Yamna the likely source of modern horse domesticates; the closest lineage, from East Bell Beakers

Open access Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series, by Fages et al. Cell (2019).

Interesting excerpts (emphasis mine):

The earliest archaeological evidence of horse milking, harnessing, and corralling is found in the ∼5,500-year-old Botai culture of Central Asian steppes (Gaunitz et al., 2018, Outram et al., 2009; see Kosintsev and Kuznetsov, 2013 for discussion). Botai-like horses are, however, not the direct ancestors of modern domesticates but of Przewalski’s horses (Gaunitz et al., 2018). The genetic origin of modern domesticates thus remains contentious, with suggested candidates in the Pontic-Caspian steppes (Anthony, 2007), Anatolia (Arbuckle, 2012, Benecke, 2006), and Iberia (Uerpmann, 1990, Warmuth et al., 2011). Irrespective of the origins of domestication, the horse genome is known to have been reshaped significantly within the last ∼2,300 years (Librado et al., 2017, Wallner et al., 2017, Wutke et al., 2018). However, when and in which context(s) such changes occurred remains largely unknown.

To clarify the origins of domestic horses and reveal their subsequent transformation by past equestrian civilizations, we generated DNA data from 278 equine subfossils with ages mostly spanning the last six millennia (n = 265, 95%) (Figures 1A and 1B; Table S1; STAR Methods). Endogenous DNA content was compatible with economical sequencing of 87 new horse genomes to an average depth-of-coverage of 1.0- to 9.3-fold (median = 3.3-fold; Table S2). This more than doubles the number of ancient horse genomes hitherto characterized. With a total of 129 ancient genomes, 30 modern genomes, and new genome-scale data from 132 ancient individuals (0.01- to 0.9-fold, median = 0.08-fold), our dataset represents the largest genome-scale time series published for a non-human organism (Tables S2, S3, and S4; STAR Methods).

Genetic Affinities.
Principal Component Analysis (PCA) of 159 ancient and modern horse genomes showing at least 1-fold average depth-of-coverage. The overall genetic structure is shown for the first three principal components, which summarize 11.6%, 10.4% and 8.2% of the total genetic variation, respectively. The two specimens MerzlyYar_Rus45_23789 and Dunaujvaros_Duk2_4077 discussed in the main text are highlighted. See also Figure S7 and Table S5 for further information.
(B) Visualization of the genetic affinities among individuals, as revealed by the struct-f4 algorithm and 878,475 f4 permutations. The f4 calculation was conditioned on nucleotide transversions present in all groups, with samples were grouped as in TreeMix analyses (Figure 3). In contrast to PCA, f4 permutations measure genetic drift along internal branches. They are thus more likely to reveal ancient population substructure.

Discovering Two Divergent and Extinct Lineages of Horses

Domestic and Przewalski’s horses are the only two extant horse lineages (Der Sarkissian et al., 2015). Another lineage was genetically identified from three bones dated to ∼43,000–5,000 years ago (Librado et al., 2015, Schubert et al., 2014a). It showed morphological affinities to an extinct horse species described as Equus lenensis (Boeskorov et al., 2018). We now find that this extinct lineage also extended to Southern Siberia, following the principal component analysis (PCA), phylogenetic, and f3-outgroup clustering of an ∼24,000-year-old specimen from the Tuva Republic within this group (Figures 3, 5A and S7A). This new specimen (MerzlyYar_Rus45_23789) carries an extremely divergent mtDNA only found in the New Siberian Islands some ∼33,200 years ago (Orlando et al., 2013) (Figure 6A; STAR Methods) and absent from the three bones previously sequenced. This suggests that a divergent ghost lineage of horses contributed to the genetic ancestry of MerzlyYar_Rus45_23789. However, both the timing and location of the genetic contact between E. lenensis and this ghost lineage remain unknown.

Population modeling of the demographic changes and admixture events in extant and extinct horse lineages. The two models presented show best fitting to the observed multi-dimensional SFS in momi2. The width of each branch scales with effective size variation, while colored dashed lines indicate admixture proportions and their directionality. The robustness of each model was inferred from 100 bootstrap pseudo-replicates. Time is shown in a linear scale up to 120,000 years ago and in a logarithmic scale above.

Modeling Demography and Admixture of Extinct and Extant Horse Lineages

Phylogenetic reconstructions without gene flow indicated that IBE differentiated prior to the divergence between DOM2 and Przewalski’s horses (Figure 3; STAR Methods). However, allowing for one migration edge in TreeMix suggested closer affinities with one single Hungarian DOM2 specimen from the 3rd mill. BCE (Dunaujvaros_Duk2_4077), with extensive genetic contribution (38.6%) from the branch ancestral to all horses (Figure S7B).This, and the extremely divergent IBE Y chromosome (Figure 6B), suggest that a divergent but yet unidentified ghost population could have contributed to the IBE genetic makeup.

