r1a-z280-ugrians
Median-Joining Networks (MJ) of 93 R1a-Z280 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used haplotype data from Bashkirian Mari (n = 7), Southern Mansi (n = 7), Hungarian (n = 52), Hungarian speaking Székely (n = 11), Hungarian speaking Csángó (n = 10), Uzbek Ferghana (n = 2), Uzbek Tashkent (n = 1), Uzbek Khwarezm (n = 1) and Northern Mansi (n = 2) populations

R1a-Z93 as isolated lineages among Permic and Ugric populations:

Figure 8 depicts an MJ network of R1a-Z93* samples using 106 haplotypes from the 14 populations (Fig. 8). All of the Bashkirian Mari samples (7 haplotypes) formed a very isolated branch and differed from the one Hungarian haplotype (Fig. 8, see Haplotype 1) by seven mutational steps as well from two Uzbek Tashkent samples (see Haplotype 3). Another Hungarian sample shared two haplotypes of Uzbek Khwarezm samples in Haplotype 4. This haplotype can be derived from Haplotype 3 (Uzbek Tashkent). Haplotype 2 included one Hungarian and one Khakassian male. The remaining three Hungarian haplotypes are outliers in the network and are not shared by any sample. The other population samples included in the network either form independent clusters such as Altaians, Khakassians, Khanties, and Uzbek Madjars or were scattered in the network. The age of accumulated STR variation (TMRCA) within R1a-Z93* lineage for 106 samples is estimated as 11.6 kya (95% CI 9.3–14.0 kya) considering an Armenian haplotype (Fig. 8, “A”) to be the founder and the median haplotype.

r1a-z93-ugrians
Median-Joining Networks (MJ) of 106 R1a-Z93 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used the next haplotype data: 7 Bashkirian Mari, 6 Khanty, 4 Uzbek Madjar, 5 Uzbek Ferghana, 9 Uzbek Tashkent, 7 Uzbek Khwarezm, 2 Mongolian, 2 Buryat, 6 Hungarian samples tested by us for this study or published earlier (Bíró et al. 2015) and populations (3 Armenian; 3 Afghan Tajik;
16 Altaian; 24 Khakassian; 12 Kyrgyz) from Underhill et al. (2015)

Comments

The results of modern populations for N (especially N1c) subclades show really wide clusters and ancient TMRCA, consistent with their known ancient and wide distribution in northern and eastern Eurasian groups, and thus with infiltration of different lineages with eastern nomads (and northern Arctic populations) coupled with later bottlenecks, as well as acculturation of groups.

EDIT (2 APR): Interesting is the specific subclade to which ancient Mongolic-speaking Avars belong (information from Yfull) N1c-F4205 (TMRCA ca. 500 BC), subclade of N1c-Y6058 (formed ca. 2800 BC, TMRCA ca. 2800 BC). This branch also gives the “European” branch N1c-CTS10760 (formed ca. 2800 BC, TMRCA ca. 2100 BC), and is subclade of a branch of N1c-L392 (formed ca. 4400 BC, TMRCA ca. 2800 BC). A northern expansion of N1c-L392 is probably represented by its branch N1c-Z1936 (formed ca. 2800, TMRCA ca. 2100 BC), the most likely candidate to appear in the Kola Peninsula in the Bronze Age as the Palaeo-Laplandic population (see here). Read more about potential routes of expansion of haplogroup N.

On the other hand, R1a-Z280 lineages form a tight cluster connecting Permic with Ugric groups, with R1a-Z93 showing early isolation (probably) between Cis-Urals and Trans-Urals regions. While both Corded Ware lineages in Finno-Ugrians are most likely related to the Abashevo expansion through Seima-Turbino and the Andronovo-like Horizon (and potentially later Eurasian expansions), a plausible hypothesis would be that Finno-Ugrians are related to an expansion of R1a-Z283 haplogroups (we already knew about the Finno-Permic connection), while the ancient connection between Permians and Hungarians with R1a-Z93 would correspond to this haplogroup’s potentially tighter link with an early Samoyedic split.

I don’t think that an explosive expansion of eastern Corded Ware groups of R1a-Z645 lineages will show a clear-cut division of haplogroups among Eastern Uralic groups, though, and culturally I doubt we will have such a clear image, either (similar to how the explosive expansion of Bell Beakers cannot be easily divided by regional/language group into R1b-L151 subclades before the known bottlenecks). Relevant in this regard are the known Z93 samples from the Árpád dynasty.

Nevertheless, this data may represent a slightly more recent wave of R1a-Z280 lineages linked to the expansion of Ugric into the Trans-Uralian region, after their split from Finno-Permic, still in close contact with Indo-Iranians in Poltavka and Sintashta-Potapovka, evident from the early and late Indo-Iranian borrowings, during a common period when Samoyedic had already separated.

