The Lusatian culture, the most likely vector of Balto-Slavic expansions

early-bronze-age-languages-europe

New archaeological paper (behind paywall) New evidence on the southeast Baltic Late Bronze Age agrarian intensification and the earliest AMS dates of Lens culinaris and Vicia faba, by Minkevičius et al. Vegetation History and Archaeobotany (2019).

Interesting excerpts (emphasis mine):

Arrival of farming in the south-east Baltic

The current state of research reveals no firm evidence of crop cultivation in the region before the LBA (Piličiauskas et al. 2017b; Grikpėdis and Motuzaitė-Matuzevičiūtė 2018). Current archaeobotanical data firmly suggest the adoption of farming during the EBA to LBA transition. (…) By comparison, in other parts of N Europe subsistence economy of CWC groups was characterized by strong emphasis on animal husbandry, however crop cultivation was also used (Kirleis 2019; Vanhanen et al. 2019). CWC sites from the Netherlands, Denmark, Sweden and Germany reveal evidence of the cultivation of H. vulgare var. nudum, T. dicoccum, Linum usitatissimum (flax) (Oudemans and Kubiak-Martens 2014; Beckerman 2015; Kubiak- Martens et al. 2015).

It is (…) striking that earliest evidence of farming in the SE Baltic only appears in the deposits dating over 4,000 years later.

The environmental conditions of the SE Baltic presented a significant barrier and numerous genetic adaptations were required before farming could successfully spread into the region (Motuzaitė-Matuzevičiūtė 2018). Adaptations through seasonality changes usually play a major role in adapting to new environments (Sherratt 1980). These include establishing genetic controls on seasonality, especially flowering times and length of growing season (Fuller and Lucas 2017). Therefore, it could be argued that farming was only firmly established in the region around the LBA after several crop species, primarily barley, became adapted to the local environment and the risk of crop failure was reduced (Motuzaitė-Matuzevičiūtė 2018). The transition to farming was further aided by the climate warming which started around 750 cal bc (Gaigalas 2004; Sillasoo et al. 2009). In such a case the fragmented evidence from earlier periods is a likely illustration of the early attempts that have failed.

south-east-baltic-agrarian-communities
Map of sites mentioned in the text: 1 Duba and Palesa Lakes, 2 Šventoji, 3 Šarnelė, 4 Iru, 5 Kvietiniai, 6 Kreiči, 7 Turlojiškė, 8 Narkūnai, 9 Luokesa 1, 10 Mūkakalns, 11 Kivutkalns, 12 Asva, 13 Kukuliškiai

Social change

The LBA agrarian intensification of the SE Baltic was most likely not an isolated case but rather a part of broader social, economic and technological developments sweeping across northern Europe.

Evidence from sites across the Baltic Sea shows that the end of the EBA (ca. 1200 bc onward, after Gustafsson 1998) was marked by intensification of agriculture and changes in landscape management. This coincides with the agricultural developments observed on the SE fringes of the Baltic Sea and provides a context for the eventual arrival of farming, followed shortly by the rapid agrarian intensification of the region. Looking just south from the study region, we see that data from northern Poland reveal a sharp increase in both scale and intensity of agricultural activities during the EBA to LBA transition. Pollen records show significant environmental changes starting around 1400/1300 bc (Wacnik 2005, 2009; Wacnik et al. 2012). These were mostly a result of development of a production economy based on plant cultivation and animal raising. Even more significant changes during this period are visible in southern Scandinavia. Pollen records from S Sweden present evidence for an opening up of the forested landscape and the creation of extensive grasslands (Berglund 1991; Gustafsson 1998). Major changes are also apparent in archaeobotanical assemblages.

In general, during the end of the EBA northern Europe underwent a massive transformation of the farming system moving towards a more intensified agriculture aimed at surplus production. However, this should not be regarded as an isolated occurrence, but rather as a radical change of the whole society which took place throughout Europe (Gustafsson 1998). Intensification of contacts across northern Europe have integrated previously isolated regions into a wider network (Kristiansen and Larsson 2005; Wehlin 2013; Earle et al. 2015). It is therefore likely that farming spread into the SE fringes of the Baltic Sea alongside other innovations including malleable technologies and developments of social structure.

bronze-age-late-baltic
Late Bronze Age cultures in the Baltic. See full map.

The presence and scale of intensifying connections is well illustrated by SE Baltic archaeological material.

Firstly, the appearance of stone ship graves has served as a basis for locating the Nordic communication zones. Construction of such graves was limited to the coastal regions of Kurzeme, Saaremaa Island and the Northern Estonian coast near Tallinn and Kaliningrad (Graudonis 1967; Okulicz 1976; Lang 2007) and is generally regarded as a foreign burial custom which was common in Gotland and along the Scandinavian coast. This is also supported by the Staldzene and Tehumardi hoards (Vasks and Vijups 2004; Sperling 2013), which contained artefacts typical of Nordic culture.

Secondly, studies of early metallurgy and its products, both imported and created in the SE Baltic, have concluded that metal consumption in the LBA had more than doubled compared to the EBA (Sidrys and Luchtanas 1999). The SE Baltic region lacks any metal artefact types exclusive to the region and metal objects are dominated by artefact types originating from Nordic and Lusatian cultures (Sidrys and Luchtanas 1999; Lang 2007; Čivilytė 2014). This indicates that even after metal crafting reached the region, the technology remained exclusively of foreign origin. Rarely identifiable negatives of clay casting moulds were also made for artefacts of Nordic influence, such as Mälar type axes or Härnevi type pins (Čivilytė 2014; Sperling 2014).

Lastly, emerging social diversification was accompanied by the establishment of the first identifiable settlement pattern. Settlement locations were strategically chosen alongside economically significant routes, primarily on the coast and near the Daugava River. Hilltop areas were prioritized over the lowlands, and excavations on these sites have often revealed several stages of enclosure construction (Graudonis 1989). This has also been explained as a reflection of intensifying communication networks between Nordic and Lusatian cultures, and the indigenous communities of the SE Baltic.

Proto-Balto-Slavic

One of the aspects of my description of Balto-Slavic I am least convinced about is my acceptance of Kortlandt’s dialectal classification into Proto-East Baltic, Proto-West Baltic, and Proto-Slavic, due to its strong reliance on his own controversial theory of late laryngeal loss.

Kortlandt’s position regarding Balto-Slavic is that it is in fact simply ‘Proto-Baltic’, a language that would stem thus from an Indo-Baltic branch, which would be originally represented by Corded Ware, and which would have split suddenly in its three dialects without any common development between branches, including some intermediate hypothetic “Centum” Temematic substrate that would explain everything his model can’t…

As more genetic and archaeological data on northern Europe appears, his ideas about Balto-Slavic are becoming even less credible, fully at odds with his predicted population and cultural movements, in particular because of the evident shaping of Indo-European-speaking Europe through the expansion of the Bell Beaker culture from the Yamnaya of the Carpathian Basin, and of the shaping of Uralic-speaking Europe through the expansion of the Corded Ware culture.

bronze-age-middle-northern-europe
Middle Bronze Age cultures close to the Baltic ca. 1750-1250 BC. See full map.

The site of Turlojiškė in southern Lithuania (ca. 908-485 BC) – which Mittnik et al. (2018) classified as “Bronze Age, Trzciniec culture?” – can be more reasonably considered a settlement of incoming intensive agrarian communities under the influence of the Lusatian culture, like the Narkūnai hilltop settlement in eastern Lithuania (ca. 800–550 BC), or the enclosed hilltop settlement of Kukuliškiai in western Lithuania (ca. 887-506 BC), just 300 m east of the Baltic Sea, also referred to in the paper.

While the dates of sampled individuals include a huge span (ca. 2100-600 BC), those with confirmed radiocarbon dates are more precisely dated to the LBA-EIA transition. More specifically, the first clearly western influence is seen in the early outlier Turlojiškė1932 (ca. 1230-920 BC), while later samples and samples from Kivutkalns, in Latvia, show major genetic continuity with indigenous populations, compatible with the new chiefdom-based systems of the Baltic and the known lack of massive migrations to the region.

Contacts with western groups of the Nordic Bronze Age and Lusatian cultures intensified – based on existing archaeological and archaeobotanical evidence – in the LBA, especially from ca. 1100/1000 BC on, and Baltic languages seem to have thus little to do with the disappearing Trzciniec culture, and more with the incoming Lusatian influence.

Both facts – more simple dialectalization scheme, and more recent Indo-European expansion to the east – support the spread of Proto-Baltic into the south-east Baltic area precisely around this time, and is also compatible with an internal separation from Proto-Slavic during the expansion of the Lusatian culture.

pca-late-bronze-age-balto-slavic-finnic
Top Left:Likely Baltic, Slavic, and Balto-Finnic-speaking territories (asynchronous), overlaid over Late Bronze Age cultures. Balto-Slavic in green: West(-East?) Baltic (B1), unattested early Baltic (B2), and Slavic (S). Late Balto-Finnic (F) in cyan. In red, Tollense and Turlojiškė sampling. Dashed black line: Balto-Slavic/West Uralic hydrotoponymy border until ca. 1000 AD. Top right: PCA of groups from the Early Bronze Age to the Late Bronze Age. Marked are Iwno/Pre-Trzciniec of Gustorzyn (see below), Late Trzciniec/Iron Age samples from Turlojiškė, and in dashed line approximate extent of Tollense cluster; Y-DNA haplogroups during the Late Bronze Age (Bottom left) and during the Early Iron Age (Bottom right). Notice a majority non-R1a lineages among sampled Early Slavs. See full maps and PCAs.

Even though comparative grammar is traditionally known to be wary of resorting to language contamination or language contact, the truth is that – very much like population genomics – trying to draw a ‘pure’ phylogenetic tree for Balto-Slavic has never worked very well, and the most likely culprit is the Slavic expansion to the south-east into territories which underwent different and complex genetic and linguistic influences for centuries (see here and here).

The close interaction of Nordic BA and Lusatian cultures (and their cultural predominance over) indigenous eastern Baltic peoples from ca. 1100 BC fits (part of) the known intense lexical borrowings of Balto-Finnic from Palaeo-Germanic and from early Proto-Baltic, as well as (part of) the known Germanic–Balto-Slavic contacts, whereas the evident Balto-Finnic-like substrate of Balto-Slavic, and especially of Baltic, must stem from the acculturation of those indigenous East Baltic peoples.

The relative chronology of hydrotoponymy in the East Baltic shows that essentially all ancestral layers to the north of the Daugava must have been Uralic, while roughly south of the Daugava they seem to be mostly Indo-European. The question remains, though, when did this Indo-European layer start?

Despite the many centuries that could separate the attestation of southern place- and river-names from northern ones, Old European is also defined by linguistic traits, which would imply that the same language inferred from Western and Southern European hydrotoponymy is that found in the Baltic, hence all from North-West Indo-European-speaking Bell Beakers and derived Early European Bronze Age groups.

Interestingly, though, it is well-known that some modern Baltic toponyms can’t be easily distinguished from the Old European layers – unlike those of Iberia or the British Isles, which show some attested language change in the proto-historical and historical period – which may imply both (a) continuity of Baltic languages since the EBA, but also that (b) the Baltic naming system is a confounding factor in assessing the ancestral expansion of Old European. The latter is becoming more and more likely with each new linguistic, archaeological, and genetic paper.

up-river
Hydronyms in up-. One among many examples of scarcely attested appellatives that appear inflated in the Baltic due to modern use.

To sum up, a survival of a hypothetical late Trzciniec language in Lithuania or as part of the expanding Lusatian community is not the most economic explanation for what is seen in genetics and archaeology. On the other hand, the cluster formed by the Tollense samples (a site corresponding to the Nordic Bronze Age), the Turlojiškė outlier, and the early Slavs from Bohemia all depict an eastward expansion of Balto-Slavic languages from Central Europe, at the same time as Celtic expanded to the west with the Urnfield culture.

NOTE. Another, more complicated question, though, is if this expanding Proto-Baltic language accompanying agriculture represents the extinct
early Proto-Baltic dialect from which Balto-Finnic borrowed words, hence Proto-Baltic proper expanded later, or if this early Baltic branch could have been part of the Trzciniec expansion. Again, the answer in archaeological and genetic terms seems to be the former. For a more detailed discussion of this and more, see European hydrotoponymy (IV): tug of war between Balto-Slavic and West Uralic.

As I said recently, the slight increase in Corded Ware-like ancestry among Iron Age Estonians, if it were statistically relevant and representative of an incoming population – and not just the product of “usual” admixture with immediate neighbours – need not be from south-eastern Corded Ware groups, because the Akozino-Malär cultural exchange seems to have happened as an interaction in both directions, and not just as an eastward migration imagined by Carpelan and Parpola.

Archaeology and genetics could actually suggest then (at least in part) an admixture with displaced indigenous West Uralic-speaking peoples from the south-west, to the south of the Daugava River, at the same time as the Indo-European – Uralic language frontier must have shifted to its traditional location, precisely during the LBA / EIA transition around 1000 BC.

NOTE. For more on this, see the supplementary materials of Saag et al. (2019).

fortified-settlements-lba-ia
Distribution of fortified settlements (filled circles) and other hilltop sites (empty circles) of the Late Bronze Age and Pre-Roman Iron Ages in the East Baltic region. Tentative area of most intensive contacts between Baltic and Balto-Finnic communities marked with a dashed line. Image modified from (Lang 2016).

The tight relationship of the three communities also accounts for the homogeneous distribution of expanding haplogroup N1c-VL29 (possibly associated with Akozino warrior-traders) in the whole Baltic Sea area, such as those appearing in the Estonian Iron Age samples, which have no clearly defined route(s) of expansion.

It is even possible that they emerged first in the south, linked to marriage alliances of Akozino chieftains with Baltic- and Germanic-speaking chiefdoms around the Baltic Sea (see N1c in Germanic Iron Age), because the expansion of (some) N1c lineages with Gulf of Finland Finnic to the north was more clearly associated with their known bottleneck ca. 2,000 years ago.

Related

North-West Indo-Europeans of Iberian Beaker descent and haplogroup R1b-P312

iron-age-early-mediterranean

The recent data on ancient DNA from Iberia published by Olalde et al. (2019) was interesting for many different reasons, but I still have the impression that the authors – and consequently many readers – focused on not-so-relevant information about more recent population movements, or even highlighted the least interesting details related to historical events.

I have already written about the relevance of its findings for the Indo-European question in an initial assessment, then in a more detailed post about its consequences, then about the arrival of Celtic languages with hg. R1b-M167, and later in combination with the latest hydrotoponymic research.

This post is thus a summary of its findings with the help of natural neighbour interpolation maps of the reported Germany_Beaker and France_Beaker ancestry for individual samples. Even though maps are not necessary, visualizing geographically the available data facilitates a direct comprehension of the most relevant information. What I considered key points of the paper are highlighted in bold, and enumerated.

NOTE. To get “more natural” maps, extrapolation for the whole Iberian Peninsula is obtained by interpolation through the use of external data from the British Isles, Central Europe, and Africa. This is obviously not ideal, but – lacking data from the corners of the Iberian Peninsula – this method gives a homogeneous look to all maps. Only data in direct line between labelled samples in each map is truly interpolated for the Iberian Peninsula, while the rest would work e.g. for a wider (and more simplistic) map of European Bronze Age ancestry components.

Chalcolithic

iberia-chalcolithic
Iberian Chalcolithic groups and expansion of the Proto-Beaker package. See full map.

The Proto-Beaker package may or may not have expanded into Central Europe with typical Iberia_Chalcolithic ancestry. A priori, it seems a rather cultural diffusion of traits stemming from west Iberia roughly ca. 2800 BC.

iberia-y-dna-map-chalcolithic
Map of Y-DNA haplogroups among Iberia Chalcolithic samples. See full map.

The situation during the Chalcolithic is only relevant for the Indo-European question insofar as it shows a homogeneous Iberia_Chalcolithic-like ancestry with typical Y-chromosome (and mtDNA) haplogroups of the Iberian Neolithic dominating over the whole Peninsula until about 2500 BC. This might represent an original Basque-Iberian community.

iberia-mtdna-map-chalcolithic
Map of mtDNA haplogroups among Iberia Chalcolithic samples. See full map.

Bell Beaker period

iberia-bell-beaker-period
Iberian Bell Beaker groups and potential routes of expansion. See full map.

The expansion of the Bell Beaker folk brought about a cultural and genetic change in all Europe, to the point where it has been rightfully considered by Mallory (2013) – the last one among many others before him – the vector of expansion of North-West Indo-European languages. Olalde et al. (2019) proved two main points in this regard, which were already hinted in Olalde et al. (2018):

(1) East Bell Beakers brought hg. R1b-L23 and Yamnaya ancestry to Iberia, ergo the Bell Beaker phenomenon was not a (mere) local development in Iberia, but involved the expansion of peoples tracing their ancestry to the Yamnaya culture who eventually replaced a great part of the local population.

iberia-ancestry-bell-beaker-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Bell Beaker period (ca. 2600-2250 BC). See full map.

(2) Classical Bell Beakers have their closest source population in Germany Beakers, and they reject an origin close to Rhine Beakers (i.e. Beakers from the British Isles, the Netherlands, or northern France), ergo the Single Grave culture was not the origin of the Bell Beaker culture, either (see here).

iberia-y-dna-map-bell-beaker-period
Map of Y-DNA haplogroups among Iberian Bell Beaker samples. See full map.
iberia-mtdna-map-bell-beaker-period
Map of mtDNA haplogroups among Iberian Bell Beaker samples. See full map.