Rejecting Iberian Contribution to Modern Domesticates

The genome sequences of four ∼4,800- to 3,900-year-old IBE specimens characterized here allowed us to clarify ongoing debates about the possible contribution of Iberia to horse domestication (Benecke, 2006, Uerpmann, 1990, Warmuth et al., 2011). Calculating the so-called fG ratio (Martin et al., 2015) provided a minimal boundary for the IBE contribution to DOM2 members (Cahill et al., 2013) (Figure 7A). The maximum of such estimate was found in the Hungarian Dunaujvaros_Duk2_4077 specimen (∼11.7%–12.2%), consistent with its TreeMix clustering with IBE when allowing for one migration edge (Figure S7B). This specimen was previously suggested to share ancestry with a yet-unidentified population (Gaunitz et al., 2018). Calculation of f4-statistics indicates that this population is not related to E. lenensis but to IBE (Figure 7B; STAR Methods). Therefore, IBE or horses closely related to IBE, contributed ancestry to animals found at an Early Bronze Age trade center in Hungary from the late 3rd mill. BCE. This could indicate that there was long-distance exchange of horses during the Bell Beaker phenomenon (Olalde et al., 2018). The fG minimal boundary for the IBE contribution into an Iron Age Spanish horse (ElsVilars_UE4618_2672) was still important (~9.6%–10.1%), suggesting that an IBE genetic influence persisted in Iberia until at least the 7th century BCE in a domestic context. However, fG estimates were more limited for almost all ancient and modern horses investigated (median = ~4.9%–5.4%; Figure 7A).

TreeMix Phylogenetic Relationships. The tree topology was inferred using a total of ∼16.8 million transversion sites and disregarding migration. The name of each sample provides the archaeological site as a prefix, and the age of the specimen as a suffix (years ago). Name suffixes (E) and (A) denote European and Asian ancient horses, respectively. See Table S5 for dataset information. Image modified to include the likely ancestor of domesticates in a red circle, represented by Yamna, the most likely direct ancestor of the Dunaujvarus specimen.

Iron Age horses

Y chromosome nucleotide diversity (π) decreased steadily in both continents during the last ∼2,000 years but dropped to present-day levels only after 850–1,350 CE (Figures 2B and S2E; STAR Methods). This is consistent with the dominance of an ∼1,000- to 700-year-old oriental haplogroup in most modern studs (Felkel et al., 2018, Wallner et al., 2017). Our data also indicate that the growing influence of specific stallion lines post-Renaissance (Wallner et al., 2017) was responsible for as much as a 3.8- to 10.0-fold drop in Y chromosome diversity.

We then calculated Y chromosome π estimates within past cultures represented by a minimum of three males to clarify the historical contexts that most impacted Y chromosome diversity. This confirmed the temporal trajectory observed above as Byzantine horses (287–861 CE) and horses from the Great Mongolian Empire (1,206–1,368 CE) showed limited yet larger-than-modern diversity. Bronze Age Deer Stone horses from Mongolia, medieval Aukštaičiai horses from Lithuania (C9th–C10th [ninth through the tenth centuries of the Common Era]), and Iron Age Pazyryk Scythian horses showed similar diversity levels (0.000256–0.000267) (Figure 2A). However, diversity was larger in La Tène, Roman, and Gallo-Roman horses, where Y-to-autosomal π ratios were close to 0.25. This contrasts to modern horses, where marked selection of specific patrilines drives Y-to-autosomal π ratios substantially below 0.25 (0.0193–0.0396) (Figure 2A). The close-to-0.25 Y-to-autosomal π ratios found in La Tène, Roman, and Gallo-Roman horses suggest breeding strategies involving an even reproductive success among stallions or equally biased reproductive success in both sexes (Wilson Sayres et al., 2014).

Lineage is used in this paper, as in many others in genetics, as defined by a specific ancestry. I keep that nomenclature below. It should not be confused with the “lineages” or “lines” referring to Y-chromosome (or mtDNA) haplogroups.

Supporting the “archaic” nature of the Hungarian BBC horses expanding from the Pontic-Caspian steppes are:

  • Among Y-chromosome lines, the common group formed by Botai-Borly4 (closely related to DOM2), Scythian horses from Aldy Bel (Arzhani), Iron Age horses from Estonia (Ridala), horses from the Xiongnu culture (Uushgiin Uvur), and Roman horses from Autricum (Chartres).
  • Among mtDNA lines, the common group formed by Botai samples, LebyazhinkaIV NB35, and different Eurasian domesticates, including many ancient Western European ones, which reveals a likely expansion of certain subclades east and west with the Repin culture.
  • (…) DOM2 contributed 22% to the ancestor of Przewalski’s horses ca. 9.47 kya, suggesting the Holocene optimum, rather than the Eneolithic Botai culture (∼5.5 kya), as a period of population contact. This pre-Botai introgression could explain the Y chromosome topology, where Botai horses were reported to carry two different segregating haplogroups: one occupied a basal position in the phylogeny while the other was closely related to DOM2. Multiple admixture pulses, however, are known to have occurred along the divergence of DOM2 and the Botai-Borly4 lineage, including 2.3% post-Borly4 contribution to DOM2, and a more recent 6.8% DOM2 intogression into Przewalski’s horses (Gaunitz et al., 2018). Model C2 parameters accommodate all these as a single admixture pulse, likely averaging the contributions of all these multiple events.