Such a “Z283 over Z93” layer in the Trans-Urals (and Cis-Urals?) forest-steppes would be similar to the apparent replacement of Z284 by Z282 in the Eastern Baltic during the Bronze Age (possibly with the second or Estonian Battle Axe wave or, much more likely during later population movements). Such an early R1a-Z93 split could potentially be supported also by the separation into bottlenecks under “Northern” (R1a-Z283) Finno-Ugric-speaking Abashevo-related groups and “Southern” (R1a-Z93) acculturated Indo-Iranian-speaking Abashevo migrants developing Sintashta-Potapovka admixing with Poltavka R1b-Z2103 herders.

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.

Conclusion

Let’s review some of the most common myths about Hungarians (and Finno-Ugrians in general) repeated ad nauseam, side by side with my assertions:

❌ N (especially N1c-Tat) in ancient and modern samples represent the True Uralic™ N1c peoples including Magyar tribes? Nope.

✅ Ancient N (especially N1c-Tat) lineages among Uralic populations expanded relatively recently, and differently in different regions (including eastern steppe nomads and northern arctic populations) not associated with a particular language or language group? Yep (read the series on Corded Ware = Uralic expansion).

❌ Modern Hungarian R1a-Z280 lineages represent the majority of the native population, poor Slavic ‘peasants’ from the Carpathian Basin, forcibly acculturated by a minority of bad bad Hungarian hordes? Nope.

✅ Modern Hungarian R1a-Z280 subclades represent Ugric lineages in common with ancient R1a-Z645 Finno-Ugric populations from north-eastern Europe and the Trans-Urals? Yep (see Avars and Ugrians).

❌ Modern Hungarian R1a-Z93 lineages represent acculturated Iranian/Turkic peoples from the steppes? Not likely.

✅ Modern Hungarian R1a-Z93 lineages represent a remnant of the expansion of Corded Ware to the east, potentially more clearly associated with Samoyedic? Much more likely.

finno-ugric-haplogroup-n
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

Sooo, the theory of a “diluted” Y-DNA in Modern Hungarians from originally fully N-dominated conquerors subjugating native R1a-Z280 Slavs from the Carpathian Basin is not backed up by genetic studies? The ethnic Iranian-Turkic R1a-Z93 federation in the steppes that ended up speaking Magyar is not real?? Who would’ve thunk.

Another true story whose rejection in genetics could not be predicted, like, not at all.

Totally unexpected, too, the drift of “R1a=IE” fans with the newest genetic findings towards a Molgen-like “Yamna/R1b = Vasconic-Caucasian”, “N1c = Uralic-Altaic”, and “R1a = the origin of the white world in Mother Russia”. So much for the supposed interest in “Steppe ancestry” and fancy statistics.

Related

The complex origin of Samoyedic-speaking populations

uralic-turkic

Open access Siberian genetic diversity reveals complex origins of the Samoyedic-speaking populations, by Karafet et al. Am J Hum Biol (2018) e23194.

Interesting excerpts (emphasis mine):

Siberian groups

Consistent with their origin, Mongolic-speaking Buryats demonstrate genetic similarity with Mongols, and Turkic-speaking Altai-Kizhi and Teleuts are drawn close to CAS groups. The Tungusic-speaking Evenks collected in central and eastern Siberia cluster together and overlap with Yukagirs. Dolgans are widely scattered in the plot, justifying their recent origin from one Evenk clan, Yakuts, and Russian peasants in the 18th century (Popov, 1964). Uralic-speaking populations comprise a very wide cluster with Komi drawn to Europe, and Khants showing a closer affinity with Selkups, Tundra and Forest Nentsi. Yenisey-speaking Kets are intermingled with Selkups. Interestingly, Samoyedic-speaking Nganasans from the Taymyr Peninsula form a separate tight cluster closer to Evenks, Yukagirs, and Koryaks.

pca-siberian-uralic
Principal component analysis (PCA) using the “drop one in” technique for 27 present-day (N = 424) and 6 ancient populations (N = 20). PCA was performed on 281 093 SNPs from the intersection of our data with publicly available ancient Siberian samples

ADMIXTURE and the “Siberian component”