Early Bronze Age

iberia-early-bronze-age
Iberian Early Bronze Age groups and likely population and culture expansions. See full map.

Interestingly, the European Early Bronze Age in Iberia is still a period of adjustments before reaching the final equilibrium. Unlike the situation in the British Isles, where Bell Beakers brought about a swift population replacement, Iberia shows – like the Nordic Late Neolithic period – centuries of genomic balancing between Indo-European- and non-Indo-European-speaking peoples, as could be suggested by hydrotoponymic research alone.

(3) Palaeo-Indo-European-speaking Old Europeans occupied first the whole Iberian Peninsula, before the potential expansion of one or more non-Indo-European-speaking groups, which confirms the known relative chronology of hydrotoponymic layers of Iberia.

iberia-ancestry-early-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Early Bronze Age period (ca. 2250-1750 BC). See full map.

This balancing is seen in terms of Germany_Beaker vs. Iberia_Chalcolithic ancestry, but also in terms of Y-chromosome haplogroups, with the most interesting late developments happening in southern Iberia, around the territory where El Argar eventually emerged in radical opposition to the Bell Beaker culture.

iberia-y-dna-map-early-bronze-age
Map of Y-DNA haplogroups among Iberia Early Bronze Age samples. See full map.

(4) Bell Beakers and descendants expanded under male-driven migrations, proper of the Indo-European patrilineal tradition, seen in Yamnaya and even earlier in Khvalynsk:

We obtained lower proportions of ancestry related to Germany_Beaker on the X-chromosome than on the autosomes (Table S14), although the Z-score for the differences between the estimates is 2.64, likely due to the large standard error associated to the mixture proportions in the X-chromosome.

germany-beaker-x-chromosome

iberia-mtdna-map-early-bronze-age
Map of mtDNA haplogroups among Iberia Early Bronze Age samples. See full map.

Regarding the PCA, Iberia Bronze Age samples occupy an intermediate cluster between Iberia Chalcolithic and Bell Beakers of steppe ancestry, with Yamnaya-rich samples from the north (Asturias, Burgos) representing the likely source Old European population whose languages survived well into the Roman Iron Age:

iberia-pca-bronze-age
PCA of ancient European samples. Marked and labelled are Bronze Age groups and relevant samples. See full image.

Middle Bronze Age

iberia-middle-bronze-age
Iberian Middle Bronze Age groups and likely population and culture expansions. See full map.

During the Middle Bronze Age, the equilibrium reached earlier is reversed, with a (likely non-Indo-European-speaking) Argaric sphere of influence expanding to the west and north featuring Iberia Chalcolithic and lesser amount of Germany_Beaker ancestry, present now in the whole Peninsula, although in varying degrees.

iberia-ancestry-middle-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Middle Bronze Age period (ca. 1750-1250 BC). See full map.

All Iberian groups were probably already under a bottleneck of R1b-DF27 lineages, although it is likely that specific subclades differed among regions:

iberia-y-dna-map-middle-bronze-age
Map of Y-DNA haplogroups among Iberia Middle Bronze Age samples. See full map.
iberia-mtdna-map-middle-bronze-age
Map of mtDNA haplogroups among Iberia Middle Bronze Age samples. See full map.

Late Bronze Age

iberia-late-bronze-age
Iberian Late Bronze Age groups and likely population and culture expansions. See full map.

The Late Bronze Age represents the arrival of the Urnfield culture, which probably expanded with Celtic-speaking peoples. A Late Bronze Age transect before their genetic impact still shows a prevalent Germany_Beaker-like Steppe ancestry, probably peaking in north/west Iberia:

iberia-ancestry-late-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Late Bronze Age period (ca. 1250-750 BC). See full map.

(5) Galaico-Lusitanians were descendants of Iberian Beakers of Germany_Beaker ancestry and hg. R1b-M269. Autosomal data of samples I7688 and I7687, of the Final Bronze (end of the reported 1200-700 BC period for the samples), from Gruta do Medronhal (Arrifana, Coimbra, Portugal) confirms this.

In the 1940s, human bones, metallic artifacts (n=37) and non-human bones were discovered in the natural cave of Medronhal (Arrifana, Coimbra). All these findings are currently housed in the Department of Life Sciences of the University of Coimbra and are analyzed by a multidisciplinary team. The artifacts suggest a date at the beginning of the 1st millennium BC, which is confirmed by radiocarbon date of a human fibula: 890–780 cal BCE (2650±40 BP, Beta–223996). This natural cave has several rooms and corridors with two entrances. No information is available about the context of the human remains. Nowadays these remains are housed mixed and correspond to a minimum number of 11 individuals, 5 adults and 6 non-adults.

In particular, sample I7687 shows hg. R1b-M269, with no available quality SNPs, positive or negative, under it (see full report). They represent thus another strong support of the North-West Indo-European expansion with Bell Beakers.

iberia-y-dna-map-late-bronze-age
Map of Y-DNA haplogroups among Iberian Late Bronze Age samples. See full map.
iberia-mtdna-map-late-bronze-age
Map of mtDNA haplogroups among Iberian Late Bronze Age samples. See full map.

NOTE. To understand how the region around Coimbra was (Proto-)Lusitanian – and not just Old European in general – until the expansion of the Turduli Oppidani, see any recent paper on Bronze Age expansion of warrior stelae, hydrotoponymy, anthroponymy, or theonymy (see e.g. about Spear-vocabulary).

Iron Age

iberia-iron-age-early
Iberian Pre-Roman Iron Age groups and likely population and culture expansions. See full map.

In a complex period of multiple population movements and language replacements, the temporal transect in Olalde et al. (2019) offers nevertheless relevant clues for the Pre-Roman Iron Age:

(6) The expansion of Celtic languages was associated with the spread of France_Beaker-like ancestry, most likely already with the LBA Urnfield culture, since a Tartessian and a Pre-Iberian samples (both dated ca. 700-500 BC) already show this admixture, in regions which some centuries earlier did not show it. Similarly, a BA sample from Álava ca. 910–840 BC doesn’t show it, and later Celtiberian samples from the same area (ca. 4th c. BC and later) show it, depicting a likely north-east to west/south-west routes of expansion of Celts.

iberia-ancestry-iron-age-france_beaker
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

(7) The distribution of Germany_Beaker ancestry peaked, by the Iron Age, among Old Europeans from west Iberia, including Galaico-Lusitanians and probably also Astures and Cantabri, in line with what was expected before genetic research:

iberia-ancestry-iron-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

A probably more precise picture of the Final Bronze – Early Iron Age transition is obtained by including the Final Bronze samples I2469 from El Sotillo, Álava (ca. 910-875 BC) as Celtic ancestry buffer to the west, and the sample I3315 from Menorca (ca. 904-861 BC), lacking more recent ones from intermediate regions:

iberia-ancestry-ia-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.
iberia-ancestry-ia-france_beaker
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.

In terms of Y-DNA and mtDNA haplogroups, the situation is difficult to evaluate without more samples and more reported subclades:

iberia-y-dna-map-iron-age
Map of Y-DNA haplogroups among Iberian Iron Age samples. See full map.
iberia-mtdna-map-iron-age
Map of mtDNA haplogroups among Iberian Iron Age samples. See full map.

In the PCA, Proto-Lusitanian samples occupy an intermediate cluster between Iberian Bronze Age and Bronze Age North (see above), including the Final Bronze sample from Álava, while Celtic-speaking peoples (including Pre-Iberians and Iberians of Celtic descent from north-east Iberia) show a similar position – albeit evidently unrelated – due to their more recent admixture between Iberian Bronze Age and Urnfield/Hallstatt from Central Europe:

iberia-pca-iron-age
PCA of ancient European samples. Marked and labelled are Iron Age groups and relevant samples. See full image.

(8) Iberian-speaking peoples in north-east Iberia represent a recent expansion of the language from the south, possibly accompanied by an increase in Iberia_Chalcolithic/Germany_Beaker admixture from east/south-east Iberia.

(9) Modern Basques represent a recent isolation + Y-DNA bottlenecks after the Roman Iron Age population movements, probably from Aquitanians migrating south of the Pyrenees, admixing with local peoples, and later becoming isolated during the Early Middle Ages and thereafter:

[Modern Basques] overlap genetically with Iron Age populations showing substantial levels of Steppe ancestry.

Assuming that France_Beaker ancestry is associated with the Urnfield culture (spreading with Celtic-speaking peoples), Vasconic speakers were possibly represented by some population – most likely from France – whose ancestry is close to Rhine Beakers (see here).

Alternatively, a Vasconic language could have survived in some France/Iberia_Chalcolithic-like population that got isolated north of the Pyrenees close to the Atlantic Façade during the Bronze Age, and who later admixed with Celtic-speaking peoples south of the Pyrenees, such as the Vascones, to the point where their true ancestry got diluted.

In any case, the clear Celtic Steppe-like admixture of modern Basques supports for the time being their recent arrival to Aquitaine before the proto-historical period, which is in line with hydrotoponymic research.

Conclusion

The most interesting aspects to discuss after the publication of Olalde et al. (2019) would have been thus the nature of controversial Palaeohispanic peoples for which there is not much linguistic data, such as:

  • the Astures and the Cantabri, usually considered Pre-Celtic Indo-European (see here);
  • the Vaccaei, usually considered Celtic;
  • the Vettones, traditionally viewed as sharing the same language as Lusitanians due to their apparent shared hydrotoponymic, anthroponymic, and/or theonymic layers, but today mostly viewed as having undergone Celticization and helped the westward expansion of Celtic languages (and archaeologically clearly divided from Old European hostile neighbours to the west by their characteristic verracos);
  • the Pellendones or the Carpetani, who were once considered Pre-Celtic Indo-Europeans, too;
  • the nature of Tartessian as Indo-European, or maybe even as “Celtic”, as defended by Koch;
  • or the potential remote connection of Basque and Iberian languages in a common trunk featuring Iberian/France_Chalcolithic ancestry (also including Palaeo-Sardo).
pre-roman-palaeohispanic-languages-peoples-iberia-300bc
Pre-Roman Palaeohispanic peoples ca. 300 BC. See full map. Image modified from the version at Wikipedia, a good example of how to disseminate the wrong ideas about Palaeohispanic languages.

Despite these interesting questions still open for discussion, the paper remarked something already known for a long time: that modern Basques had steppe ancestry and Y-DNA proper of the Yamnaya 5,000 years ago, and that Bell Beakers had brought this steppe ancestry and R1b-P312 lineages to Iberia. This common Basque-centric interpretation of Iberian prehistory is the consequence of a 19th-century tradition of obsessively imagining Vasconic-speaking peoples in their medieval territories extrapolated to Cro-Magnons and Atapuerca (no, really), inhabiting undisturbed for millennia a large territory encompassing the whole Iberia and France, “reduced” or “broken” only with the arrival of Celts just before the Roman conquests. A recursive idea of “linguistic autochthony” and “genetic purity” of the peoples of Iberia that has never had any scientific basis.

Similarly, this paper offered the Nth proof already in population genomics that traditional nativist claims for the origin of the Bell Beaker folk in Western Europe were wrong, both southern (nativist Iberian origin) and northern European (nativist Lower Rhine origin). Both options could be easily rejected with phylogeography since 2015, they were then rejected in Olalde et al. and Mathieson et al (2017), then again with the update of many samples in Olalde et al. (2018) and Mathieson et al (2018), and it has most clearly been rejected recently with data from Wang et al. (2018) and its Yamnaya Hungary samples. Findings from Olalde et al. (2019) are just another nail to coffins that should have been well buried by now.

Even David Anthony didn’t have any doubt in his latest model (2017) about the Carpathian Basin origin of North-West Indo-Europeans (see here), and his latest update to the Proto-Indo-European homeland question (2019) shows that he is convinced now about R1b bottlenecks and proper Pre-Yamnaya ancestry stemming from a time well before the Bell Beaker expansion. This won’t be the last setback to supporters of zombie theories: like the hypotheses of an Anatolian, Armenian, or OIT origin of the PIE homeland, other mythical ideas are so entrenched in nationalist and/or nativist tradition that many supporters will no doubt prefer them to die hard, under the most numerous and shameful rejections of endlessly remade reactionary models.

Related

Yamnaya ancestry: mapping the Proto-Indo-European expansions

steppe-ancestry-expansion-europe

The latest papers from Ning et al. Cell (2019) and Anthony JIES (2019) have offered some interesting new data, supporting once more what could be inferred since 2015, and what was evident in population genomics since 2017: that Proto-Indo-Europeans expanded under R1b bottlenecks, and that the so-called “Steppe ancestry” referred to two different components, one – Yamnaya or Steppe_EMBA ancestry – expanding with Pro-Indo-Europeans, and the other one – Corded Ware or Steppe_MLBA ancestry – expanding with Uralic speakers.

The following maps are based on formal stats published in the papers and supplementary materials from 2015 until today, mainly on Wang et al. (2018 & 2019), Mathieson et al. (2018) and Olalde et al. (2018), and others like Lazaridis et al. (2016), Lazaridis et al. (2017), Mittnik et al. (2018), Lamnidis et al. (2018), Fernandes et al. (2018), Jeong et al. (2019), Olalde et al. (2019), etc.

NOTE. As in the Corded Ware ancestry maps, the selected reports in this case are centered on the prototypical Yamnaya ancestry vs. other simplified components, so everything else refers to simplistic ancestral components widespread across populations that do not necessarily share any recent connection, much less a language. In fact, most of the time they clearly didn’t. They can be interpreted as “EHG that is not part of the Yamnaya component”, or “CHG that is not part of the Yamnaya component”. They can’t be read as “expanding EHG people/language” or “expanding CHG people/language”, at least no more than maps of “Steppe ancestry” can be read as “expanding Steppe people/language”. Also, remember that I have left the default behaviour for color classification, so that the highest value (i.e. 1, or white colour) could mean anything from 10% to 100% depending on the specific ancestry and period; that’s what the legend is for… But, fere libenter homines id quod volunt credunt.

Sections:

  1. Neolithic or the formation of Early Indo-European
  2. Eneolithic or the expansion of Middle Proto-Indo-European
  3. Chalcolithic / Early Bronze Age or the expansion of Late Proto-Indo-European
  4. European Early Bronze Age and MLBA or the expansion of Late PIE dialects

1. Neolithic

Anthony (2019) agrees with the most likely explanation of the CHG component found in Yamnaya, as derived from steppe hunter-fishers close to the lower Volga basin. The ultimate origin of this specific CHG-like component that eventually formed part of the Pre-Yamnaya ancestry is not clear, though:

The hunter-fisher camps that first appeared on the lower Volga around 6200 BC could represent the migration northward of un-admixed CHG hunter-fishers from the steppe parts of the southeastern Caucasus, a speculation that awaits confirmation from aDNA.

neolithic-chg-ancestry
Natural neighbor interpolation of CHG ancestry among Neolithic populations. See full map.

The typical EHG component that formed part eventually of Pre-Yamnaya ancestry came from the Middle Volga Basin, most likely close to the Samara region, as shown by the sampled Samara hunter-gatherer (ca. 5600-5500 BC):

After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed.

neolithic-ehg-ancestry
Natural neighbor interpolation of EHG ancestry among Neolithic populations. See full map.

To the west, in the Dnieper-Dniester area, WHG became the dominant ancestry after the Mesolithic, at the expense of EHG, revealing a likely mating network reaching to the north into the Baltic:

Like the Mesolithic and Neolithic populations here, the Eneolithic populations of Dnieper-Donets II type seem to have limited their mating network to the rich, strategic region they occupied, centered on the Rapids. The absence of CHG shows that they did not mate frequently if at all with the people of the Volga steppes (…)

neolithic-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Neolithic populations. See full map.

North-West Anatolia Neolithic ancestry, proper of expanding Early European farmers, is found up to border of the Dniester, as Anthony (2007) had predicted.

neolithic-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Neolithic populations. See full map.

2. Eneolithic

From Anthony (2019):

After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

(…) this middle Volga mating network extended down to the North Caucasian steppes, where at cemeteries such as Progress-2 and Vonyuchka, dated 4300 BC, the same Khvalynsk-type ancestry appeared, an admixture of CHG and EHG with no Anatolian Farmer ancestry, with steppe-derived Y-chromosome haplogroup R1b. These three individuals in the North Caucasus steppes had higher proportions of CHG, overlapping Yamnaya. Without any doubt, a CHG population that was not admixed with Anatolian Farmers mated with EHG populations in the Volga steppes and in the North Caucasus steppes before 4500 BC. We can refer to this admixture as pre-Yamnaya, because it makes the best currently known genetic ancestor for EHG/CHG R1b Yamnaya genomes.

From Wang et al (2019):

Three individuals from the sites of Progress 2 and Vonyuchka 1 in the North Caucasus piedmont steppe (‘Eneolithic steppe’), which harbour EHG and CHG related ancestry, are genetically very similar to Eneolithic individuals from Khvalynsk II and the Samara region. This extends the cline of dilution of EHG ancestry via CHG-related ancestry to sites immediately north of the Caucasus foothills

eneolithic-pre-yamnaya-ancestry
Natural neighbor interpolation of Pre-Yamnaya ancestry among Neolithic populations. See full map. This map corresponds roughly to the map of Khvalynsk-Novodanilovka expansion, and in particular to the expansion of horse-head pommel-scepters (read more about Khvalynsk, and specifically about horse symbolism)

NOTE. Unpublished samples from Ekaterinovka have been previously reported as within the R1b-L23 tree. Interestingly, although the Varna outlier is a female, the Balkan outlier from Smyadovo shows two positive SNP calls for hg. R1b-M269. However, its poor coverage makes its most conservative haplogroup prediction R-M343.