    Tip labels are respectively composed of individual sample names, their reference number as well as their age (years ago, from 2017). Red, orange, light green, green, dark green and blue refer to modern horses, ancient DOM2, Botai horses, Borly4 horses, Przewalski’s horses and E. lenensis, respectively. Black refers to wild horses not yet identified to belong to any particular cluster in absence of sufficient genome-scale data. Clades composed of only Przewalski’s horses or ancient DOM2 horses were collapsed to increase readability.

    (A) Best maximum likelihood tree retracing the phylogenetic relationships between 270 mitochondrial genomes.

    B) Best Y chromosome maximum likelihood tree (GTRGAMMA substitution model) excluding outgroup. Node supports are indicated as fractions of 100 bootstrap pseudoreplicates. Bootstrap supports inferior to 90% are not shown. The root was placed on the tree midpoint. See also Table S5 for dataset information.

    Image modified from the paper, including a red square in archaic groups that contain the Hungarian sample, and a red circle around the most likely common ancestral stallion and mare from the Pontic-Caspian steppes.

    The paper cannot offer a detailed picture of ancient horse domestication, but it is yet another step in showing how Repin/Yamna is the most likely source of expansion of horse domesticates in Eurasia. Even more interestingly, Yamna settlers in Hungary probably expanded an ancient lineage of that horse at the same time as they spread with the Classical Bell Beaker culture. Remarkable parallels are thus found between:

    The expansion of an ancient line of horse domesticates related to Yamna Hungary/East Bell Beakers seems to be confirmed by the pre-Iberian sample from Vilars I, Els Vilars4618 2672 (ca. 700-550 BC), likely of Iberian Beaker descent, showing a lineage older than the Indo-Iranian ones, which later replaced most European lines.

    NOTE. For known contacts between Yamna and Proto-Beakers just before the expansion of East Bell Beakers, see a recent post on Vanguard Yamna groups.

    The findings of the paper confirm the expansion of the horse firstly (and mainly) through the steppe biome, mimicking the expansion of Proto-Indo-Europeans first, and then replaced gradually (or not so gradually) by lines brought to Europe during westward expansions of Bronze Age, Iron Age, and later specialized horse-riding steppe cultures. The expansion also correlates well with the known spread of animal traction and pastoralism before 2000 BC:

    Top image: Map with evidence of animal traction before ca. 2000 BC. Bottom image: frequency of finds of evidence for animal traction (orange), cylinder seals (purple) and potter’s wheels (green) in the 4th and 3rd millennium BC (query from the Digital Atlas of Innovations). The data points to an early peak in the expansion of this innovation at the turn of the 4th–3rd millennium BC, while direct evidence supports a radical increase from around the mid–3th millennium BC until the early 2nd millennium, coinciding with the expansion of East Bell Beakers and related European Early Bronze Age cultures. Data and image modified from Klimscha (2017).

    EDIT (3 MAY 2019): A recent reminder of these parallel developments by David Reich in Insights into language expansions from ancient DNA:

    • Yamna expansion to the west “with horses and wagons”, with a more homogeneous ancestry in modern Europeans due to later migrations from the east (and north):
    • “Descendants” of Yamna (once the culture was already “dead”), expanding to the east mainly with Corded Ware ancestry:

    Another recent open access paper on horse domestication is The horse Y chromosome as an informative marker for tracing sire lines, by Felkel et al. Scientific Reports (2019).


Pre-Germanic and Pre-Balto-Finnic shared vocabulary from Pitted Ware seal hunters


I said I would write a post about topo-hydronymy in Europe and Iberia based on the most recent research, but it seems we can still enjoy some more discussions about the famous Vasconic Beakers, by people longing for days of yore. I don’t want to spoil that fun with actual linguistic data (which I already summarized) so let’s review in the meantime one of the main Uralic-Indo-European interaction zones: Scandinavia.

Seal hunting

One of the many eye-catching interpretations – and one of the few interesting ones – that could be found in the relatively recent article Talking Neolithic: Linguistic and Archaeological Perspectives on How Indo-European Was Implemented in Southern Scandinavia, by Iversen & Kroonen AJA (2017) was this:

The borrowing of lexical items from hunter-gatherers into Germanic refers to the potential adoption of Proto-Germanic *selhaz “seal” (Old Norse selr, Old English seolh, Old High German selah) as well as Early Proto-Balto-Finnic *šülkeš “seal” (Finnish hylje, Estonian hüljes) from the marine-oriented Sub-Neolithic Pitted Ware culture.