Among Siberians, the Komi are primarily Europeans, while Nganasans, Evenks, Yukagirs, and Koryaks are nearly 100% East Asians. At K = 4 finer scale subcontinental structure can be distinguished with the emergence of a “Siberian” component. This component is highly pronounced in the Nganasans. Outside Siberia, this component is present in Germany and in CAS at low frequency. Within ancient cultures, this component has the highest frequency in three BA Karasuk samples. It is also found in Mal’ta, ENE Afanasievo and BA Andronovo, but not in Ust’-Ishim and BA Okunevo. At K = 5, the “Siberian” component is roughly subdivided into two components with different geographic distributions. The “Nganasan” component is frequent in nearly all Siberian populations, except the Komi, Kets and Selkups. The newly derived “Selkup-Ket” component is found at high frequencies in western Siberian populations. It is observed in BA Karasuk and in Mal’ta. At K = 6, the western Siberian “Nentsi-Khant” ancestry component was developed in Forest and Tundra Nentsi, Khants. This component is also present at low levels in EUR, CAS, Tibet, and southern Siberia.

Identity-by-descent

The Dolgans share more segments with the Nganasans than within themselves (54.13 vs 41.72, Mann-Whitney test, P = .000000000001562546). The result is not surprising as the demographic data showed that the Nganasans were subjected to intense assimilation by the Dolgans in the second half of the 20th century (Goltsova, Osipova, Zhadanov, & Villems, 2005). Tundra Nentsi share more IBD with Forest Nentsi than within themselves (83.96 vs 50.3, P = .000055) possibly due to the common origin and long-term gene flow. The Ket and Selkup populations allocate significantly more IBD blocks between populations than with individuals from their own population (121.2 cM vs 85.9 cM for Kets, P = .000008, and 121.2 cM vs 114.9 cM for Selkups, P = .043).

admixture-siberian
ADMIXTURE plot. Clustering of 444 individuals from 27 present-day and 6 ancient populations (281 093 SNPs) assuming K6 to K7 clusters. Individuals are shown as vertical bars colored in ratio to their estimated ancestry within each cluster

Haplogroup N in Siberia

Although Siberia exhibits 42 haplogroups, the vast majority of Siberian Y-chromosomes belong only to 4 of the 18 major clades (N = 46.2%; C = 20.9%; Q = 14.4%; and R = 15.2%). The Y-chromosome haplogroup N is widely spread across Siberia and Eastern Europe (Ilumae et al., 2016; Karafet et al., 2002; Wong et al., 2016) and reaches its maximum frequency among Siberian populations such as Nganasans (94.1%) and Yakuts (91.9%). Within Siberia, two sister subclades N-P43 and N-L708 show different geographic distributions. N-P43 and derived haplogroups N-P63 and N- P362 (phylogenetically identical to N-B478* and N-B170, respectively) (Ilumae et al., 2016) are extremely rare in other major geographic regions. Likely originating in western Siberia, they are limited almost entirely to northwest Siberia, the Volga- Uralic regions, and the Taymyr Peninsula (ie, do not extend to eastern Siberia). Conversely, clade N-L708 is frequent in all Siberian populations except the Kets and Selkups, reaching its highest frequency in the Yakuts (91.9%).

Surprisingly, not a single sign of the proposed reindeer pastoralist horde led by Nganasans into north-eastern Europe. This is strange because “Siberian” migrants hypothetically imposed their language over Indo-Europeans quite recently, apparently after the Iron Age

Interesting comparisons among Siberian groups, though.

Related

Minimal gene flow from western pastoralists in the Bronze Age eastern steppes

jeong-steppes-mongolia

Open access paper Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe, by Jeong et al. PNAS (2018).

Interesting excerpts (emphasis mine):

To understand the population history and context of dairy pastoralism in the eastern Eurasian steppe, we applied genomic and proteomic analyses to individuals buried in Late Bronze Age (LBA) burial mounds associated with the Deer Stone-Khirigsuur Complex (DSKC) in northern Mongolia. To date, DSKC sites contain the clearest and most direct evidence for animal pastoralism in the Eastern steppe before ca. 1200 BCE.

Most LBA Khövsgöls are projected on top of modern Tuvinians or Altaians, who reside in neighboring regions. In comparison with other ancient individuals, they are also close to but slightly displaced from temporally earlier Neolithic and Early Bronze Age (EBA) populations from the Shamanka II cemetry (Shamanka_EN and Shamanka_EBA, respectively) from the Lake Baikal region. However, when Native Americans are added to PC calculation, we observe that LBA Khövsgöls are displaced from modern neighbors toward Native Americans along PC2, occupying a space not overlapping with any contemporary population. Such an upward shift on PC2 is also observed in the ancient Baikal populations from the Neolithic to EBA and in the Bronze Age individuals from the Altai associated with Okunevo and Karasuk cultures.

pca-eurasians-karasuk-khovsgol
Image modified from the article. Karasuk cluster in green, closely related to sample ARS026 in red. Principal Component Analysis (PCA) of selected 2,077 contemporary Eurasians belonging to 149 groups. Contemporary individuals are plotted using three-letter abbreviations for operational group IDs. Group IDs color coded by geographic region. Ancient Khövsgöl individuals and other selected ancient groups are represented on the plot by filled shapes. Ancient individuals are projected onto the PC space using the “lsqproject: YES” option in the smartpca program to minimize the impact of high genotype missing rate.