The formation of this Pre-Yamnaya ancestry sets this Volga-Caucasus Khvalynsk community apart from the rest of the EHG-like population of eastern Europe.

eneolithic-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Eneolithic populations. See full map.

Anthony (2019) seems to rely on ADMIXTURE graphics when he writes that the late Sredni Stog sample from Alexandria shows “80% Khvalynsk-type steppe ancestry (CHG&EHG)”. While this seems the most logical conclusion of what might have happened after the Suvorovo-Novodanilovka expansion through the North Pontic steppes (see my post on “Steppe ancestry” step by step), formal stats have not confirmed that.

In fact, analyses published in Wang et al. (2019) rejected that Corded Ware groups are derived from this Pre-Yamnaya ancestry, a reality that had been already hinted in Narasimhan et al. (2018), when Steppe_EMBA showed a poor fit for expanding Srubna-Andronovo populations. Hence the need to consider the whole CHG component of the North Pontic area separately:

eneolithic-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Eneolithic populations. See full map. You can read more about population movements in the late Sredni Stog and closer to the Proto-Corded Ware period.

NOTE. Fits for WHG + CHG + EHG in Neolithic and Eneolithic populations are taken in part from Mathieson et al. (2019) supplementary materials (download Excel here). Unfortunately, while data on the Ukraine_Eneolithic outlier from Alexandria abounds, I don’t have specific data on the so-called ‘outlier’ from Dereivka compared to the other two analyzed together, so these maps of CHG and EHG expansion are possibly showing a lesser distribution to the west than the real one ca. 4000-3500 BC.

eneolithic-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Eneolithic populations. See full map.

Anatolia Neolithic ancestry clearly spread to the east into the north Pontic area through a Middle Eneolithic mating network, most likely opened after the Khvalynsk expansion:

eneolithic-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Eneolithic populations. See full map.
eneolithic-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Eneolithic populations. See full map.

Regarding Y-chromosome haplogroups, Anthony (2019) insists on the evident association of Khvalynsk, Yamnaya, and the spread of Pre-Yamnaya and Yamnaya ancestry with the expansion of elite R1b-L754 (and some I2a2) individuals:

eneolithic-early-y-dna
Y-DNA haplogroups in West Eurasia during the Early Eneolithic in the Pontic-Caspian steppes. See full map, and see culture, ADMIXTURE, Y-DNA, and mtDNA maps of the Early Eneolithic and Late Eneolithic.

3. Early Bronze Age

Data from Wang et al. (2019) show that Corded Ware-derived populations do not have good fits for Eneolithic_Steppe-like ancestry, no matter the model. In other words: Corded Ware populations show not only a higher contribution of Anatolia Neolithic ancestry (ca. 20-30% compared to the ca. 2-10% of Yamnaya); they show a different EHG + CHG combination compared to the Pre-Yamnaya one.

eneolithic-steppe-best-fits
Supplementary Table 13. P values of rank=2 and admixture proportions in modelling Steppe ancestry populations as a three-way admixture of Eneolithic steppe Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Test, Eneolithic_steppe, Anatolian_Neolithic, WHG.
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

Yamnaya Kalmykia and Afanasievo show the closest fits to the Eneolithic population of the North Caucasian steppes, rejecting thus sizeable contributions from Anatolia Neolithic and/or WHG, as shown by the SD values. Both probably show then a Pre-Yamnaya ancestry closest to the late Repin population.

wang-eneolithic-steppe-caucasus-yamnaya
Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional AF ancestry in Steppe groups and additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups. See tables above. Modified from Wang et al. (2019). Within a blue square, Yamnaya-related groups; within a cyan square, Corded Ware-related groups. Green background behind best p-values. In red circle, SD of AF/WHG ancestry contribution in Afanasevo and Yamnaya Kalmykia, with ranges that almost include 0%.

EBA maps include data from Wang et al. (2018) supplementary materials, specifically unpublished Yamnaya samples from Hungary that appeared in analysis of the preprint, but which were taken out of the definitive paper. Their location among Yamnaya settlers from Hungary is speculative, although most uncovered kurgans in Hungary are concentrated in the Tisza-Danube interfluve.

eba-yamnaya-ancestry
Natural neighbor interpolation of Pre-Yamnaya ancestry among Early Bronze Age populations. See full map. This map corresponds roughly with the known expansion of late Repin/Yamnaya settlers.

The Y-chromosome bottleneck of elite males from Proto-Indo-European clans under R1b-L754 and some I2a2 subclades, already visible in the Khvalynsk sampling, became even more noticeable in the subsequent expansion of late Repin/early Yamnaya elites under R1b-L23 and I2a-L699:

chalcolithic-early-y-dna
Y-DNA haplogroups in West Eurasia during the Yamnaya expansion. See full map and maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Chalcolithic and Yamnaya Hungary.

Maps of CHG, EHG, Anatolia Neolithic, and probably WHG show the expansion of these components among Corded Ware-related groups in North Eurasia, apart from other cultures close to the Caucasus:

NOTE. For maps with actual formal stats of Corded Ware ancestry from the Early Bronze Age to the modern times, you can read the post Corded Ware ancestry in North Eurasia and the Uralic expansion.

eba-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Early Bronze Age populations. See full map.
eba-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Early Bronze Age populations. See full map.
eba-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Early Bronze Age populations. See full map.
eba-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Early Bronze Age populations. See full map.
eba-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Early Bronze Age populations. See full map.

4. Middle to Late Bronze Age

The following maps show the most likely distribution of Yamnaya ancestry during the Bell Beaker-, Balkan-, and Sintashta-Potapovka-related expansions.

4.1. Bell Beakers

The amount of Yamnaya ancestry is probably overestimated among populations where Bell Beakers replaced Corded Ware. A map of Yamnaya ancestry among Bell Beakers gets trickier for the following reasons:

  • Expanding Repin peoples of Pre-Yamnaya ancestry must have had admixture through exogamy with late Sredni Stog/Proto-Corded Ware peoples during their expansion into the North Pontic area, and Sredni Stog in turn had probably some Pre-Yamnaya admixture, too (although they don’t appear in the simplistic formal stats above). This is supported by the increase of Anatolia farmer ancestry in more western Yamna samples.
  • Later, Yamnaya admixed through exogamy with Corded Ware-like populations in Central Europe during their expansion. Even samples from the Middle to Upper Danube and around the Lower Rhine will probably show increasing contributions of Steppe_MLBA, at the same time as they show an increasing proportion of EEF-related ancestry.
  • To complicate things further, the late Corded Ware Espersted family (from ca. 2500 BC or later) shows, in turn, what seems like a recent admixture with Yamnaya vanguard groups, with the sample of highest Yamnaya ancestry being the paternal uncle of other individuals (all of hg. R1a-M417), suggesting that there might have been many similar Central European mating networks from the mid-3rd millennium BC on, of (mainly) Yamnaya-like R1b elites displaying a small proportion of CW-like ancestry admixing through exogamy with Corded Ware-like peoples who already had some Yamnaya ancestry.
mlba-yamnaya-ancestry
Natural neighbor interpolation of Yamnaya ancestry among Middle to Late Bronze Age populations (Esperstedt CWC site close to BK_DE, label is hidden by BK_DE_SAN). See full map. You can see how this map correlated with the map of Late Copper Age migrations and Yamanaya into Bell Beaker expansion.

NOTE. Terms like “exogamy”, “male-driven migration”, and “sex bias”, are not only based on the Y-chromosome bottlenecks visible in the different cultural expansions since the Palaeolithic. Despite the scarce sampling available in 2017 for analysis of “Steppe ancestry”-related populations, it appeared to show already a male sex bias in Goldberg et al. (2017), and it has been confirmed for Neolithic and Copper Age population movements in Mathieson et al. (2018) – see Supplementary Table 5. The analysis of male-biased expansion of “Steppe ancestry” in CWC Esperstedt and Bell Beaker Germany is, for the reasons stated above, not very useful to distinguish their mutual influence, though.

Based on data from Olalde et al. (2019), Bell Beakers from Germany are the closest sampled ones to expanding East Bell Beakers, and those close to the Rhine – i.e. French, Dutch, and British Beakers in particular – show a clear excess “Steppe ancestry” due to their exogamy with local Corded Ware groups:

Only one 2-way model fits the ancestry in Iberia_CA_Stp with P-value>0.05: Germany_Beaker + Iberia_CA. Finding a Bell Beaker-related group as a plausible source for the introduction of steppe ancestry into Iberia is consistent with the fact that some of the individuals in the Iberia_CA_Stp group were excavated in Bell Beaker associated contexts. Models with Iberia_CA and other Bell Beaker groups such as France_Beaker (P-value=7.31E-06), Netherlands_Beaker (P-value=1.03E-03) and England_Beaker (P-value=4.86E-02) failed, probably because they have slightly higher proportions of steppe ancestry than the true source population.

olalde-iberia-chalcolithic

The exogamy with Corded Ware-like groups in the Lower Rhine Basin seems at this point undeniable, as is the origin of Bell Beakers around the Middle-Upper Danube Basin from Yamnaya Hungary.

To avoid this excess “Steppe ancestry” showing up in the maps, since Bell Beakers from Germany pack the most Yamnaya ancestry among East Bell Beakers outside Hungary (ca. 51.1% “Steppe ancestry”), I equated this maximum with BK_Scotland_Ach (which shows ca. 61.1% “Steppe ancestry”, highest among western Beakers), and applied a simple rule of three for “Steppe ancestry” in Dutch and British Beakers.

NOTE. Formal stats for “Steppe ancestry” in Bell Beaker groups are available in Olalde et al. (2018) supplementary materials (PDF). I didn’t apply this adjustment to Bk_FR groups because of the R1b Bell Beaker sample from the Champagne/Alsace region reported by Samantha Brunel that will pack more Yamnaya ancestry than any other sampled Beaker to date, hence probably driving the Yamnaya ancestry up in French samples.

The most likely outcome in the following years, when Yamnaya and Corded Ware ancestry are investigated separately, is that Yamnaya ancestry will be much lower the farther away from the Middle and Lower Danube region, similar to the case in Iberia, so the map above probably overestimates this component in most Beakers to the north of the Danube. Even the late Hungarian Beaker samples, who pack the highest Yamnaya ancestry (up to 75%) among Beakers, represent likely a back-migration of Moravian Beakers, and will probably show a contribution of Corded Ware ancestry due to the exogamy with local Moravian groups.

Despite this decreasing admixture as Bell Beakers spread westward, the explosive expansion of Yamnaya R1b male lineages (in words of David Reich) and the radical replacement of local ones – whether derived from Corded Ware or Neolithic groups – shows the true extent of the North-West Indo-European expansion in Europe:

chalcolithic-late-y-dna
Y-DNA haplogroups in West Eurasia during the Bell Beaker expansion. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Late Copper Age and of the Yamnaya-Bell Beaker transition.

4.2. Palaeo-Balkan

There is scarce data on Palaeo-Balkan movements yet, although it is known that:

  1. Yamnaya ancestry appears among Mycenaeans, with the Yamnaya Bulgaria sample being its best current ancestral fit;
  2. the emergence of steppe ancestry and R1b-M269 in the eastern Mediterranean was associated with Ancient Greeks;
  3. Thracians, Albanians, and Armenians also show R1b-M269 subclades and “Steppe ancestry”.

4.3. Sintashta-Potapovka-Filatovka

Interestingly, Potapovka is the only Corded Ware derived culture that shows good fits for Yamnaya ancestry, despite having replaced Poltavka in the region under the same Corded Ware-like (Abashevo) influence as Sintashta.

This proves that there was a period of admixture in the Pre-Proto-Indo-Iranian community between CWC-like Abashevo and Yamnaya-like Catacomb-Poltavka herders in the Sintashta-Potapovka-Filatovka community, probably more easily detectable in this group because of the specific temporal and geographic sampling available.

srubnaya-yamnaya-ehg-chg-ancestry
Supplementary Table 14. P values of rank=3 and admixture proportions in modelling Steppe ancestry populations as a four-way admixture of distal sources EHG, CHG, Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Steppe cluster, EHG, CHG, WHG, Anatolian_Neolithic
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

Srubnaya ancestry shows a best fit with non-Pre-Yamnaya ancestry, i.e. with different CHG + EHG components – possibly because the more western Potapovka (ancestral to Proto-Srubnaya Pokrovka) also showed good fits for it. Srubnaya shows poor fits for Pre-Yamnaya ancestry probably because Corded Ware-like (Abashevo) genetic influence increased during its formation.

On the other hand, more eastern Corded Ware-derived groups like Sintashta and its more direct offshoot Andronovo show poor fits with this model, too, but their fits are still better than those including Pre-Yamnaya ancestry.

mlba-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Middle to Late Bronze Age populations. See full map.
mlba-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Middle to Late Bronze Age populations. See full map.
mlba-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Middle to Late Bronze Age populations. See full map.
mlba-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Middle to Late Bronze Age populations. See full map.

NOTE For maps with actual formal stats of Corded Ware ancestry from the Early Bronze Age to the modern times, you should read the post Corded Ware ancestry in North Eurasia and the Uralic expansion instead.

The bottleneck of Proto-Indo-Iranians under R1a-Z93 was not yet complete by the time when the Sintashta-Potapovka-Filatovka community expanded with the Srubna-Andronovo horizon:

early-bronze-age-y-dna
Y-DNA haplogroups in West Eurasia during the European Early Bronze Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Bronze Age.

4.4. Afanasevo

At the end of the Afanasevo culture, at least three samples show hg. Q1a2-M25 (ca. 2900-2500 BC), which seemed to point to a resurgence of local lineages, despite continuity of the prototypical Pre-Yamnaya ancestry. On the other hand, Anthony (2019) makes this cryptic statement:

Yamnaya men were almost exclusively R1b, and pre-Yamnaya Eneolithic Volga-Caspian-Caucasus steppe men were principally R1b, with a significant Q1a minority.

Since the only available samples from the Khvalynsk community are R1b (x3), Q1a(x1), and R1a(x1), it seems strange that Anthony would talk about a “significant minority”, unless Q1a will pop up in some more individuals of those ca. 30 new to be published. Because he also mentions I2a2 as appearing in one elite burial, it seems Q1a (like R1a-M459) will not appear under elite kurgans, although it is still possible that hg. Q1a was involved in the expansion of Afanasevo to the east.

middle-bronze-age-y-dna
Y-DNA haplogroups in West Eurasia during the Middle Bronze Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Middle Bronze Age and the Late Bronze Age.

Okunevo, which replaced Afanasevo in the Altai region, shows a majority of hg. Q1a2-M25, and at least one Q1a1-B284, but also some R1b-M269 samples proper of Afanasevo, suggesting partial genetic continuity.

NOTE. Other sampled Siberian populations clearly show a variety of Q subclades that likely expanded during the Palaeolithic, such as Baikal EBA samples from Ust’Ida and Shamanka with a majority of Q1a2-M25 (in particular Q1a2-L712), and hg. Q reported from Elunino, Sagsai, Khövsgöl, and also among peoples of the Srubna-Andronovo horizon (the Krasnoyarsk MLBA outlier), and in Karasuk. Q1a-M25 was earlier found in a Baltic hunter-gatherer, which supports a widespread distribution of Q1a2 and Q1a1 in North Eurasia during the Neolithic and Bronze Age.

From Damgaard et al. Science (2018):

(…) in contrast to the lack of identifiable admixture from Yamnaya and Afanasievo in the CentralSteppe_EMBA, there is an admixture signal of 10 to 20% Yamnaya and Afanasievo in the Okunevo_EMBA samples, consistent with evidence of western steppe influence. This signal is not seen on the X chromosome (qpAdm P value for admixture on X 0.33 compared to 0.02 for autosomes), suggesting a male-derived admixture, also consistent with the fact that 1 of 10 Okunevo_EMBA males carries a R1b1a2a2 Y chromosome related to those found in western pastoralists. In contrast, there is no evidence of western steppe admixture among the more eastern Baikal region region Bronze Age (~2200 to 1800 BCE) samples.

This Yamnaya ancestry has been also recently found to be the best fit for the Iron Age population of Shirenzigou in Xinjiang – where Tocharian languages were attested centuries later – despite the haplogroup diversity acquired during their evolution, likely through an intermediate Chemurchek culture (see a recent discussion on the elusive Proto-Tocharians).

Haplogroup diversity seems to be common in Iron Age populations all over Eurasia, most likely due to the spread of different types of sociopolitical structures where alliances played a more relevant role in the expansion of peoples. A well-known example of this is the spread of Akozino warrior-traders in the whole Baltic region under a partial N1a-VL29-bottleneck associated with the emerging chiefdom-based systems under the influence of expanding steppe nomads.

early-iron-age-y-dna
Y-DNA haplogroups in West Eurasia during the Early Iron Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Iron Age and Late Iron Age.