Modified from Kristiansen et al. (2017), with red circle around the hypothesized interaction of Germanic with hunter-gatherers. “Schematic representation of how different Indo-European branches have absorbed words (circles) from a lost Neolithic language or language group (dark fill) in the reconstructed European linguistic setting of the third millennium BC, possibly involving one or more hunter gatherer languages (light fill) (after Kroonen & Iversen 2017)”.

This is what Kroonen thought about this word in his Etymological Dictionary of Proto-Germanic (2006):

Gmc. *selha– m. ‘seal’ – ON selr m. ‘id.’, Far. selur m. ‘id.’, OSw. siæl m. ‘id.’, Sw. själ c. ‘id.’, OE seolh m. ‘id.’, E seal, OS selah m. ‘id.’, EDu. seel, seel-hont m. ‘id.’, Du. zee-hond c. ‘id.’, OHG selah m. ‘id.’, MHG sele m. ‘id.’ (GM).

A Germanic word with no certain IE etymology. The link with Lith. selė́ti ‘to crawl’ (Torp 1909: 436) is erroneous, as this verb corresponds to PGm. *stelan- (q.v.). The *h may nevertheless correspond to the PIE animal suffix *-ko-, for which see *elha{n)- ‘elk’ and *baruga- ‘boar’.

Focusing on this substrate etymon, coupled with archaeology and ancient DNA, in the recent SAA 84th Annual Meeting (Abstracts in PDF):

Kroonen, Guus (Leiden University) and Rune Iversen

[196] The Linguistic Legacy of the Pitted Ware Culture

The Scandinavian hunter-, fisher- and gatherer-based Pitted Ware culture is chronologically situated in the Neolithic. However, it challenges our traditional view on cultural and social evolution by representing a return to an otherwise abandoned hunter-gatherer lifestyle. In general, the Pitted Ware culture must be seen as an offshoot of the “Sub-Neolithic” societies inhabiting wide parts of northern and northeastern Europe in the fourth and third millennium B.C.E.

Isotopic and aDNA studies have shown that people of the east Swedish Pitted Ware culture, both dietarily and genetically were distinct from the early farmers in this region, the Funnel Beaker culture. Isotopic data shows a marked predominance of seal in the diet, which has given the Pitted Ware people the nickname “Inuit of the Baltic”.

As regards language, it is to be expected that people practicing a Pitted Ware lifestyle spoke a non-Indo-European language. In fact, there is some linguistic evidence that can support this claim. It is conceivable that both the Germanic and Finnish word for “seal” were ultimately borrowed from a language spoken in a Pitted Ware context. Once more, the linguistic evidence turns out to offer important information complementary to that of archaeology and archaeo-genetics.

Stone Age Seal Hunters, by Måns Sjöberg.

Apparently, the idea of non-IE substrate languages in contact with Germanic in Scandinavia is fashionable for the Copenhagen group, probably due to their particular interpretation of the recent genetic papers, hence the multiple Germanic-Fennic connections to be reviewed through this new prism. While the ulterior motive of this proposal may be to try and connect yet again Germanic with CWC Denmark, I would argue that the effect is actually the opposite.

An early borrowing via Uralic

The word has always been considered a more likely loan from one language to the other, and – because of the quite popular idea of Uralic native to Fennoscandia – it was often seen as a likely borrowing of Germanic from Balto-Finnic. In any possible case, the borrowing in either direction must be quite early, for obvious reasons:

  • If the borrowing had been via late Palaeo-Germanic, the ending in *-xa– would have been reflected in Balto-Finnic, hence an early Palaeo-Germanic to Pre-Balto-Finnic stage would be necessary.
  • If the borrowing had been via late Balto-Finnic, the initial sibilant would be already aspirated, being adopted as *-x– in Palaeo-Germanic, while the ending in *-k– would have remained as such if it was adopted after Grimm’s law ceased to be active.
  • Similarly, a borrowing from a common, non-Indo-European & non-Uralic source would require that it happened during the early stages of both proto-languages to have undergone their respective phonetic changes, and both borrowings chronologically close to each other, to assume a similar vocalism and consonantism of the ultimate source.
The idea of seal-hunting Uralic substrate of Pitted Ware is not new. Image modified from The Uralic and Finno-Ugric Phonetic Substratum, by Kalevi Wiik, Linguistica Uralica (1997).