(…) two individuals fall on the PC space markedly separated from the others: ARS017 is placed close to ancient and modern northeast Asians, such as early Neolithic individuals from the Devil’s Gate archaeological site (22) and present-day Nivhs from the Russian far east, while ARS026 falls midway between the main cluster and western Eurasians.

Upper Paleolithic Siberians from nearby Afontova Gora and Mal’ta archaeological sites (AG3 and MA-1, respectively) (25, 26) have the highest extra affinity with the main cluster compared with other groups, including the eastern outlier ARS017, the early Neolithic Shamanka_EN, and present-day Nganasans and Tuvinians (Z > 6.7 SE for AG3). Main cluster Khövsgöl individuals mostly belong to Siberian mitochondrial (A, B, C, D, and G) and Y (all Q1a but one N1c1a) haplogroups.

mongolia-botai-ehg-ane-cline
The genetic affinity of the Khövsgöl clusters measured by outgroup-f3 and -f4 statistics. (A) The top 20 populations sharing the highest amount of >genetic drift with the Khövsgöl main cluster measured by f3(Mbuti; Khövsgöl, X). (B) The top 15 populations with the most extra affinity with each of the three Khövsgöl clusters in contrast to Tuvinian (for the main cluster) or to the main cluster (for the two outliers), measured by f4(Mbuti, X; Tuvinian/Khövsgöl, Khövsgöl/ARS017/ARS026). Ancient and contemporary groups are marked by squares and circles, respectively. Darker shades represent a larger f4 statistic.

Previous studies show a close genetic relationship between WSH populations and ANE ancestry, as Yamnaya and Afanasievo are modeled as a roughly equal mixture of early Holocene Iranian/ Caucasus ancestry (IRC) and Mesolithic Eastern European hunter-gatherers, the latter of which derive a large fraction of their ancestry from ANE. It is therefore important to pinpoint the source of ANE-related ancestry in the Khövsgöl gene pool: that is, whether it derives from a pre-Bronze Age ANE population (such as the one represented by AG3) or from a Bronze Age WSH population that has both ANE and IRC ancestry.

The amount of WSH contribution remains small (e.g., 6.4 ± 1.0% from Sintashta). Assuming that the early Neolithic populations of the Khövsgöl region resembled those of the nearby Baikal region, we conclude that the Khövsgöl main cluster obtained ∼11% of their ancestry from an ANE source during the Neolithic period and a much smaller contribution of WSH ancestry (4–7%) beginning in the early Bronze Age.

khovsgol-shamanka-sintashta
Admixture modeling of Altai populations and the Khövsgöl main cluster using qpAdm. For the archaeological populations, (A) Shamanka_EBA and (B and C) Khövsgöl, each colored block represents the proportion of ancestry derived from a corresponding ancestry source in the legend. Error bars show 1 SE. (A) Shamanka_EBA is modeled as a mixture of Shamanka_EN and AG3. The Khövsgöl main cluster is modeled as (B) a two-way admixture of Shamanka_EBA+Sintashta and (C) a three-way admixture Shamanka_EN+AG3+Sintashta.

Apparently, then, the first individual with substantial WSH ancestry in the Khövsgöl population (ARS026, of haplogroup R1a-Z2123), directly dated to 1130–900 BC, is consistent with the first appearance of admixed forest-steppe-related populations like Karasuk (ca. 1200-800 BC) in the Altai. Interestingly, haplogroup N1a1a-M178 pops up (with mtDNA U5a2d1) among the earlier Khövsgöl samples.

I will repeat what I wrote recently here: Samoyedic arrived in the Altai with Karasuk and hg R1a-Z645 + Steppe_MLBA-like ancestry, admixed with Altai populations, clustering thus within an Ancient Altai cline. Only later did N1a1a subclades infiltrate Samoyedic (and Ugric) populations, bringing them closer to their modern Palaeo-Siberian cline. The shared mtDNA may support an ancestral EHG-“Siberian” cline, or else a more recent Afanasevo-related origin.

east-uralic-clines
Modified image from Jeong et al. (2018), supplementary materials. The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the north-south cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals. Read more.

Also interesting, Q1a2 subclades and ANE ancestry making its appearance everywhere among ancestral Eurasian peoples, as Chetan recently pointed out.

Related