Surprisingly, then, Proto-Tocharians from Shirenzigou pack up to 74% Yamnaya ancestry, in spite of the 2,000 years that separate them from the demise of the Afanasevo culture. They show more Yamnaya ancestry than any other population by that time, being thus a sort of Late PIE fossils not only in their archaic dialect, but also in their genetic profile:

shirenzigou-afanasievo-yamnaya-andronovo-srubna-ulchi-han

The recent intrusion of Corded Ware-like ancestry, as well as the variable admixture with Siberian and East Asian populations, both point to the known intense Old Iranian and Old/Middle Chinese contacts. The scarce Proto-Samoyedic and Proto-Turkic loans in Tocharian suggest a rather loose, probably more distant connection with East Uralic and Altaic peoples from the forest-steppe and steppe areas to the north (read more about external influences on Tocharian).

Interestingly, both R1b samples, MO12 and M15-2 – likely of Asian R1b-PH155 branch – show a best fit for Andronovo/Srubna + Hezhen/Ulchi ancestry, suggesting a likely connection with Iranians to the east of Xinjiang, who later expanded as the Wusun and Kangju. How they might have been related to Huns and Xiongnu individuals, who also show this haplogroup, is yet unknown, although Huns also show hg. R1a-Z93 (probably most R1a-Z2124) and Steppe_MLBA ancestry, earlier associated with expanding Iranian peoples of the Srubna-Andronovo horizon.

All in all, it seems that prehistoric movements explained through the lens of genetic research fit perfectly well the linguistic reconstruction of Proto-Indo-European and Proto-Uralic.

Related

European hydrotoponymy (IV): tug of war between Balto-Slavic and West Uralic

germanic-balto-slavic-expansion

In his recent paper on Late Proto-Indo-European migrations, when citing Udolph to support his model, Frederik Kortlandt failed to mention that the Old European hydrotoponymy in northern Central-East Europe evolved into Baltic and Slavic layers, and both take part in some Northern European (i.e. Germanic – Balto-Slavic) commonalities.

Proto-Slavic

From Expansion slavischer Stämme aus namenkundlicher und bodenkundlicher sicht, by Udolph, Onomastica (2016), translated into English (emphasis mine):

NOTE. An archived version is available here. The DOI references for Onomastica do not work.

(…) there is a clear center of Slavic names in the area north of the Carpathians. Among them are root words of the Slavic languages such as reka / rzeka, potok u. a. m.

Even more important than this mapping is the question of how the dispersion of ancient Slavic names happened. What is meant by ancient Slavic names? I elaborated on this in this journal years ago (Udolph, 1997):

(1)Ancient suffixes that are no longer productive today.

This clearly includes Slavic *-(j)ava as in Vir-ava, Vod-ava, Il-ava, Glin-iawa, Breg-ava, Ljut-ava, Mor-ava, Orl-java among others. It has clear links to the ancient common Indo-European language (Lupawa, Morava-March-Moravia, Orava, Widawa). They have a center north of the Carpathians.

ava-slavic

(2) Unproductive appellatives (water words), which have disappeared from the language, are certain witnesses of ancient Slavic settlements. A nice example of this is Ukr. bahno, Pol. bagno ‘swamp, bog, morass’ etc. The word has long been missing in South Slavic, although it appears in South Slavic names, but only in very specific areas (see Udolph, 1979, pp. 324-336).

(3) Names that go back to different sound shifts. [Examples:]

  • (…) the Slavic clan around Old Sorbian brna ‘feces, earth’, Bulgarian OCS brьnije ‘feces, loam’, OCS brъna ‘feces’, Slovenian brn, ‘river mud’, etc. is solved with the inclusion of onomastic materials (Udolph, 1979, p. 499-514). (…) Toponymic mapping shows important details.
  • bryn-slavic
    Karte 4. brъn < *brŭn und bryn- < *brūn- in slavischen Namen
  • (…)We also have an ablauting *krŭn-:*krūn- in front of us. Map 5 shows the distribution of both variants in Slavic names.
  • The next case is quite similar. It concerns Russ. appellative grjaz’ ‘dirt, feces, mud’, (…) for which an Old Slavic form *gręz exists. Slavic also knows the ablauting variant *grǫz.

    These maps (see Map 6, p. 222) show that a homeland of Slavic tribes can only be inferred north of the Carpathians.

    (4) Place-names formed by Slavic suffixes of Pre-Slavic nature, i.e. derived from Old European hydronyms.

    (a) The largest river in Poland, the Wisła, German Vistula, bears a clearly Pre-Slavic name, no matter how one explains it (Babik, 2001, pp. 311-315; Bijak, 2013, p. 34, Udolph, 1990 , Pp. 303-311).

    (b) With the same suffix are formed Sanok, place on the southwest of Przemyśl; Sanoka, a no longer known waters name, 1448 as fluvium Szanoka, near the place Sanoka and with a diminutive suffix -ok- a tributary of the Sanok, which is called Sanoczek (for details see Udolph, 1990, pp. 264-270; Rymut / Majtan, 1998, p. 222). The San also has a single-language name, but that does not change anything about the right etymology. The suffix variant -očь also includes Liwocz and Liwoczka, river names near Cracow; also a mountain range of the Beskydy is mentioned at Długosz as Lywocz.

    According to the opinion of the “Słownik prasłowiański” (Sławski (red.), 1974, p. 92), the suffix -ok- represents a Proto-Slavic archaism. It appears, for example, in sъvědokъ, snubokъ, vidokъ, edok, igrok, inok among others, but its antiquity also shows, among other things, that it started at archaic athematic tribes.

    east-slavic-language-expansion
    Mapping of older and younger East Slavic place-names and translation into settlement evolution.

    Slavonic Urheimat

    If we apply this to the loess distribution in western Ukraine and south-eastern Poland, it is very noticeable that the center of the Old Slavic place names lies in the area where loess dispersal is gradually “frayed out”, i.e. for example, in the area west of Kiev between Krakow in the west and Winnycja and Moldavia in the east. In short, the distribution of good soils coincides with ancient Slavic names. If that is correct, we can expect a homeland in the Pre-Carpathian region, or better, a core landscape of Slavic settlement.

    The existence of Pre-Slavic Indo-European place names and water names whose structure indicates that they originated from an Indo-European basis, but then also developed Slavic peculiarities, can now – as stated above – only be understood to mean that the language group that we call today Slavic emerged in a century-long process from an Indo-European dialectal area.

    Loess areas between Poland and Ukraine. Image from Jary et al. (2018).

    From a genetic point of view, the scarce data published to date show a clear shift of central-east populations from more Corded Ware-like groups in the EBA towards more BBC-derived ancestry in the common era, to the point where ancient DNA samples from East Germany, Poland and Lithuania evolve from clustering between Corded Ware and Sub-Neolithic peoples to clustering close to Bell Beaker-derived groups, such as West Germanic peoples, Tollense samples, etc. (see below)

    Furthermore, sampled Early Slavs show bottlenecks under “Dinaric” I2a-L621 and central-eastern E1b-V13, which – in combination with the known phylogeography of Únětice and Urnfield – is compatible with its late expansion from a central-east European Slavonic homeland, such as the Pomeranian culture, in turn likely derived from Lusatian culture groups.

    This doesn’t preclude a more immediate expansion of Common Slavic in Antiquity closer to the northern Carpathians, which is also supported by the available Early Slavic sampling, apart from samples from the Avar and Hungarian polities.

    pca-balto-slavic-iron-age
    Likely Baltic (yellow-green) and Slavic (orange) groups ca. 500 AD on, with Finnic (cyan) and Mordvinic (blue) groups roughly divided through hydrotoponymy line ca. 1000 AD Top Left: Late Iron Age cultures. Top right: PCA of groups from the Iron Age to the Middle Ages. Y-DNA haplogroups during the Germanic migrations (Bottom left) and during the Middle Ages (Bottom right). Notice a majority non-R1a lineages among sampled Early Slavs. See full maps and PCAs.

    Proto-Baltic / Proto-Slavic

    Northern European hydronymy

    From Alteuropäische Hydronymie und urslavische Gewässernamen, by Udolph, Onomastica (1997), translated into English (emphasis mine):

    NOTE. An HTML version is available at Jurgen Udolph’s personal site.

    Because of the already striking similarities as the well-known “-m-case”, the number-words for ‘1000’, ’11’ and ’12’ and so on, J. Grimm had already assumed a close relationship between Germanic and Baltic and Slavic. (…)

    In my own search, I approached this trinity from the nomenclature side. In doing so, I noticed some name groups that can speak for a certain common context:

    1.* bhelgh-, *bholgh-.

    Map 10, p. 64, shows that a root * bhelgh- occurs in the name material of a region from which later Germanic, Baltic and Slavic originated. The Balkans play no role in this.

    bholgh-germanic-balto-slavic

    2. *dhelbh-, *dholbh-, *dhl̥bh-

    The proof of the three ablauting * dhelbh, * dholbh, * dhl̥bh- within a limited area shows the close relationship that this root has with the Indo-European basis. Again it is significant in which area the names meet (…)

    dhelbh-germanic-balto-slavic

    3. An Indo-European root extension *per-s- with the meaning ‘spray, splash, dust, drop’ is detectable in several languages (…). From a Baltic-Slavic-Germanic peculiarity cannot therefore be spoken from the toponymic point of view. The picture changes, however, if one includes the derived water names.

    4. The root extension *pel-t-, *pol-t-, *pl̥-t- of a tribe widely spread in the Indo-European languages around *pel-, pol- ‘pour, flow, etc.’, whose reflexes are found Armenian through Baltic and Slavic to the Celtic area, is found in the Baltic toponymy, cf. Latv. palts, palte ‘puddle, pool’.

    trzciniec-riesenbecher-culture
    The dynamics of stylistic changes of the form of the “Trzciniec pot” in the lowland regions of Central Europe, and spreading routes of the Trzciniec package in Central Europe. A good proxy for contacts through the Northern European Plain during the Early Bronze Age. Modified from Czebreszuk (1998).

    Early Balto-Finnic

    In order to properly delimit (geographically and chonologically) the Proto-Baltic and Proto-Slavic expansions, it is necessary to understand where the late Balto-Finnic homeland was located during the Bronze Age. The following are excerpts from the comprehensive hydrotoponymic study by Pauli Rahkonen (2013):

    In any case, Finnic probably had its origin somewhere around the Gulf of Finland. Names of large and central rivers such as Vuoksi (< Finnic vuo ‘stream’) and Neva (< Finnic neva ‘marsh, river’) must be very old and might represent Proto-Finnic hydronyms. In the southern coastal area of Finland, the names Kymi and Nietoo < *Niet|oja (id. later Porvoonjoki) may also be of Finnic origin and derive from, respectively, kymi ‘stream’ (see SSA I s.v. *kymi; see however SPK s.v. Kemijärvi; Rahkonen 2013: 24) and nieto(s) ‘heap of snow’ (SSA II s.v. nietos), in hydronyms probably ‘high (snowy?) banks of a river’. Mustion|joki is clearly a Finnish name < *must|oja ‘black river’. The river name Vantaa remains somewhat obscure, although Nissilä (see SPK s.v. Vantaanjoki) has derived it from the Finnic word vana ‘water route’. In western Finland the names of large rivers, such as Aura and Eura, are supposedly of Germanic origin (Koivulehto 1987).

    In Estonia the names of many of the most important rivers might be of Finnic origin: e.g. Ema|jõgi Est. ema ‘mother’ [Tartu district] (?? cf. the Lake Piiga|ndi < Est. piiga ‘maiden’), Pärnu [Pärnu district] < Est. pärn ‘linden’, Valge|jõgi [Loksa district] < Est. valge ‘white’, Must|jõgi [Võru district] < Est. must ‘black’. It is possible that Emajogi and especially Piigandi are the result of later folk etymologizing of a name with some unknown origin. However, as a naming motif there exist in Finland numerous toponyms with the stems Finnic *emä (e.g. 3 Emäjoki), *neit(V)- ‘maiden’ (e.g. Neitijärvi, Neittävänjoki, Neittävänjärvi) and Saami stems that can be derived from Proto Saami *nejte̮ ‘id’ (GT2000; NA).

    finnic-toponyms
    The historical southern boundary of Finnic hydronyms, excluding hydronyms produced by the Karelian refugees of the 17th century.

    These seemingly very old names of relatively large rivers in southern Finland, modern Leningrad oblast and Estonia support the hypothesis that Proto-Finnic was spoken for a long time on both sides of the Gulf of Finland and it thus basically corresponds to the hypothesis of Terho Itkonen (see below). In the Novgorod, Tver or Vologda oblasts of Russia, Finnic names for large rivers cannot be found (Rahkonen 2011: 229). For this reason, it is likely that the Late Proto-Finnic homeland was the area around the Gulf of Finland.

    Beyond the southeastern boundary of the modern or historically known Finnic-speaking area, there exists a toponymic layer belonging to the supposedly non-Finnic Novgorodian Čudes (see Rahkonen 2011). In theory it is possible that Proto-Finnic and Proto-Čudian separated from each other at an early stage or it is even possible that Proto-Čudian was identical with Proto-Finnic. However, this cannot be proven, because there is not enough material available describing what Novgorodian Čudic was like exactly.

    finno-saamic-mordvin
    Yakhr-, -khra, yedr-, -dra and yer-/yar, -er(o), -or(o) names of lakes in Central and North Russia and the possible boundary of the proto-language words *jäkra/ä and *järka/ä. Rahkonen (2013)

    A summary of the data is then:

    • The Daugava River and the Gulf of Livonia formed the most stable south-western Balto-Finnic border (up until ca. 1000 AD): the Daugava shows a likely Indo-European etymology, while some of its tributaries are best explained as derived from Uralic.
    • The first layer of “Early Baltic” loans in Early Balto-Finnic are of a non-attested Baltic dialect closest to Proto-Balto-Slavic (read more about this early layer).
    • The latest samples of the Trzciniec culture (or derived Iron Age group) from its easternmost group in Turlojiškė (ca. 1000-800 BC?) show a western shift towards Bell Beaker, although they show a majority of hg. R1a-Z280; while the earliest sample from Gustorzyn (ca. 1900 BC), likely from Trzciniec/Iwno, from the westernmost area of the culture, shows a Corded Ware-like ancestry (and hg. R1a-Z280, likely S24902+) among a BA sampling from Poland clearly derived from Bell Beaker groups.

    One can therefore infer that the expansion of the Trzciniec culture – as the earliest expansion of central-west European peoples into the Baltic after the Bell Beaker period – represented either the whole disintegrating Balto-Slavic community, or at least an Early Baltic-speaking community expanding from the West Baltic area to the east.

    The similarity of Early Slavs and the Trzciniec outlier with the Czech BA cluster, formed by samples from Bohemia (ca. 2200–1700 BC), and the varied haplogroups found among Early Slavs – reminiscent of the variability of the Unetice/Urnfield sampling – may help tentatively connect the early Proto-Slavic homeland more strongly with a Proto-Lusatian community immediately to the south-west of the Iwno/Proto-Trzciniec core.

    pca-late-bronze-age-balto-slavic-finnic
    Top Left:Likely Baltic, Slavic, and Balto-Finnic-speaking territories (asynchronous), overlaid over Late Bronze Age cultures. Balto-Slavic in green: West(-East?) Baltic (B1), unattested early Baltic (B2), and Slavic (S). Late Balto-Finnic (F) in cyan. In red, Tollense and Turlojiškė sampling. Dashed black line: Balto-Slavic/West Uralic hydrotoponymy border until ca. 1000 AD. Top right: PCA of groups from the Early Bronze Age to the Late Bronze Age. Marked are Iwno/Pre-Trzciniec of Gustorzyn (see below), Late Trzciniec/Iron Age samples from Turlojiškė, and in dashed line approximate extent of Tollense cluster; Y-DNA haplogroups during the Late Bronze Age (Bottom left) and during the Early Iron Age (Bottom right). Notice a majority non-R1a lineages among sampled Early Slavs. See full maps and PCAs.

    Proto-Balto-Slavic homeland

    Disconnected western border: Germanic

    The common Balto-Slavic – Germanic community must necessarily be traced back to the West Baltic. From Udolph’s Namenkundliche Studien zum Germanenproblem, de Gruyter (1994), translated from German (emphasis mine):

    My work [Namenkundliche Studien zum Germanenproblem] has shown how strong the Germanic toponymy is related to the East, less to Slavic, much more to Baltic. It confirms the recent thesis by W.P. Schmid on the special relationship Germanic and Baltic, according to which “the formation of the typical Germanic linguistic characteristics…must have taken place in the neighborhood of Baltic“.

    If one starts from a Germanic core area whose eastern boundary is to be set on the middle Elbe between the Erzgebirge and Altmark, there are little more than 400 km. to the undoubtedly Baltic settlement area east of the Vistula. Stretching the Baltic area westwards over the Vistula (as far as the much-cited Persante), the distance is reduced to less than 300 km. Assuming further that Indo-European tribes between the developing Germanic and the Baltic groups represent the connection between the two language groups, so can one understand well the special relationship proposed by W.P. Schmid between Germanic and Baltic. In an earlier period shared Slavic evidently the same similarities (Baltic-Slavic-Germanic peculiarities).

    balto-slavic-balto-finnic-homeland
    Top: Palaeo-Germanic (G2, blue area), Proto-Balto-Slavic/Pre-Baltic (PBSL, green area) and Early Proto-Balto-Finnic (PBF, cyan area) homelands superimposed over Early Bronze Age cultures. Persante hydronym and Gustorzyn ancient DNA sample location marked. Y-DNA haplogroups during the Early Bronze Age (Bottom left) and during the Middle Bronze Age (Bottom right). Notice a mix of R1b-L151 samples from the west and the process of integration of R1a-Z645 lineages from the the north-east. See full maps and PCAs.