Furthermore, regarding the most likely way of expansion of this loanword, due to the different vowels and sibilants present in Uralic but not in Indo-European:

  • A direct loan from Pre-Germanic **selkos – which shows a regular thematic declension – to Pre-Balto-Finnic *šülkeš doesn’t seem to be a reasonable assumption.
  • NOTE. A Germanic borrowing from alternative Gmc. genitive *silxis could only work in a Pre-Germanic to Pre-Balto-Finnic model, hence only if the Gmc. form can be reconstructed for an earlier stage. Even then, for the same reason stated above, the opposite could be more reasonably argued, i.e. that this form is the original one adopted in Germanic: Pre-PBF *šülkeš > Pre-Gmc. *silkis, reinterpreted as an -o- stem in its declension.

  • If we reconstruct an older Pre-Finno-Samic (i.e. with Finno-Permic-like vocalism) **šëlkëš, a borrowing into Pre-Germanic **selkos would work. Even though no Saami derivative exists to confirm such a possibility, this would be supported by the known common evolution of Finno-Samic dialects in close contact with Pre-Germanic.
  • Admittedly, even accepting the existence of a Finno-Samic stem, a potential substrate word could not be discarded. In fact, while **šëlkë- could perfectly be a Uralic root, the ending in *-š can’t be easily interpreted. Therefore, a third, non-Indo-European & non-Uralic source is a plausible explanation.

NOTE. Arguably, Proto-Finno-Samic could have adopted Gmc. *kh or *x exceptionally as PFS *k. However, early Palaeo-Germanic borrowings in Finno-Samic show a consistent regular consonant change as described above. For more on this, see Finno-Samic borrowings.

This likely Uralic first nature of the loanword is important for the discussion below.

Pitted Ware culture

Middle Neolithic A period. Distribution of Pyheensilta Ware, Funnel Beaker Culture in Sweden, and Pitted Ware Culture in northern Europe during the Middle Neolithic A period, c. 3300–2800 cal BC. Find locations with numbers demarcate sites where cereal grains have been found and later AMS radiocarbon dated. Figure was created by SV using QGIS 3.4. (https://www.qgis.org/) and Natural Earth data (https://www.naturalearthdata.com/). Image from Vanhanen et al. (2019).

About the Pitted Ware culture, this is what the recent paper by Vanhanen et al. (2019), from the University of Finland (including Volker Heyd) had to say:

The origins of the PWC are controversial. In one likely scenario, Comb Ceramic and Mesolithic hunter-gatherers first interacted with FBC during the last centuries of the EN and became specialized maritime hunter-gatherers. The PWC pushed south and westwards during the Middle Neolithic (MN), c. 3300–2300 BC, along the northern Baltic shoreline and adjacent islands, eventually reaching as far west as Denmark and southern Norway. Around 2800 BC, after the FBC ceased to exist, the Corded Ware Culture (CWC) migrated into the PWC area. The end date for the PWC and CWC is approximately 2300 BC, when the material culture was replaced by the Late Neolithic (LN) culture<. Spanning nearly a millennium virtually unchanged, the PWC maintained a coherent society and a successful economic model. PWC people lived in marine-oriented settlements, commonly dwelled in huts and produced relatively large amounts of ceramic vessels. This speaks to the partly sedentary nature of their habitation, at least for their base camps. These specialist hunter-gatherers obtained the great majority of their subsistence from maritime sources, such as seal, fish, and sea birds. Considering the amount of bones, sealing was of paramount importance, causing these peoples to be labelled ‘hard-core sealers’ or even the ‘Inuit of the Baltic’.

The Middle Neolithic Pitted Ware culture is dated ca. 3500–2300 BC, so we would be seeing here Pre-Germanic and Pre-Balto-Finnic peoples arriving near the Pitted Ware culture. That would leave us with one of both languages expanding with Corded Ware peoples, and the other with Bell Beakers. Since Battle Axe-derived cultures around the Gulf of Finland are associated with Balto-Finnic groups, and Bell Beakers arriving ca. 2400 started the Dagger Period, commonly associated with the Pre-Germanic community, I think the connection of each group with their language is self-evident.

Middle Neolithic B period. Distribution of Corded Ware Culture and Pitted Ware Culture in northern Europe during the Middle Neolithic B period, c. 2800–2300 cal BC. Find locations with numbers demarcate sites where cereal grains have been found and later AMS radiocarbon dated. Figure was created by SV using QGIS 3.4. (https://www.qgis.org/) and Natural Earth data (https://www.naturalearthdata.com/). Modified from Vanhanen et al. (2019).

NOTE. You can read some interesting information about prehistoric and recent seal hunting in the Baltic in the blog post “Själen” – Seal Hunting in the Northern Baltic Sea.

Germanic-Fennic phonetic evolution

The common Germanic – Balto-Finnic phonetic evolution, especially Verner’s law in Palaeo-Germanic and qualitative gradation in Proto-Balto-Finnic, has been variably interpreted as:

  • Uralic in Scandinavia influenced by Germanic (Verner’s law source of the gradation), by Koivulehto and Vennemann (1996).
  • Germanic over a Uralic substratum in Scandinavia, by Wiik (1997).
  • Both Germanic and Balto-Finnic influenced by a third language, an “extinct non-Uralic source” spoken in Fennoscandia before the arrival of Uralic and Indo-European, by Kallio (2001); maybe the same substrate proposed to have influenced the accent shift in Germanic similar to Uralic.
  • Balto-Finnic speakers adopting Pre-Germanic in Scandinavia, in contact with Balto-Finnic speakers retaining their language, by Schrijver in Language Contact and the Origins of the Germanic Languages (2014)– although first suggested by him in the 1990s.

NOTE. There are other (some much older) proposals of a Uralic substrate in Scandinavia, but I think those above summarize the most common positions tenable today.

If you add all linguistic, archaeological, and now genetic connections, it is really strange to keep arguing for so many surprisingly fitting common substrates and/or contact languages for both. Especially because the Pre-Germanic community – if originally from southern Scandinavia and not further south (see e.g. Kortlandt’s theory) – was marked by the Dagger Period, as accepted by most archaeologists (including Kristiansen), and we know that Bell Beakers – who triggered the Dagger period – might have arrived a little late to the Pitted Ware disintegration in most seal-hunting areas of southern Scandinavia.

Density analysis based (Bell Beaker per km2) on the distribution of Bell Beaker per region (ca. 2700-2200 BC). Combination of different levels of b-spline interpolation. Exaltation of the values through square root usage. Modified from Michael Bilger (2018).

In other words, how many common substrate languages can we propose for Germanic (and Balto-Finnic)? Just from Kroonen we have already the Semitic-like TRB, and the seal-hunting Pitted Ware culture. Apparently, the culprit of the common phonetic evolution must be some (other?) culture that both Pre-Germanic and Pre-Balto-Finnic assimilated (or with which both were in contact) in Fennoscandia.

NOTE. I believe no data supports the attribution of those Germanic borrowings to the TRB culture, especially if one assumes they belong to an Afroasiatic branch, as did Kroonen. His initial assumption about an expansion of R1b-M269 associated with the Neolithic from Anatolia, and thus with Afroasiatic, must today be rejected. Much more likely is the incorporation of most of these loanwords during the expansion of North-West Indo-Europeans from Yamna Hungary.

How many “common” substrates from different regions and cultures is too much? Arguably, it’s not a question of quantity (because the overall probability remains the same), but a question of quality of arguments.

In my opinion, both a) the marked seal-hunting subsistence economy of the Pitted Ware culture and b) the difficult reconstruction of a fitting ‘natural’ PIE or PU stem warrant this proposal of a third source, just like the European agricultural substrate of North-West Indo-European and Palaeo-Balkan languages, as well as the Asian agricultural substrate of Indo-Iranian are the most logical interpretation of words not found in other IE dialects. The only problem in this case is the lack of other Scandinavian substrate words to compare its typology against.

Close contacts in Fennoscandia. The distribution of Scandinavian flint daggers (A) in the east and south Baltic region and possible trends of “down the line” trade (B). Good size and quality flint zone in the south-west Baltic region is hatched (C). According to: Wojciechowski 1976; Olausson 1983, fig. 1; Madsen 1993, 126; Libera 2001; Kriiska & Tvauri 2002, 86. Image modified from Piličiauskas (2010).

Common Scandinavian substratum

The theory of a Pitted Ware borrowing is therefore quite convincing from a cultural point of view, at the same time as it fits the linguistic data. However, one reason why I dislike the interpretation of a dual origin is that our knowledge of Uralic languages is fairly limited, whereas that of Indo-European branches and hence Proto-Indo-European is huge. To put it otherwise: if a common word appears in both, and it is most likely (culturally and linguistically) not Indo-European, it certainly means that it was borrowed in Germanic. What are the a priori chances of it coming directly from a third substrate language for both dialects, instead of coming directly from Pre-Balto-Finnic?

From Schrijver (2014):

What did happen, apparently, is that Finnic speakers had enough access to the way in which Germanic speakers pronounced Balto-Finnic in order to model their own pronunciation of Balto-Finnic on it. In other words, Balto-Finns conversed with bilingual speakers of Germanic and Balto-Finnic whose pronunciation of both was essentially Germanic. But access to the Germanic language itself was not sufficient to allow Balto-Finns to become bilingual themselves, either because social segregation prevented this or because contact with Germanic was severed before widespread bilingualism set in. This limited access to Germanic would allow us to understand why Balto-Finnic did not go the way of the vernacular languages that came in contact with Latin in the Roman Empire, where access to Latin was open to almost everybody and massive language shift in favour of Latin ensued.

NOTE. For a more detailed discussion, you can read the whole chapter dedicated to this question. I summarized it in Pre-Germanic born out of a Proto-Finnic substrate in Scandinavia.