    Substrate and immediate eastern border: Early Balto-Finnic

    While Balto-Finnic shows a late Balto-Slavic adstrate, Balto-Slavic has a Balto-Finnic(-like) substrate, also found later in Baltic and Slavic, which implies that Balto-Slavic (and later Baltic and Slavic) replaced the language of peoples who spoke Balto-Finnic(-like) languages, influencing at the same time the language of neighbouring peoples, who still spoke Balto-Finnic (or were directly connected to the Balto-Finnic community).

    For more on this relative chronology in Balto-Slavic – Balto-Finnic contacts, see e.g. the recent posts on Kallio (2003), Olander (2019), or a summary of this substrate.

    While Rahkonen (2013) entertains Parpola’s theory of a West-Uralic-speaking Netted Ware area (ca. 1900-500 BC), due to the Uralic-like hydrotoponymy of its territory, he also supports Itkonen’s idea of the ancient presence of almost exclusively Balto-Finnic place and river names in the Eastern Baltic and the Gulf of Finland since at least the Corded Ware period, due to the lack of Indo-European layers there:

    NOTE. This idea was also recently repeated by Kallio (2015), who can’t find a non-Uralic layer of hydrotoponymy in Balto-Finnic-speaking areas.

    It should be observed that the territory between the historical Finnic and Mordvin-speaking areas matches quite well with the area of the so-called Textile Ceramics [circa 1900–800 BC] (cf. Parpola 2012: 288). The culture of Textile Ceramics could function as a bridge between these two extreme points. Languages that were spoken later in this vast territory between Finland–Estonia and Mordovia seem to derive from Western Uralic (WU) as well. I have called those languages Meryan-Muroma, Eastern and Western Čudian and an unknown “x” language spoken in inland Finland, Karelia and the Lake Region of the Russian North (Rahkonen 2011; 241; 2012a: 19–27; 2013: 5– 43). This might mean that the territory of the Early Textile Ceramics reflects to some extent the area of late Western Uralic.

    The archaeologically problematic area is Estonia, Livonia and Coastal Finland – the area traditionally assumed to have been populated by the late Proto-Finns. The Textile Ceramics culture was absent there. It is very difficult to believe that the Textile Ware population in inland Finland migrated or was even the main factor bringing the Pre- or Early Proto-Finnic language to Estonia or Livonia. There are no archaeological or toponymic signs of it. Therefore, I am forced to believe that Textile Ceramics did not bring Uralic-speaking people to those regions. This makes it possible, but not absolutely proven, to assume that some type of Uralic language was spoken in the region of the Gulf of Finland already before Textile Ceramics spread to the northwest (circa 1900 BC).

    corded-ware-west-uralic
    Top Left: Corded Ware culture expansion. Top right: PCA of Corded Ware and Sub-Neolithic groups. Y-DNA haplogroups during the Corded Ware expansion (Bottom left) and during the subsequent Bell Beaker expansion (Bottom right). Notice the rapid population replacement of typical Corded Ware R1a-Z645 lineages by expanding Bell Beakers of hg. R1b-L23 in central-east Europe, while they show continuity in the described ancestral Fennoscandian West-Uralic-speaking territory. See full maps and PCAs.

    The Corded Ware population in Finland is thought to have been NW Indo-European by many scholars (e.g. Koivulehto 2006: 154–155; Carpelan & Parpola 2001: 84). At least, it is probable that the Corded Ware culture was brought to Finland by waves of migration, because the representatives of the former Late Comb Ceramics partially lived at the same time side by side with the Corded Ware population. However, it is possible that the immigrants were a population that spoke Proto-Uralic, who had adopted the Corded Ware culture from their Indo-European neighbors, possibly from the population of the Fatjanovo culture, e.g. in the Valdai region. This was suggested by Terho Itkonen (1997: 251) as well. In that case the population of the Typical and Late Comb Ceramics may have spoken some Paleo European language (see Saarikivi 2004a). In the Early Bronze Age, the Baltic Pre-Finnic language that I have suggested must have been very close to late WU and therefore no substantial linguistic differences existed between the Baltic Pre-Finns and the population of Textile Ceramics in inland Finland. I admit that this model is difficult to prove, but I have presented it primarily in order to offer new models of thinking.16 At least, there is no archaeological or linguistic reason against this idea.

    This dubitative attribution of Proto-Uralic to the expansion of Corded Ware groups in eastern Europe, which is what hydrotoponymic data suggests in combination with archaeology, has to be understood as a consequence of how striking Rahkonen finds the results of his research, despite Itkonen’s previous proposal, in the context of an overwhelming majority of Indo-Europeanists who, until very recently, simplistically associated Corded Ware with the Indo-European expansion.

    Conclusion

    Even Kortlandt accepts at this point the identification of expanding East Bell Beakers from the Carpathian Basin as those who left the Alteuropäische layer reaching up to the Baltic. However, he identified Udolph’s data solely with West Indo-European, forgetting to mention the commonly agreed upon western Proto-Balto-Slavic homeland, most likely because it contradicts two of his main tenets:

    1. that Balto-Slavic split from a hypothetical Indo-Slavonic (i.e. Satem) group expanding from the east; and
    2. that laryngeals can be reconstructed for Balto-Slavic – unlike for North-West Indo-European.
    old-european-asian-hydro-toponymy
    Indo-European hydrotoponymy in Europe and the Middle East (scarce Central Asian data). Baltic data compensated, statistical method RBF: intermediate regions devoid of Indo-European toponyms are inferred to have them; it compensates thus e.g. for the scarce Indo-European hydrotoponyms in Poland by assuming ‘soft’ continuity from West Germany to the Baltic.

    A hypothetic “Pre-Indo-Slavonic” laryngeal Indo-European layer reaching Fennoscandia and the Forest Zone with Corded Ware is fully at odds with all known data:

    • in comparative grammar, since the one feature that characterizes Graeco-Aryan is precisely its set of innovations relative to Northern Indo-European, which presupposes a longer contact (and further laryngeal loss) once Tocharian and North-West Indo-European had separated – hence probably represented by Palaeo-BalkanCatacomb-Poltavka contacts once Afanasevo and Yamna settlers from the Carpathian Basin / East Bell Beakers had become isolated;
    • in hydrotoponymy, because of the prehistoric linguistic areas that can be inferred from (1) the distribution of Old European hydrotoponymy; (2) Udolph’s work on Germanic and the likely non-Indo-European substrate in Scandinavia and land contacts with Balto-Finnic; (3) from the Northern European traits in the Northern European Plain; or (4) from the decreasing proportion of Indo-European place and river names from central Europe towards the east and north.
    • NOTE. An alternative explanation of Old European/Balto-Slavic layers, e.g. by a ‘Centum’ Temematic – even if one obviates the general academic rejection to Holzer’s proposal – couldn’t account for the absolute lack of an ancestral layer of Indo-European hydrotoponymy in North-Eastern Europe (i.e. the longest-lasting Corded Ware territory), in sharp contrast with Western Europe, South-Eastern Europe, and South Asia. All of that contradicts an Eastern Indo-European community, even without a need to recall that the oldest hydrotoponymic layers common to Fennoscandia and the Forest Zone are of Uralic nature.

    • in archaeology, because cultural expansions of the Eastern European Early Bronze Age province since the Bell Beaker period (viz. Mierzanowice, Trzciniec, Lusatian, Pomeranian, West Baltic Culture of Cairns) suggest once and again west-east movements, most (if not all) of which – based on the presence of Indo-European speakers during the common era – were likely associated with Indo-European-speaking communities replacing or displacing previous ones.
    • in palaeogenomics, because of the late and different association of Corded Ware ancestry and haplogroups among Balto-Slavic and Indo-Iranian communities, in turn corresponding to the different satemization processes found in both dialects, which may have actually been related to the Uralic substrate that is found in both (read more on Uralic influences on Balto-Slavic and on Indo-Iranian).

    On the other hand, a careful combination of Uralic and Indo-European comparative grammar, hydrotoponymic data, and population genomics fits perfectly well Itkonen’s and Rahkonen’s association of Corded Ware in Eastern Europe with Uralic languages, as well as the traditional mainstream view of Uralic before Indo-European in Fennoscandia and in the Forest Zone, as I explained in a recent post about genetic continuity in the East Baltic area.

    Population genomics is not the main reason to reject the Indo-European Corded Ware theory – or any other prehistoric ethnolinguistic identification, for that matter. It can’t be. This new field offers just the occasional confirmation of a well-founded theory or, alternatively, another nail in the coffin of fringe theories that were actually never that likely, but seemed impossible to fully dismiss on purely theoretical grounds.

    The problem with Corded Ware was that we couldn’t see how unlikely its association with Indo-European languages was until we had ancient DNA to corroborate archaeological models, because few (if any) Indo-Europeanists really cared about the linguistic prehistory of eastern and northern Europe, or about Uralic languages in general (contrary to the general trend among Uralicists to be well-versed in Indo-European studies). Now they will.

    Related

    Yamna the likely source of modern horse domesticates; the closest lineage, from East Bell Beakers

    Open access Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series, by Fages et al. Cell (2019).

    Interesting excerpts (emphasis mine):

    The earliest archaeological evidence of horse milking, harnessing, and corralling is found in the ∼5,500-year-old Botai culture of Central Asian steppes (Gaunitz et al., 2018, Outram et al., 2009; see Kosintsev and Kuznetsov, 2013 for discussion). Botai-like horses are, however, not the direct ancestors of modern domesticates but of Przewalski’s horses (Gaunitz et al., 2018). The genetic origin of modern domesticates thus remains contentious, with suggested candidates in the Pontic-Caspian steppes (Anthony, 2007), Anatolia (Arbuckle, 2012, Benecke, 2006), and Iberia (Uerpmann, 1990, Warmuth et al., 2011). Irrespective of the origins of domestication, the horse genome is known to have been reshaped significantly within the last ∼2,300 years (Librado et al., 2017, Wallner et al., 2017, Wutke et al., 2018). However, when and in which context(s) such changes occurred remains largely unknown.

    To clarify the origins of domestic horses and reveal their subsequent transformation by past equestrian civilizations, we generated DNA data from 278 equine subfossils with ages mostly spanning the last six millennia (n = 265, 95%) (Figures 1A and 1B; Table S1; STAR Methods). Endogenous DNA content was compatible with economical sequencing of 87 new horse genomes to an average depth-of-coverage of 1.0- to 9.3-fold (median = 3.3-fold; Table S2). This more than doubles the number of ancient horse genomes hitherto characterized. With a total of 129 ancient genomes, 30 modern genomes, and new genome-scale data from 132 ancient individuals (0.01- to 0.9-fold, median = 0.08-fold), our dataset represents the largest genome-scale time series published for a non-human organism (Tables S2, S3, and S4; STAR Methods).

    genetic-affinities-horse-domesticates-pca
    Genetic Affinities.
    (A)
    Principal Component Analysis (PCA) of 159 ancient and modern horse genomes showing at least 1-fold average depth-of-coverage. The overall genetic structure is shown for the first three principal components, which summarize 11.6%, 10.4% and 8.2% of the total genetic variation, respectively. The two specimens MerzlyYar_Rus45_23789 and Dunaujvaros_Duk2_4077 discussed in the main text are highlighted. See also Figure S7 and Table S5 for further information.
    (B) Visualization of the genetic affinities among individuals, as revealed by the struct-f4 algorithm and 878,475 f4 permutations. The f4 calculation was conditioned on nucleotide transversions present in all groups, with samples were grouped as in TreeMix analyses (Figure 3). In contrast to PCA, f4 permutations measure genetic drift along internal branches. They are thus more likely to reveal ancient population substructure.

    Discovering Two Divergent and Extinct Lineages of Horses

    Domestic and Przewalski’s horses are the only two extant horse lineages (Der Sarkissian et al., 2015). Another lineage was genetically identified from three bones dated to ∼43,000–5,000 years ago (Librado et al., 2015, Schubert et al., 2014a). It showed morphological affinities to an extinct horse species described as Equus lenensis (Boeskorov et al., 2018). We now find that this extinct lineage also extended to Southern Siberia, following the principal component analysis (PCA), phylogenetic, and f3-outgroup clustering of an ∼24,000-year-old specimen from the Tuva Republic within this group (Figures 3, 5A and S7A). This new specimen (MerzlyYar_Rus45_23789) carries an extremely divergent mtDNA only found in the New Siberian Islands some ∼33,200 years ago (Orlando et al., 2013) (Figure 6A; STAR Methods) and absent from the three bones previously sequenced. This suggests that a divergent ghost lineage of horses contributed to the genetic ancestry of MerzlyYar_Rus45_23789. However, both the timing and location of the genetic contact between E. lenensis and this ghost lineage remain unknown.

    modern-horse-domesticates-przewalski-hungary
    Population modeling of the demographic changes and admixture events in extant and extinct horse lineages. The two models presented show best fitting to the observed multi-dimensional SFS in momi2. The width of each branch scales with effective size variation, while colored dashed lines indicate admixture proportions and their directionality. The robustness of each model was inferred from 100 bootstrap pseudo-replicates. Time is shown in a linear scale up to 120,000 years ago and in a logarithmic scale above.

    Modeling Demography and Admixture of Extinct and Extant Horse Lineages

    Phylogenetic reconstructions without gene flow indicated that IBE differentiated prior to the divergence between DOM2 and Przewalski’s horses (Figure 3; STAR Methods). However, allowing for one migration edge in TreeMix suggested closer affinities with one single Hungarian DOM2 specimen from the 3rd mill. BCE (Dunaujvaros_Duk2_4077), with extensive genetic contribution (38.6%) from the branch ancestral to all horses (Figure S7B).This, and the extremely divergent IBE Y chromosome (Figure 6B), suggest that a divergent but yet unidentified ghost population could have contributed to the IBE genetic makeup.

    Rejecting Iberian Contribution to Modern Domesticates

    The genome sequences of four ∼4,800- to 3,900-year-old IBE specimens characterized here allowed us to clarify ongoing debates about the possible contribution of Iberia to horse domestication (Benecke, 2006, Uerpmann, 1990, Warmuth et al., 2011). Calculating the so-called fG ratio (Martin et al., 2015) provided a minimal boundary for the IBE contribution to DOM2 members (Cahill et al., 2013) (Figure 7A). The maximum of such estimate was found in the Hungarian Dunaujvaros_Duk2_4077 specimen (∼11.7%–12.2%), consistent with its TreeMix clustering with IBE when allowing for one migration edge (Figure S7B). This specimen was previously suggested to share ancestry with a yet-unidentified population (Gaunitz et al., 2018). Calculation of f4-statistics indicates that this population is not related to E. lenensis but to IBE (Figure 7B; STAR Methods). Therefore, IBE or horses closely related to IBE, contributed ancestry to animals found at an Early Bronze Age trade center in Hungary from the late 3rd mill. BCE. This could indicate that there was long-distance exchange of horses during the Bell Beaker phenomenon (Olalde et al., 2018). The fG minimal boundary for the IBE contribution into an Iron Age Spanish horse (ElsVilars_UE4618_2672) was still important (~9.6%–10.1%), suggesting that an IBE genetic influence persisted in Iberia until at least the 7th century BCE in a domestic context. However, fG estimates were more limited for almost all ancient and modern horses investigated (median = ~4.9%–5.4%; Figure 7A).

    horse-lineages-domesticates-przewalski-dom2-botai
    TreeMix Phylogenetic Relationships. The tree topology was inferred using a total of ∼16.8 million transversion sites and disregarding migration. The name of each sample provides the archaeological site as a prefix, and the age of the specimen as a suffix (years ago). Name suffixes (E) and (A) denote European and Asian ancient horses, respectively. See Table S5 for dataset information. Image modified to include the likely ancestor of domesticates in a red circle, represented by Yamna, the most likely direct ancestor of the Dunaujvarus specimen.

    Iron Age horses

    Y chromosome nucleotide diversity (π) decreased steadily in both continents during the last ∼2,000 years but dropped to present-day levels only after 850–1,350 CE (Figures 2B and S2E; STAR Methods). This is consistent with the dominance of an ∼1,000- to 700-year-old oriental haplogroup in most modern studs (Felkel et al., 2018, Wallner et al., 2017). Our data also indicate that the growing influence of specific stallion lines post-Renaissance (Wallner et al., 2017) was responsible for as much as a 3.8- to 10.0-fold drop in Y chromosome diversity.

    We then calculated Y chromosome π estimates within past cultures represented by a minimum of three males to clarify the historical contexts that most impacted Y chromosome diversity. This confirmed the temporal trajectory observed above as Byzantine horses (287–861 CE) and horses from the Great Mongolian Empire (1,206–1,368 CE) showed limited yet larger-than-modern diversity. Bronze Age Deer Stone horses from Mongolia, medieval Aukštaičiai horses from Lithuania (C9th–C10th [ninth through the tenth centuries of the Common Era]), and Iron Age Pazyryk Scythian horses showed similar diversity levels (0.000256–0.000267) (Figure 2A). However, diversity was larger in La Tène, Roman, and Gallo-Roman horses, where Y-to-autosomal π ratios were close to 0.25. This contrasts to modern horses, where marked selection of specific patrilines drives Y-to-autosomal π ratios substantially below 0.25 (0.0193–0.0396) (Figure 2A). The close-to-0.25 Y-to-autosomal π ratios found in La Tène, Roman, and Gallo-Roman horses suggest breeding strategies involving an even reproductive success among stallions or equally biased reproductive success in both sexes (Wilson Sayres et al., 2014).