On the other hand, about the ad hoc interpretation by Kallio (2001) of hypothetic third languages strongly influencing in the same way both the Palaeo-Germanic- and Balto-Finnic-speaking communities, Schrijver (2014) comments:

The idea that perhaps both languages moved towards a lost third language, whose speakers may have been assimilated to both Balto-Finnic and Germanic, provides a fuller explanation but suffers from the drawback that it shifts the full burden of the explanation to a mysterious ‘language X’ that is called upon only in order to explain the developments in Proto-Germanic and Balto-Finnic. That comes dangerously close to circular reasoning.

Early Bronze Age cultures of Northern Europe (roughly ca. 2200-1750). Dagger period representing the expansion of BBC-derived groups from southern Scandinavia.

NOTE. The proposal of some kind of “SHG/EHG-based Fennoscandian substrate” seems funny to me, for two reasons: firstly, there is usually no talk about which culture spread that common language, how it survived, how it was in contact with both groups and until when, etc. (see below for possibilities); secondly, apparently the evident survival of West European EEF communities driven by at least two cultural groups – El Argar and the poorly known groups from the Atlantic façade north of the Pyrenees – is, for the same people proposing this simplistic SHG/EHG idea, somehow not fitting for the prehistory of Proto-Iberian and Proto-Aquitanian, respectively…

The same argument that one could use against the direct borrowing of both dialects from Pitted Ware, but much more strongly, can be thus wielded against a common, centuries-long phonetic evolution of both Balto-Finnic and Germanic caused by close interactions with (and/or substrate influence of) some third language. Which unitary culture and when exactly could that have happened around the Baltic Sea?

  • Was it Pitted Ware the mysterious substrate language? Seems rather unlikely, due to the early demise of the Pitted Ware culture in contrast to the long-lasting common influence seen in both dialects.
  • Was it Pitted Ware in southern Scandinavia, but Comb Ware in the Gulf of Finland? Is there a direct genetic connection between both cultures? And how likely is a common phonology of an ancestral Comb Ware-like substrate language surviving separately in Finland and Sweden? Even accepting these assumptions, we would be stuck again in the Indo-European Beakers vs. Uralic Battle Axe model.
  • Was it a succession of cultures, from some Scandinavian culture that was replaced by some incoming ethnolinguistic group, then influencing the other? This non-IE, non-Uralic substrate would then need to be proposed, given the chronological and archaeological constraints, as an effect of Pitted Ware over Pre-Finno-Baltic spoken by Battle Axe peoples in Scandinavia, then replaced by Pre-Germanic peoples arriving later with Bell Beakers. A reverse direction and later chronology (say, Germanic replaced by Balto-Finnic from Netted Ware arriving from the Volga) wouldn’t work as well.
  • Was it Asbestos Ware as a late Comb Ware group influencing both? How likely is such a continued influence in Southern Scandinavia and the Gulf of Finland? Even if we accepted this influence that miraculously didn’t affect Samic (most likely located between the Balto-Finnic-speaking Gulf of Finland and northern Fennoscandian Asbestos Ware groups), it would necessarily mean that Germanic and Balto-Finnic were spoken neighbouring exactly the same Asbestos Ware groups in Scandinavia. That is, essentially, that the BBC-derived Dagger Period represented Pre-Germanic, while Battle Axe-derived groups around the Gulf of Finland were Balto-Finnic.

Mixing linguistics with archaeology (now complemented with genetics) also risks circular reasoning. But, how else can someone propose a third substrate language for a phonetic change, necessarily represented by Fennoscandian groups potentially separated by thousands of years? In this age of population genomics we can’t simply talk about theoretical models anymore: we must refer to Fennoscandian cultures and populations in a very specific time frame, as Kronen & Iversen do in their proposal. Not only is such a third unknown language usually a weak explanation for a common development of two unrelated languages; in this case it finds no support whatsoever.

Seals and the Arctic

Another interesting aspect about this Fennic-Germanic comparandum is its relevance to the Uralic homeland problem.

Current distribution of Uralic languages. Nenets and Saami are among the best positioned to retain the ‘original’ Uralic seal-hunting vocabulary.

Since the publication of Mittnik et al. (2018), Lamnidis et al. (2018), and Sikora et al. (2018), the new normal is apparently to consider Corded Ware Finland as Germanic-speaking, the Gulf of Finland as Balto-Slavic-speaking, while the Kola peninsula and whichever Palaeo-Arctic peoples preceded Nganasans and Nenets as ancient Uralians. Uh-huh, OK.

But, if prehistoric Arctic peoples practiced specialized seal-hunting economies, and Uralians were one among such populations – supposedly one widespread from the Barents Sea to the Lapteve Sea…how come no common Uralic word for ‘seal’ exists? In other words, why would these True™ Uralic peoples expanding from the Arctic need to borrow a word for ‘seal’ from neighbouring populations in every single seal-hunting region they are attested?

Historical distribution of grey seals, an important part of the diet around the Baltic Sea. Image modified from Wikimedia to include Skagerrak and Kattegat regions.