    Lineage is used in this paper, as in many others in genetics, as defined by a specific ancestry. I keep that nomenclature below. It should not be confused with the “lineages” or “lines” referring to Y-chromosome (or mtDNA) haplogroups.

    Supporting the “archaic” nature of the Hungarian BBC horses expanding from the Pontic-Caspian steppes are:

    • Among Y-chromosome lines, the common group formed by Botai-Borly4 (closely related to DOM2), Scythian horses from Aldy Bel (Arzhani), Iron Age horses from Estonia (Ridala), horses from the Xiongnu culture (Uushgiin Uvur), and Roman horses from Autricum (Chartres).
    • Among mtDNA lines, the common group formed by Botai samples, LebyazhinkaIV NB35, and different Eurasian domesticates, including many ancient Western European ones, which reveals a likely expansion of certain subclades east and west with the Repin culture.
    • (…) DOM2 contributed 22% to the ancestor of Przewalski’s horses ca. 9.47 kya, suggesting the Holocene optimum, rather than the Eneolithic Botai culture (∼5.5 kya), as a period of population contact. This pre-Botai introgression could explain the Y chromosome topology, where Botai horses were reported to carry two different segregating haplogroups: one occupied a basal position in the phylogeny while the other was closely related to DOM2. Multiple admixture pulses, however, are known to have occurred along the divergence of DOM2 and the Botai-Borly4 lineage, including 2.3% post-Borly4 contribution to DOM2, and a more recent 6.8% DOM2 intogression into Przewalski’s horses (Gaunitz et al., 2018). Model C2 parameters accommodate all these as a single admixture pulse, likely averaging the contributions of all these multiple events.

      horse-domesticate-y-dna-mtdna
      Tip labels are respectively composed of individual sample names, their reference number as well as their age (years ago, from 2017). Red, orange, light green, green, dark green and blue refer to modern horses, ancient DOM2, Botai horses, Borly4 horses, Przewalski’s horses and E. lenensis, respectively. Black refers to wild horses not yet identified to belong to any particular cluster in absence of sufficient genome-scale data. Clades composed of only Przewalski’s horses or ancient DOM2 horses were collapsed to increase readability.

      (A) Best maximum likelihood tree retracing the phylogenetic relationships between 270 mitochondrial genomes.

      B) Best Y chromosome maximum likelihood tree (GTRGAMMA substitution model) excluding outgroup. Node supports are indicated as fractions of 100 bootstrap pseudoreplicates. Bootstrap supports inferior to 90% are not shown. The root was placed on the tree midpoint. See also Table S5 for dataset information.

      Image modified from the paper, including a red square in archaic groups that contain the Hungarian sample, and a red circle around the most likely common ancestral stallion and mare from the Pontic-Caspian steppes.

      The paper cannot offer a detailed picture of ancient horse domestication, but it is yet another step in showing how Repin/Yamna is the most likely source of expansion of horse domesticates in Eurasia. Even more interestingly, Yamna settlers in Hungary probably expanded an ancient lineage of that horse at the same time as they spread with the Classical Bell Beaker culture. Remarkable parallels are thus found between:

      The expansion of an ancient line of horse domesticates related to Yamna Hungary/East Bell Beakers seems to be confirmed by the pre-Iberian sample from Vilars I, Els Vilars4618 2672 (ca. 700-550 BC), likely of Iberian Beaker descent, showing a lineage older than the Indo-Iranian ones, which later replaced most European lines.

      NOTE. For known contacts between Yamna and Proto-Beakers just before the expansion of East Bell Beakers, see a recent post on Vanguard Yamna groups.

      The findings of the paper confirm the expansion of the horse firstly (and mainly) through the steppe biome, mimicking the expansion of Proto-Indo-Europeans first, and then replaced gradually (or not so gradually) by lines brought to Europe during westward expansions of Bronze Age, Iron Age, and later specialized horse-riding steppe cultures. The expansion also correlates well with the known spread of animal traction and pastoralism before 2000 BC:

      animal-traction-europe
      Top image: Map with evidence of animal traction before ca. 2000 BC. Bottom image: frequency of finds of evidence for animal traction (orange), cylinder seals (purple) and potter’s wheels (green) in the 4th and 3rd millennium BC (query from the Digital Atlas of Innovations). The data points to an early peak in the expansion of this innovation at the turn of the 4th–3rd millennium BC, while direct evidence supports a radical increase from around the mid–3th millennium BC until the early 2nd millennium, coinciding with the expansion of East Bell Beakers and related European Early Bronze Age cultures. Data and image modified from Klimscha (2017).

      EDIT (3 MAY 2019): A recent reminder of these parallel developments by David Reich in Insights into language expansions from ancient DNA:

      • Yamna expansion to the west “with horses and wagons”, with a more homogeneous ancestry in modern Europeans due to later migrations from the east (and north):
      • “Descendants” of Yamna (once the culture was already “dead”), expanding to the east mainly with Corded Ware ancestry:

      Another recent open access paper on horse domestication is The horse Y chromosome as an informative marker for tracing sire lines, by Felkel et al. Scientific Reports (2019).

      Related

    Pre-Germanic and Pre-Balto-Finnic shared vocabulary from Pitted Ware seal hunters

    corded-ware-pitted-ware

    I said I would write a post about topo-hydronymy in Europe and Iberia based on the most recent research, but it seems we can still enjoy some more discussions about the famous Vasconic Beakers, by people longing for days of yore. I don’t want to spoil that fun with actual linguistic data (which I already summarized) so let’s review in the meantime one of the main Uralic-Indo-European interaction zones: Scandinavia.

    Seal hunting

    One of the many eye-catching interpretations – and one of the few interesting ones – that could be found in the relatively recent article Talking Neolithic: Linguistic and Archaeological Perspectives on How Indo-European Was Implemented in Southern Scandinavia, by Iversen & Kroonen AJA (2017) was this:

    The borrowing of lexical items from hunter-gatherers into Germanic refers to the potential adoption of Proto-Germanic *selhaz “seal” (Old Norse selr, Old English seolh, Old High German selah) as well as Early Proto-Balto-Finnic *šülkeš “seal” (Finnish hylje, Estonian hüljes) from the marine-oriented Sub-Neolithic Pitted Ware culture.

    kroonen-iversen
    Modified from Kristiansen et al. (2017), with red circle around the hypothesized interaction of Germanic with hunter-gatherers. “Schematic representation of how different Indo-European branches have absorbed words (circles) from a lost Neolithic language or language group (dark fill) in the reconstructed European linguistic setting of the third millennium BC, possibly involving one or more hunter gatherer languages (light fill) (after Kroonen & Iversen 2017)”.

    This is what Kroonen thought about this word in his Etymological Dictionary of Proto-Germanic (2006):

    Gmc. *selha– m. ‘seal’ – ON selr m. ‘id.’, Far. selur m. ‘id.’, OSw. siæl m. ‘id.’, Sw. själ c. ‘id.’, OE seolh m. ‘id.’, E seal, OS selah m. ‘id.’, EDu. seel, seel-hont m. ‘id.’, Du. zee-hond c. ‘id.’, OHG selah m. ‘id.’, MHG sele m. ‘id.’ (GM).

    A Germanic word with no certain IE etymology. The link with Lith. selė́ti ‘to crawl’ (Torp 1909: 436) is erroneous, as this verb corresponds to PGm. *stelan- (q.v.). The *h may nevertheless correspond to the PIE animal suffix *-ko-, for which see *elha{n)- ‘elk’ and *baruga- ‘boar’.

    Focusing on this substrate etymon, coupled with archaeology and ancient DNA, in the recent SAA 84th Annual Meeting (Abstracts in PDF):

    Kroonen, Guus (Leiden University) and Rune Iversen

    [196] The Linguistic Legacy of the Pitted Ware Culture

    The Scandinavian hunter-, fisher- and gatherer-based Pitted Ware culture is chronologically situated in the Neolithic. However, it challenges our traditional view on cultural and social evolution by representing a return to an otherwise abandoned hunter-gatherer lifestyle. In general, the Pitted Ware culture must be seen as an offshoot of the “Sub-Neolithic” societies inhabiting wide parts of northern and northeastern Europe in the fourth and third millennium B.C.E.

    Isotopic and aDNA studies have shown that people of the east Swedish Pitted Ware culture, both dietarily and genetically were distinct from the early farmers in this region, the Funnel Beaker culture. Isotopic data shows a marked predominance of seal in the diet, which has given the Pitted Ware people the nickname “Inuit of the Baltic”.

    As regards language, it is to be expected that people practicing a Pitted Ware lifestyle spoke a non-Indo-European language. In fact, there is some linguistic evidence that can support this claim. It is conceivable that both the Germanic and Finnish word for “seal” were ultimately borrowed from a language spoken in a Pitted Ware context. Once more, the linguistic evidence turns out to offer important information complementary to that of archaeology and archaeo-genetics.

    prehistoric-seal-hunters
    Stone Age Seal Hunters, by Måns Sjöberg.

    Apparently, the idea of non-IE substrate languages in contact with Germanic in Scandinavia is fashionable for the Copenhagen group, probably due to their particular interpretation of the recent genetic papers, hence the multiple Germanic-Fennic connections to be reviewed through this new prism. While the ulterior motive of this proposal may be to try and connect yet again Germanic with CWC Denmark, I would argue that the effect is actually the opposite.

    An early borrowing via Uralic

    The word has always been considered a more likely loan from one language to the other, and – because of the quite popular idea of Uralic native to Fennoscandia – it was often seen as a likely borrowing of Germanic from Balto-Finnic. In any possible case, the borrowing in either direction must be quite early, for obvious reasons:

    • If the borrowing had been via late Palaeo-Germanic, the ending in *-xa– would have been reflected in Balto-Finnic, hence an early Palaeo-Germanic to Pre-Balto-Finnic stage would be necessary.
    • If the borrowing had been via late Balto-Finnic, the initial sibilant would be already aspirated, being adopted as *-x– in Palaeo-Germanic, while the ending in *-k– would have remained as such if it was adopted after Grimm’s law ceased to be active.
    • Similarly, a borrowing from a common, non-Indo-European & non-Uralic source would require that it happened during the early stages of both proto-languages to have undergone their respective phonetic changes, and both borrowings chronologically close to each other, to assume a similar vocalism and consonantism of the ultimate source.
    wiik-indo-european-uralic-substrate
    The idea of seal-hunting Uralic substrate of Pitted Ware is not new. Image modified from The Uralic and Finno-Ugric Phonetic Substratum, by Kalevi Wiik, Linguistica Uralica (1997).

    Furthermore, regarding the most likely way of expansion of this loanword, due to the different vowels and sibilants present in Uralic but not in Indo-European:

    • A direct loan from Pre-Germanic **selkos – which shows a regular thematic declension – to Pre-Balto-Finnic *šülkeš doesn’t seem to be a reasonable assumption.
    • NOTE. A Germanic borrowing from alternative Gmc. genitive *silxis could only work in a Pre-Germanic to Pre-Balto-Finnic model, hence only if the Gmc. form can be reconstructed for an earlier stage. Even then, for the same reason stated above, the opposite could be more reasonably argued, i.e. that this form is the original one adopted in Germanic: Pre-PBF *šülkeš > Pre-Gmc. *silkis, reinterpreted as an -o- stem in its declension.

    • If we reconstruct an older Pre-Finno-Samic (i.e. with Finno-Permic-like vocalism) **šëlkëš, a borrowing into Pre-Germanic **selkos would work. Even though no Saami derivative exists to confirm such a possibility, this would be supported by the known common evolution of Finno-Samic dialects in close contact with Pre-Germanic.
    • Admittedly, even accepting the existence of a Finno-Samic stem, a potential substrate word could not be discarded. In fact, while **šëlkë- could perfectly be a Uralic root, the ending in *-š can’t be easily interpreted. Therefore, a third, non-Indo-European & non-Uralic source is a plausible explanation.

    NOTE. Arguably, Proto-Finno-Samic could have adopted Gmc. *kh or *x exceptionally as PFS *k. However, early Palaeo-Germanic borrowings in Finno-Samic show a consistent regular consonant change as described above. For more on this, see Finno-Samic borrowings.

    This likely Uralic first nature of the loanword is important for the discussion below.

    Pitted Ware culture

    pitted-ware-pyheensilta-ware-culture
    Middle Neolithic A period. Distribution of Pyheensilta Ware, Funnel Beaker Culture in Sweden, and Pitted Ware Culture in northern Europe during the Middle Neolithic A period, c. 3300–2800 cal BC. Find locations with numbers demarcate sites where cereal grains have been found and later AMS radiocarbon dated. Figure was created by SV using QGIS 3.4. (https://www.qgis.org/) and Natural Earth data (https://www.naturalearthdata.com/). Image from Vanhanen et al. (2019).

    About the Pitted Ware culture, this is what the recent paper by Vanhanen et al. (2019), from the University of Finland (including Volker Heyd) had to say:

    The origins of the PWC are controversial. In one likely scenario, Comb Ceramic and Mesolithic hunter-gatherers first interacted with FBC during the last centuries of the EN and became specialized maritime hunter-gatherers. The PWC pushed south and westwards during the Middle Neolithic (MN), c. 3300–2300 BC, along the northern Baltic shoreline and adjacent islands, eventually reaching as far west as Denmark and southern Norway. Around 2800 BC, after the FBC ceased to exist, the Corded Ware Culture (CWC) migrated into the PWC area. The end date for the PWC and CWC is approximately 2300 BC, when the material culture was replaced by the Late Neolithic (LN) culture<. Spanning nearly a millennium virtually unchanged, the PWC maintained a coherent society and a successful economic model. PWC people lived in marine-oriented settlements, commonly dwelled in huts and produced relatively large amounts of ceramic vessels. This speaks to the partly sedentary nature of their habitation, at least for their base camps. These specialist hunter-gatherers obtained the great majority of their subsistence from maritime sources, such as seal, fish, and sea birds. Considering the amount of bones, sealing was of paramount importance, causing these peoples to be labelled ‘hard-core sealers’ or even the ‘Inuit of the Baltic’.

    The Middle Neolithic Pitted Ware culture is dated ca. 3500–2300 BC, so we would be seeing here Pre-Germanic and Pre-Balto-Finnic peoples arriving near the Pitted Ware culture. That would leave us with one of both languages expanding with Corded Ware peoples, and the other with Bell Beakers. Since Battle Axe-derived cultures around the Gulf of Finland are associated with Balto-Finnic groups, and Bell Beakers arriving ca. 2400 started the Dagger Period, commonly associated with the Pre-Germanic community, I think the connection of each group with their language is self-evident.

    pitted-ware-cored-ware-culture
    Middle Neolithic B period. Distribution of Corded Ware Culture and Pitted Ware Culture in northern Europe during the Middle Neolithic B period, c. 2800–2300 cal BC. Find locations with numbers demarcate sites where cereal grains have been found and later AMS radiocarbon dated. Figure was created by SV using QGIS 3.4. (https://www.qgis.org/) and Natural Earth data (https://www.naturalearthdata.com/). Modified from Vanhanen et al. (2019).

    NOTE. You can read some interesting information about prehistoric and recent seal hunting in the Baltic in the blog post “Själen” – Seal Hunting in the Northern Baltic Sea.

    Germanic-Fennic phonetic evolution

    The common Germanic – Balto-Finnic phonetic evolution, especially Verner’s law in Palaeo-Germanic and qualitative gradation in Proto-Balto-Finnic, has been variably interpreted as:

    • Uralic in Scandinavia influenced by Germanic (Verner’s law source of the gradation), by Koivulehto and Vennemann (1996).
    • Germanic over a Uralic substratum in Scandinavia, by Wiik (1997).
    • Both Germanic and Balto-Finnic influenced by a third language, an “extinct non-Uralic source” spoken in Fennoscandia before the arrival of Uralic and Indo-European, by Kallio (2001); maybe the same substrate proposed to have influenced the accent shift in Germanic similar to Uralic.
    • Balto-Finnic speakers adopting Pre-Germanic in Scandinavia, in contact with Balto-Finnic speakers retaining their language, by Schrijver in Language Contact and the Origins of the Germanic Languages (2014)– although first suggested by him in the 1990s.

    NOTE. There are other (some much older) proposals of a Uralic substrate in Scandinavia, but I think those above summarize the most common positions tenable today.

    If you add all linguistic, archaeological, and now genetic connections, it is really strange to keep arguing for so many surprisingly fitting common substrates and/or contact languages for both. Especially because the Pre-Germanic community – if originally from southern Scandinavia and not further south (see e.g. Kortlandt’s theory) – was marked by the Dagger Period, as accepted by most archaeologists (including Kristiansen), and we know that Bell Beakers – who triggered the Dagger period – might have arrived a little late to the Pitted Ware disintegration in most seal-hunting areas of southern Scandinavia.

    bell-beaker-density
    Density analysis based (Bell Beaker per km2) on the distribution of Bell Beaker per region (ca. 2700-2200 BC). Combination of different levels of b-spline interpolation. Exaltation of the values through square root usage. Modified from Michael Bilger (2018).

    In other words, how many common substrate languages can we propose for Germanic (and Balto-Finnic)? Just from Kroonen we have already the Semitic-like TRB, and the seal-hunting Pitted Ware culture. Apparently, the culprit of the common phonetic evolution must be some (other?) culture that both Pre-Germanic and Pre-Balto-Finnic assimilated (or with which both were in contact) in Fennoscandia.

    NOTE. I believe no data supports the attribution of those Germanic borrowings to the TRB culture, especially if one assumes they belong to an Afroasiatic branch, as did Kroonen. His initial assumption about an expansion of R1b-M269 associated with the Neolithic from Anatolia, and thus with Afroasiatic, must today be rejected. Much more likely is the incorporation of most of these loanwords during the expansion of North-West Indo-Europeans from Yamna Hungary.

    How many “common” substrates from different regions and cultures is too much? Arguably, it’s not a question of quantity (because the overall probability remains the same), but a question of quality of arguments.

    In my opinion, both a) the marked seal-hunting subsistence economy of the Pitted Ware culture and b) the difficult reconstruction of a fitting ‘natural’ PIE or PU stem warrant this proposal of a third source, just like the European agricultural substrate of North-West Indo-European and Palaeo-Balkan languages, as well as the Asian agricultural substrate of Indo-Iranian are the most logical interpretation of words not found in other IE dialects. The only problem in this case is the lack of other Scandinavian substrate words to compare its typology against.

    scandinavia-neolithic-flint-daggers
    Close contacts in Fennoscandia. The distribution of Scandinavian flint daggers (A) in the east and south Baltic region and possible trends of “down the line” trade (B). Good size and quality flint zone in the south-west Baltic region is hatched (C). According to: Wojciechowski 1976; Olausson 1983, fig. 1; Madsen 1993, 126; Libera 2001; Kriiska & Tvauri 2002, 86. Image modified from Piličiauskas (2010).

    Common Scandinavian substratum

    The theory of a Pitted Ware borrowing is therefore quite convincing from a cultural point of view, at the same time as it fits the linguistic data. However, one reason why I dislike the interpretation of a dual origin is that our knowledge of Uralic languages is fairly limited, whereas that of Indo-European branches and hence Proto-Indo-European is huge. To put it otherwise: if a common word appears in both, and it is most likely (culturally and linguistically) not Indo-European, it certainly means that it was borrowed in Germanic. What are the a priori chances of it coming directly from a third substrate language for both dialects, instead of coming directly from Pre-Balto-Finnic?

    From Schrijver (2014):

    What did happen, apparently, is that Finnic speakers had enough access to the way in which Germanic speakers pronounced Balto-Finnic in order to model their own pronunciation of Balto-Finnic on it. In other words, Balto-Finns conversed with bilingual speakers of Germanic and Balto-Finnic whose pronunciation of both was essentially Germanic. But access to the Germanic language itself was not sufficient to allow Balto-Finns to become bilingual themselves, either because social segregation prevented this or because contact with Germanic was severed before widespread bilingualism set in. This limited access to Germanic would allow us to understand why Balto-Finnic did not go the way of the vernacular languages that came in contact with Latin in the Roman Empire, where access to Latin was open to almost everybody and massive language shift in favour of Latin ensued.

    NOTE. For a more detailed discussion, you can read the whole chapter dedicated to this question. I summarized it in Pre-Germanic born out of a Proto-Finnic substrate in Scandinavia.

    On the other hand, about the ad hoc interpretation by Kallio (2001) of hypothetic third languages strongly influencing in the same way both the Palaeo-Germanic- and Balto-Finnic-speaking communities, Schrijver (2014) comments:

    The idea that perhaps both languages moved towards a lost third language, whose speakers may have been assimilated to both Balto-Finnic and Germanic, provides a fuller explanation but suffers from the drawback that it shifts the full burden of the explanation to a mysterious ‘language X’ that is called upon only in order to explain the developments in Proto-Germanic and Balto-Finnic. That comes dangerously close to circular reasoning.

    early-bronze-age-nordic-dagger-period
    Early Bronze Age cultures of Northern Europe (roughly ca. 2200-1750). Dagger period representing the expansion of BBC-derived groups from southern Scandinavia.

    NOTE. The proposal of some kind of “SHG/EHG-based Fennoscandian substrate” seems funny to me, for two reasons: firstly, there is usually no talk about which culture spread that common language, how it survived, how it was in contact with both groups and until when, etc. (see below for possibilities); secondly, apparently the evident survival of West European EEF communities driven by at least two cultural groups – El Argar and the poorly known groups from the Atlantic façade north of the Pyrenees – is, for the same people proposing this simplistic SHG/EHG idea, somehow not fitting for the prehistory of Proto-Iberian and Proto-Aquitanian, respectively…

    The same argument that one could use against the direct borrowing of both dialects from Pitted Ware, but much more strongly, can be thus wielded against a common, centuries-long phonetic evolution of both Balto-Finnic and Germanic caused by close interactions with (and/or substrate influence of) some third language. Which unitary culture and when exactly could that have happened around the Baltic Sea?

    • Was it Pitted Ware the mysterious substrate language? Seems rather unlikely, due to the early demise of the Pitted Ware culture in contrast to the long-lasting common influence seen in both dialects.
    • Was it Pitted Ware in southern Scandinavia, but Comb Ware in the Gulf of Finland? Is there a direct genetic connection between both cultures? And how likely is a common phonology of an ancestral Comb Ware-like substrate language surviving separately in Finland and Sweden? Even accepting these assumptions, we would be stuck again in the Indo-European Beakers vs. Uralic Battle Axe model.
    • Was it a succession of cultures, from some Scandinavian culture that was replaced by some incoming ethnolinguistic group, then influencing the other? This non-IE, non-Uralic substrate would then need to be proposed, given the chronological and archaeological constraints, as an effect of Pitted Ware over Pre-Finno-Baltic spoken by Battle Axe peoples in Scandinavia, then replaced by Pre-Germanic peoples arriving later with Bell Beakers. A reverse direction and later chronology (say, Germanic replaced by Balto-Finnic from Netted Ware arriving from the Volga) wouldn’t work as well.
    • Was it Asbestos Ware as a late Comb Ware group influencing both? How likely is such a continued influence in Southern Scandinavia and the Gulf of Finland? Even if we accepted this influence that miraculously didn’t affect Samic (most likely located between the Balto-Finnic-speaking Gulf of Finland and northern Fennoscandian Asbestos Ware groups), it would necessarily mean that Germanic and Balto-Finnic were spoken neighbouring exactly the same Asbestos Ware groups in Scandinavia. That is, essentially, that the BBC-derived Dagger Period represented Pre-Germanic, while Battle Axe-derived groups around the Gulf of Finland were Balto-Finnic.

    Mixing linguistics with archaeology (now complemented with genetics) also risks circular reasoning. But, how else can someone propose a third substrate language for a phonetic change, necessarily represented by Fennoscandian groups potentially separated by thousands of years? In this age of population genomics we can’t simply talk about theoretical models anymore: we must refer to Fennoscandian cultures and populations in a very specific time frame, as Kronen & Iversen do in their proposal. Not only is such a third unknown language usually a weak explanation for a common development of two unrelated languages; in this case it finds no support whatsoever.

    Seals and the Arctic

    Another interesting aspect about this Fennic-Germanic comparandum is its relevance to the Uralic homeland problem.

    uralic-languages-modern
    Current distribution of Uralic languages. Nenets and Saami are among the best positioned to retain the ‘original’ Uralic seal-hunting vocabulary.

    Since the publication of Mittnik et al. (2018), Lamnidis et al. (2018), and Sikora et al. (2018), the new normal is apparently to consider Corded Ware Finland as Germanic-speaking, the Gulf of Finland as Balto-Slavic-speaking, while the Kola peninsula and whichever Palaeo-Arctic peoples preceded Nganasans and Nenets as ancient Uralians. Uh-huh, OK.

    But, if prehistoric Arctic peoples practiced specialized seal-hunting economies, and Uralians were one among such populations – supposedly one widespread from the Barents Sea to the Lapteve Sea…how come no common Uralic word for ‘seal’ exists? In other words, why would these True™ Uralic peoples expanding from the Arctic need to borrow a word for ‘seal’ from neighbouring populations in every single seal-hunting region they are attested?

    grey-seal-distribution
    Historical distribution of grey seals, an important part of the diet around the Baltic Sea. Image modified from Wikimedia to include Skagerrak and Kattegat regions.

    About Saami, which some have recklessly proposed to be derived from Bronze Age N1c-L392 samples from the Kola Peninsula (against the good judgment of the authors of the paper), this is what we know from their word for ‘seal’, from Grünthal (2004):

    Ter Saami vīrre ‘seal; wolf’ displays two meanings that refer to clearly different animals. Neither of them is borrowed from the source language because the word descends from Russian zver’ ‘animal’ (T.I.Itkonen 1958: 756). Another word, Skolt Saami näúdd ‘seal, wolf’, has been similarly used in the two meanings. The evidence of North Saami návdi ‘wolf; creature, fur animal; beast’ (Sammallahti 1989: 305; Lagercrantz (1939: 518) presents the alternative meanings in the opposite order; E. Itkonen (1969: 148) lists the meanings ‘wildes Tier; Raubtier (bes. Wolf); Pelztier’) suggesting that ‘wolf’ is the primary sense and ‘seal’ is a metaphorical extension of it. More precisely, it is an example of a mythic metaphor (cf. Siikala 1992). According to the old folk belief, seal was a wolf and the Skolt Saamis preferred not to eat its meat (T.I.Itkonen 1958: 906). Before that the metonymic meaning ‘wolf’ rose from the less specified meanings, and originally návdi is a Scandinavian or Finnic loan word in Saamic, cf. Old Norse naut ‘vieh, rind’, Icelandic and Norwegian naut, Swedish nöt < Germanic *nauta ‘property’ (Hellquist 1980: 721, T.I.Itkonen 1958: 275, Lagercrantz 1939: 518, de Vries 1961: 406; E. Itkonen (1969: 148) considers Finnic, cf. Finnish nauta ‘bovine’ (< Germanic) as a possible alternative source for the Saamic word).

    NOTE. Possibly comparable, for the mythic metaphor proper of Scandinavian folk belief, are Germanic derivatives built as ‘seal-hound’ and/or ‘sea-hound’.

    sea-distribution-arctic
    Seals formed a great part of the diet for Palaeo-Arctic populations. Boundaries of regions used to predict sea ice, superimposed over the distributions of the five ringed seal subspecies. Image modified from Kelly et al. (2010).

    About Nenets (quite close to the Naganasans of pure “Siberian ancestry”), here is what Edward Vajda, an expert in Palaeo-Siberian languages, has to say:

    Nenets techniques for hunting the animals of the Arctic Ocean seem to have been borrowed from the first Arctic aborigines. Thus, the Nenets word for seal is nyak, the Eskimo word is nesak. Also, the Nenets word for a one-piece Arctic clothing is lu; the Korak word on the Kamchatka peninsula for clothing is l’ku. All of these groups may have borrowed the words from some original circumpolar aborigines. More probably, the first settlers of Arctic Europe were cousins of the present-day Eskimo, Chukchi and other residents of the far northeast region of Asia. Nenets folklore also speaks of the aborigines living in ice dugouts (igloos).

    On the other hand, Proto-Uralic shows a Chalcolithic steppe-like culture, with common words for metal and metalworking, for agriculture, and for domesticated animals, most likely including cattle. They were close to Indo-Europeans since at least before the Tocharian split, and probably earlier than that (even if one does not accept the Indo-Uralic phylum). And there were clearly strong contacts of Finno-Ugric with Indo-Iranian, and especially of Finno-Samic with Germanic.

    uralic-cline
    Uralic clines from Corded Ware groups to the east. A clear reason for the lack of common seal-hunting vocabulary. Modified from Tambets et al. (2018). Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations. You can see another PCA including ancient samples.

    Some among my readers may now be thinking about these totally believable proposals of prehistoric cultures around Lake Baikal representing the True™ Uralic homeland; because haplogroup N1c, and because some 0.5% more “Devil’s Gate Cave ancestry” in Estonians than in Lithuanians; despite the fact that 1) the so-called “Siberian ancestry” formed an ancestral cline with EHG in North Eurasia, that 2) N1c-L392 lineages seem to appear among many Asian peoples of different languages, and that 3) recent prehistoric N1c-L392 lines expanded clearly with Micro-Altaic languages.

    Like, who would have hunted seals in Lake Baikal, right? The problem is, seals represented one of their main game, essential for their subsistence economy. From Novokonova et al. (2015):

    One of the key reasons for the density of human settlement in the Baikal region compared to adjacent areas of Siberia is that the lake and its nearby rivers offer an abundance of aquatic food resources, including several endemic species, with perhaps the most well known being the Baikal seal. This freshwater seal is only found in Lake Baikal and portions of its tributaries. It shares lifecycle and behavioral patterns with other small northern ice-adapted seals, and is genetically and morphologically most closely related to the ringed seal (Pusa hispida). The nerpa can grow up to 1.8 m long and weigh as much as 130 kg, with the males tending to be slightly larger than the females.

    Zooarchaeological analyses of the 16,000 Baikal seal remains from this well-dated site clearly show that sealing began here at least 9000 calendar years ago. The use of these animals at Sagan-Zaba appears to have peaked in the Middle Holocene, when foragers used the site as a spring hunting and processing location for yearling and juvenile seals taken on the lake ice. After 4800 years ago, seal use declined at the site, while the relative importance of ungulate hunting and fishing increased. Pastoralists began occupying Sagan-Zaba at some point during the Late Holocene, and these groups too utilized the lake’s seals. Domesticated animals are increasingly common after about 2000 years ago, a pattern seen elsewhere in the region, but spring and some summer hunting of seals was still occurring. This use of seals by prehistoric herders mirrors patterns of seal use among the region’s historic and modern groups.

    Bronze Age movements in Fennoscandia

    Regarding the shrinkage and expansion of different farming economic strategies in Scandinavia since the Neolithic, with potential relevance for population movements and thus ethnolinguistic change – either from Balto-Finnic peoples migrating back from eastern Sweden, or Germanic peoples moving to eastern Finland – from Vanhanen et al. (2019):

    Cultivated plants at CWC sites in Finland were not discovered in the current investigation (Supplementary Results) or earlier studies. In Finland, the keeping of domestic animals is indicated by the evidence of dairy lipids and mineralized goat hairs. Charred remains and impressions of cultivated plants have been discovered at CWC sites in Estonia and east-central Sweden (Fig. 3: 12). In the eastern Baltic region, the earliest bones of domestic animals and a shift in subsistence occurred with the CWC. Whether CWC produced the cereals and other agricultural products found at PWC sites is difficult to estimate because only small amounts of plant remains have ever been discovered at CWC sites. The CWC seemingly reached east-central Sweden from regions further to the east, where there is evidence of animal husbandry, but only very few signs of plant cultivation.

    For the Late Neolithic (LN), cereal grains have been found north of Mälaren and along the Norrland coast. In mainland Finland, the first cereal grains occur during the LN or Bronze Age, c. 1900–1250 cal BC. The earliest bones of sheep/goat from mainland Finland are earlier, dating back to 2200–1950 cal BC. Finds of Scandinavian bronze artefacts indicate an influx from east-central Sweden, which might well be a source area for these agricultural innovations. A similar development is found in the eastern Baltic region, where the earliest directly radiocarbon-dated cereals originate from the Bronze Age, 1392–1123 cal BC (2 sigma). Thus, agriculture was evident during the Bronze Age in the eastern Baltic, but at least animal keeping and probably crop cultivation were present earlier during the CWC phase.

    It has been known for a while already that the only options left for the expansion of Finno-Saami into Fennoscandia are either Battle Axe (continued in Textile Ceramics) or Netted Ware (as proposed e.g. by Parpola), based, among other data, on language contacts, language estimates, cultural evolution, and population genomics. Data like this one on seal-hunting vocabulary also support the most likely option, which entails the identification of Corded Ware as the vector of expansion of Uralic languages.

    NOTE. Also interesting in this regard is the lack of Slavic words for ‘seal’ – borrowed, in Russian from Samic, and in other Slavic dialects from Russian, Latin, or other languages -, and the coinage of a new term in East Baltic. Rather odd for an “autochthonous” Proto-Baltic (supposedly in contact with Pitted Ware, Germanic, and Balto-Finnic, then), and for a Proto-Slavic stemming from the Baltic. Quite appropriate, though, for a Proto-East Baltic arriving in the Baltic with Trzciniec and for a Proto-Slavic community evolving further south.

    So, what new episode in this renewed 2000s R1b/R1a/N1c soap opera is it going to be, when eastern Fennoscandia shows Corded Ware-derived peoples of “steppe ancestry” (and mainly R1a-Z645 lineages) continue during the Bronze Age? Will the resurge and/or infiltration of I2 – maybe even N1c – lineages among Corded Ware-derived cultures of north-eastern Europe support or challenge this model, and why? Make your bet below.

    Related

    How the genocidal Yamnaya men loved to switch cultures

    yamnaya-expansion-bell-beaker

    After some really interesting fantasy full of arrows, it seems Kristiansen & friends are coming back to their most original idea from 2015, now in New Scientist’s recent clickbait Story of most murderous people of all time revealed in ancient DNA (2019):

    Teams led by David Reich at Harvard Medical School and Eske Willerslev at the University of Copenhagen in Denmark announced, independently, that occupants of Corded Ware graves in Germany could trace about three-quarters of their genetic ancestry to the Yamnaya. It seemed that Corded Ware people weren’t simply copying the Yamnaya; to a large degree they actually were Yamnayan in origin.

    If you think you have seen that movie, it’s because you have. They are at it again, Corded Ware from Yamna, and more “steppe ancestry” = “more Indo-European. It seems we haven’t learnt anything about “Steppe ancestry” since 2015. But there’s more:

    Genocidal peoples who “switch cultures”

    Burial practices shifted dramatically, a warrior class appeared, and there seems to have been a sharp upsurge in lethal violence. “I’ve become increasingly convinced there must have been a kind of genocide,” says Kristian Kristiansen at the University of Gothenburg, Sweden.

    The collaboration revealed that the origin and initial spread of Bell Beaker culture had little to do – at least genetically – with the expansion of the Yamnaya or Corded Ware people into central Europe. “It started in It is in that region that the earliest Bell Beaker objects – including arrowheads, copper daggers and distinctive Bell-shaped pots – have been found, in archaeological sites carbon-dated to 4700 years ago. Then, Bell Beaker culture began to spread east, although the people more or less stayed put. By about 4600 years ago, it reached the most westerly Corded Ware people around where the Netherlands now lies. For reasons still unclear, the Corded Ware people fully embraced it. “They simply take on part of the Bell Beaker package and become Beaker people,” says Kristiansen.

    The fact that the genetic analysis showed the Britons then all-but disappeared within a couple of generations might be significant. It suggests the capacity for violence that emerged when the Yamnaya lived on the Eurasia steppe remained even as these people moved into Europe, switched identity from Yamnaya to Corded Ware, and then switched again from Corded Ware to Bell Beaker.

    Notice what Kristiansen did there? Yamnaya men “switched identities” into Corded Ware, then “switched identities” into Bell Beakers…So, the most aggresive peoples who have ever existed, exterminating all other Europeans, were actually not so violent when embracing wholly different cultures whose main connection is that they built kurgans (yes, Gimbutas lives on).

    NOTE. By the way, just so we are clear, only Indo-Europeans are “genocidal”. Not like Neolithic farmers, or Palaeolithic or Mesolithic populations, or more recent Bronze Age or Iron Age peoples, who also replaced Y-DNA from many regions…

    yamnaya-corded-ware-bell-beaker

    In fact, there is much stronger evidence that these Yamnaya Beakers were ruthless. By about 4500 years ago, they had pushed westwards into the Iberian Peninsula, where the Bell Beaker culture originated a few centuries earlier. Within a few generations, about 40 per cent of the DNA of people in the region could be traced back to the incoming Yamnaya Beakers, according to research by a large team including Reich that was published this month. More strikingly, the ancient DNA analysis reveals that essentially all the men have Y chromosomes characteristic of the Yamnaya, suggesting only Yamnaya men had children.

    “The collision of these two populations was not a friendly one, not an equal one, but one where the males from outside were displacing local males and did so almost completely,” Reich told New Scientist Live in September. This supports Kristiansen’s view of the Yamnaya and their descendants as an almost unimaginably violent people. Indeed, he is about to publish a paper in which he argues that they were responsible for the genocide of Neolithic Europe’s men. “It’s the only way to explain that no male Neolithic lines survived,” he says.

    So these unimaginably violent Yamnaya men had children exclusively with their Y chromosomes…but not Dutch Single Grave peoples. These great great steppe-like northerners switched culture, cephalic index…and Y-chromosome from R1a (and others) to R1b-L151 to expand Italo-Celtic From The West™.

    It’s hilarious how (exactly like their latest funny episode of PIE from south of the Caucasus) this new visionary idea copied by Copenhagen from amateur friends (or was it the other way around?) had been already rejected before this article came out, in Olalde et al. (2019), and that “Corded Ware=Indo-European” fans have become a parody of themselves.

    What’s not to love about 2019 with all this back-and-forth hopping between old and new pet theories?

    NOTE. I would complain (again) that the obsessive idea of the Danes is that Denmark CWC is (surprise!) the Pre-Germanic community, so it has nothing to do with “steppe ancestry = Indo-European” (or even with “Corded Ware = Indo-European”, for that matter), but then again you have Koch still arguing for Celtic from the West, Kortlandt still arguing for Balto-Slavic from the east, and – no doubt worst of all – “R1a=IE / R1b=Vasconic / N1c=Uralic” ethnonationalists arguing for whatever is necessary right now, in spite of genetic research.

    So prepare for the next episode in the nativist and haplogroup fetishist comedy, now with western and eastern Europeans hand in hand: Samara -> Khvalynsk -> Yamnaya -> Bell Beaker spoke Vasconic-Tyrsenian, because R1b. Wait for it…

    Vanguard Yamnaya groups

    On a serious note, interesting comment by Heyd in the article:

    A striking example of this distinction is a discovery made near the town of Valencina de la Concepción in southern Spain. Archaeologists working there found a Yamnaya-like kurgan, below which was the body of a man buried with a dagger and Yamnaya-like sandals, and decorated with red pigment just as Yamnaya dead were. But the burial is 4875 years old and genetic information suggests Yamnaya-related people didn’t reach that far west until perhaps 4500 years ago. “Genetically, I’m pretty sure this burial has nothing to do with the Yamnaya or the Corded Ware,” says Heyd. “But culturally – identity-wise – there is an aspect that can be clearly linked with them.” It would appear that the ideology, lifestyle and death rituals of the Yamnaya could sometimes run far ahead of the migrants.

    NOTE. I have been trying to find which kurgan is this, reviewing this text on the archaeological site, but didn’t find anything beyond occasional ochre and votive sandals, which are usual. Does some reader know which one is it?

    yamna-expansion-bell-beakers
    Yamna expansion and succeeding East Bell Beaker expansion, without color on Bell Beaker territories. Notice vanguard Yamna groups in blue where East Bell Beakers later emerge. See original image with Bell Beaker territories.

    Notice how, if you add all those vanguard Yamna findings of Central and Western Europe, including this one from southern Spain, you begin to get a good idea of the territories occupied by East Bell Beakers expanding later. More or less like vanguard Abashevo and Sintashta finds in the Zeravshan valley heralded the steppe-related Srubna-Andronovo expansions in Turan…

    It doesn’t seem like Proto-Beaker and Yamna just “crossed paths” at some precise time around the Lower Danube, and Yamna men “switched cultures”. It seems that many Yamna vanguard groups, probably still in long-distance contact with Yamna settlers from the Carpathian Basin, were already settled in different European regions in the first half of the 3rd millennium BC, before the explosive expansion of East Bell Beakers ca. 2500 BC. As Heyd says, there are potentially many Yamna settlements along the Middle and Lower Danube and tributaries not yet found, connecting the Carpathian Basin to Western and Northern Europe.

    These vanguard groups would have more easily transformed their weakened eastern Yamna connections with the fashionable Proto-Beaker package expanding from the west (and surrounding all of these loosely connected settlements), just like the Yamna materials from Seville probably represent a close cultural contact of Chalcolithic Iberia with a Yamna settlement (the closest known site with Yamna traits is near Alsace, where high Yamna ancestry is probably going to be found in a Bell Beaker R1b-L151 individual).

    This does not mean that there wasn’t a secondary full-scale migration from the Carpathian Basin and nearby settlements, just like Corded Ware shows a secondary (A-horizon?) migration to the east with R1a-Z645. It just means that there was a complex picture of contacts between Yamna and European Chalcolithic groups before the expansion of Bell Beakers. Doesn’t seem genocidal enough for a popular movie, tho.

    Related

    Arrival of steppe ancestry with R1b-P312 in the Mediterranean: Balearic Islands, Sicily, and Iron Age Sardinia

    steppe-balearic-sicily-sardinia

    New preprint The Arrival of Steppe and Iranian Related Ancestry in the Islands of the Western Mediterranean by Fernandes, Mittnik, Olalde et al. bioRxiv (2019)

    Interesting excerpts (emphasis in bold; modified for clarity):

    Balearic Islands: The expansion of Iberian speakers

    Mallorca_EBA dates to the earliest period of permanent occupation of the islands at around 2400 BCE. We parsimoniously modeled Mallorca_EBA as deriving 36.9 ± 4.2% of her ancestry from a source related to Yamnaya_Samara; (…). We next used qpAdm to identify “proximal” sources for Mallorca_EBA’s ancestry that are more closely related to this individual in space and time, and found that she can be modeled as a clade with the (small) subset of Iberian Bell Beaker culture associated individuals who carried Steppe-derived ancestry (p=0.442).

    Suppl. Materials: The model used was with Bell_Beaker_Iberia_highsteppe, a group of outliers from Iberia buried in a Bell Beaker mortuary context who unlike most individuals from this context in that region had high proportions of Steppe ancestry (p=0.442).

    Our estimates of Steppe ancestry in the two later Balearic Islands individuals are lower than the earlier one: 26.3 ± 5.1% for Formentera_MBA and 23.1 ± 3.6% for Menorca_LBA, but the Middle to Late Bronze Age Balearic individuals are not a clade relative to non-Balearic groups. Specifically, we find that f4(Mbuti.DG, X; Formentera_MBA, Menorca_LBA) is positive when X=Iberia_Chalcolithic (Z=2.6) or X=Sardinia_Nuragic_BA (Z=2.7). While it is tempting to interpret the latter statistic as suggesting a genetic link between peoples of the Talaiotic culture of the Balearic islands and the Nuragic culture of Sardinia, the attraction to Iberia_Chalcolithic is just as strong, and the mitochondrial haplogroup U5b1+16189+@16192 in Menorca_LBA is not observed in Sardinia_Nuragic_BA but is observed in multiple Iberia_Chalcolithic individuals. A possible explanation is that both the ancestors of Nuragic Sardinians and the ancestors of Talaiotic people from the Balearic Islands received gene flow from an unsampled Iberian Chalcolithic-related group (perhaps a mainland group affiliated to both) that did not contribute to Formentera_MBA.

    This sample, like another one in El Argar, is of hg. R1b-P312. So there you are, the data that connects the Proto-Iberian expansion (replacing IE-speaking Bell Beakers) to the Iberian Chalcolithic population, signaled by the increase in Iberian Chalcolithic ancestry after the arrival of Bell Beakers, most likely connected originally to the Argaric and post-Argaric expansions during the MBA.

    balearic-sicily-sardinia-pca
    PCA with previously published ancient individuals (non-filled symbols), projected onto variation from present-day populations (gray squares).

    Steppe in Sardinia IA: Phocaeans from Italy?

    Most Sardinians buried in a Nuragic Bronze Age context possessed uniparental haplogroups found in European hunter-gatherers and early farmers, including Y-haplogroup R1b1a[xR1b1a1a] which is different from the characteristic R1b1a1a2a1a2 spread in association with the Bell Beaker complex. An exception is individual I10553 (1226-1056 calBCE) who carried Y-haplogroup J2b2a, previously observed in a Croatian Middle Bronze Age individual bearing Steppe ancestry, suggesting the possibility of genetic input from groups that arrived from the east after the spread of first farmers. This is consistent with the evidence of material culture exchange between Sardinians and mainland Mediterranean groups, although genome-wide analyses find no significant evidence of Steppe ancestry so the quantitative demographic impact was minimal.

    Another interesting data, these (Mesolithic) remnant R1b-V88 lineages closely related to the Italian Peninsula, the most likely region of expansion of these lineages into Africa, in turn possibly connected to the expansion of Proto-Afroasiatic.

    We detect definitive evidence of Iranian-related ancestry in an Iron Age Sardinian I10366 (391-209 calBCE) with an estimate of 11.9 ± 3.7.% Iran_Ganj_Dareh_Neolithic related ancestry, while rejecting the model with only Anatolian_Neolithic and WHG at p=0.0066 (Supplementary Table 9). The only model that we can fit for this individual using a pair of populations that are closer in time is as a mixture of Iberia_Chalcolithic (11.9 ± 3.2%) and Mycenaean (88.1 ± 3.2%) (p=0.067). This model fits even when including Nuragic Sardinians in the outgroups of the qpAdm analysis, which is consistent with the hypothesis that this individual had little if any ancestry from earlier Sardinians.

    yamnaya-samara
    Proportions of ancestry using a distal qpAdm framework on an individual basis (a), and based on qpWave clusters

    Sicily EBA: The Lusitanian/Ligurian connection?

    (…) While a previously reported Bell Beaker culture-associated individual from Sicily had no evidence of Steppe ancestry, (…) we find evidence of Steppe ancestry in the Early Bronze Age by ~2200 BCE. In distal qpAdm, the outlier Sicily_EBA11443 is parsimoniously modeled as harboring 40.2 ± 3.5% Steppe ancestry, and the outlier Sicily_EBA8561 is parsimoniously modeled as harboring 23.3 ± 3.5% Steppe ancestry. (…) The presence of Steppe ancestry in Early Bronze Age Sicily is also evident in Y chromosome analysis, which reveals that 4 of the 5 Early Bronze Age males had Steppe-associated Y-haplogroup R1b1a1a2a1a2. (Online Table 1). Two of these were Y-haplogroup R1b1a1a2a1a2a1 (Z195) which today is largely restricted to Iberia and has been hypothesized to have originated there 2500-2000 BCE. This evidence of west-to-east gene flow from Iberia is also suggested by qpAdm modeling where the only parsimonious proximate source for the Steppe ancestry we found in the main Sicily_EBA cluster is Iberians.

    What’s this? An ancestral connection between Sicel Elymian and Galaico-Lusitanian or Ligurian (based on an origin in NE Iberia)? Impossible to say, especially if the languages of these early settlers were replaced later by non-Indo-European speakers from the eastern Mediterranean, and by Indo-European speakers from the mainland closely related to Proto-Italic during the LBA, but see below.

    Regarding the comment on R1b-Z195, it is associated with modern Iberians, as DF27 in general, due to founder effects beyond the Pyrenees. It is a very old subclade, split directly from DF27 roughly at the same time as it split from the parent P312, i.e. it can be found anywhere in Europe, and it almost certainly accompanied the expansion of Celts from Central Europe under the subclade R1b-M167/SRY2627.

    The connection is thus strong only because of the qpAdm modeling, since R1b-DF27 and subclade R1b-Z195 are certainly lineages expanded quite early, most likely with Yamna settlers in Hungary and East Bell Beakers.

    In this case, if stemming from Iberia, it is most likely of subclade R1b-Z220 – or another Z195 (xM167) lineage – originally associated with the Old European substrate found in topo-hydronymy in Iberia, whose most likely remnants attested during the Iron Age were Lusitanians.

    r1b-df27-z195
    Left: Modern distribution of R1b-Z195 (YFull estimate 2700 BC); Right: Modern distribution of DF27. Both include later founder effects within Iberia, so the increase in the Basque country and the Crown of Aragon and the decrease in Portugal can safely be ignored. Contour maps of the derived allele frequencies of the SNPs analyzed in Solé-Morata et al. (2017).

    We detect Iranian-related ancestry in Sicily by the Middle Bronze Age 1800-1500 BCE, consistent with the directional shift of these individuals toward Mycenaeans in PCA. Specifically, two of the Middle Bronze Age individuals can only be fit with models that in addition to Anatolia_Neolithic and WHG, include Iran_Ganj_Dareh_Neolithic. The most parsimonious model for Sicily_MBA3125 has 18.0 ± 3.6% Iranian-related ancestry (p=0.032 for rejecting the alternative model of Steppe rather than Iranian-related ancestry), and the most parsimonious model for Sicily_MBA has 14.9 ± 3.9% Iranian-related ancestry (p=0.037 for rejecting the alternative model).

    The modern southern Italian Caucasus-related signal identified in Raveane et al. (2018) is plausibly related to the same Iranian-related spread of ancestry into Sicily that we observe in the Middle Bronze Age (and possibly the Early Bronze Age).

    The non-Indo-European Sicanians and Elymians were possibly then connected to eastern Mediterranean groups before the expansion of the Sea Peoples.

    For the Late Bronze Age group of individuals, qpAdm documented Steppe-related ancestry, modeling this group as 80.2 ± 1.8% Anatolia_Neolithic, 5.3 ± 1.6% WHG, and 14.5 ± 2.2% Yamnaya_Samara. Our modeling using sources more closely related in space and time also supports Sicily_LBA having Minoan-related ancestry or being derived from local preceding populations or individuals with ancestries similar to those of Sicily_EBA3123 (p=0.527), Sicily_MBA3124 (p=0.352), and Sicily_MBA3125 (p=0.095).

    This increase in Steppe-related ancestry in a western site during the LBA most likely represents either an expansion from the Aegean or – maybe more likely, given the archaeological finds – a regional population similar to Sicily EBA re-emerging or rather being displaced from the eastern part of the island because of a westward movement from nearby Calabria.

    Whether this population sampled spoke Indo-European or not at this time is questionable, since the Iron Age accounts show non-IE Elymians in this region.

    Actually, Elymians seem to have spoken Indo-European, which fits well with the increase in steppe ancestry.

    EDIT (21 MAR): Interesting about a proposed incoming Minoan-like ancestry is the potential origin of the Iran Neolithic-related ancestry that is going to appear in Central Italy during the LBA. This could then be potentially associated with Tyrsenians passing through the area, although the traditional description may be more more compatible with an arrival of Sea Peoples from the Adriatic.

    Sad to read this:

    This manuscript is dedicated to the memory of Sebastiano Tusa of the Soprintendenza del Mare in Palermo, who would have been an author of this study had he not tragically died in the crash of Ethiopia Airlines flight 302 on March 10.

    Related