About Saami, which some have recklessly proposed to be derived from Bronze Age N1c-L392 samples from the Kola Peninsula (against the good judgment of the authors of the paper), this is what we know from their word for ‘seal’, from Grünthal (2004):

Ter Saami vīrre ‘seal; wolf’ displays two meanings that refer to clearly different animals. Neither of them is borrowed from the source language because the word descends from Russian zver’ ‘animal’ (T.I.Itkonen 1958: 756). Another word, Skolt Saami näúdd ‘seal, wolf’, has been similarly used in the two meanings. The evidence of North Saami návdi ‘wolf; creature, fur animal; beast’ (Sammallahti 1989: 305; Lagercrantz (1939: 518) presents the alternative meanings in the opposite order; E. Itkonen (1969: 148) lists the meanings ‘wildes Tier; Raubtier (bes. Wolf); Pelztier’) suggesting that ‘wolf’ is the primary sense and ‘seal’ is a metaphorical extension of it. More precisely, it is an example of a mythic metaphor (cf. Siikala 1992). According to the old folk belief, seal was a wolf and the Skolt Saamis preferred not to eat its meat (T.I.Itkonen 1958: 906). Before that the metonymic meaning ‘wolf’ rose from the less specified meanings, and originally návdi is a Scandinavian or Finnic loan word in Saamic, cf. Old Norse naut ‘vieh, rind’, Icelandic and Norwegian naut, Swedish nöt < Germanic *nauta ‘property’ (Hellquist 1980: 721, T.I.Itkonen 1958: 275, Lagercrantz 1939: 518, de Vries 1961: 406; E. Itkonen (1969: 148) considers Finnic, cf. Finnish nauta ‘bovine’ (< Germanic) as a possible alternative source for the Saamic word).

NOTE. Possibly comparable, for the mythic metaphor proper of Scandinavian folk belief, are Germanic derivatives built as ‘seal-hound’ and/or ‘sea-hound’.

Seals formed a great part of the diet for Palaeo-Arctic populations. Boundaries of regions used to predict sea ice, superimposed over the distributions of the five ringed seal subspecies. Image modified from Kelly et al. (2010).

About Nenets (quite close to the Naganasans of pure “Siberian ancestry”), here is what Edward Vajda, an expert in Palaeo-Siberian languages, has to say:

Nenets techniques for hunting the animals of the Arctic Ocean seem to have been borrowed from the first Arctic aborigines. Thus, the Nenets word for seal is nyak, the Eskimo word is nesak. Also, the Nenets word for a one-piece Arctic clothing is lu; the Korak word on the Kamchatka peninsula for clothing is l’ku. All of these groups may have borrowed the words from some original circumpolar aborigines. More probably, the first settlers of Arctic Europe were cousins of the present-day Eskimo, Chukchi and other residents of the far northeast region of Asia. Nenets folklore also speaks of the aborigines living in ice dugouts (igloos).

On the other hand, Proto-Uralic shows a Chalcolithic steppe-like culture, with common words for metal and metalworking, for agriculture, and for domesticated animals, most likely including cattle. They were close to Indo-Europeans since at least before the Tocharian split, and probably earlier than that (even if one does not accept the Indo-Uralic phylum). And there were clearly strong contacts of Finno-Ugric with Indo-Iranian, and especially of Finno-Samic with Germanic.

Uralic clines from Corded Ware groups to the east. A clear reason for the lack of common seal-hunting vocabulary. Modified from Tambets et al. (2018). Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations. You can see another PCA including ancient samples.

Some among my readers may now be thinking about these totally believable proposals of prehistoric cultures around Lake Baikal representing the True™ Uralic homeland; because haplogroup N1c, and because some 0.5% more “Devil’s Gate Cave ancestry” in Estonians than in Lithuanians; despite the fact that 1) the so-called “Siberian ancestry” formed an ancestral cline with EHG in North Eurasia, that 2) N1c-L392 lineages seem to appear among many Asian peoples of different languages, and that 3) recent prehistoric N1c-L392 lines expanded clearly with Micro-Altaic languages.

Like, who would have hunted seals in Lake Baikal, right? The problem is, seals represented one of their main game, essential for their subsistence economy. From Novokonova et al. (2015):

One of the key reasons for the density of human settlement in the Baikal region compared to adjacent areas of Siberia is that the lake and its nearby rivers offer an abundance of aquatic food resources, including several endemic species, with perhaps the most well known being the Baikal seal. This freshwater seal is only found in Lake Baikal and portions of its tributaries. It shares lifecycle and behavioral patterns with other small northern ice-adapted seals, and is genetically and morphologically most closely related to the ringed seal (Pusa hispida). The nerpa can grow up to 1.8 m long and weigh as much as 130 kg, with the males tending to be slightly larger than the females.

Zooarchaeological analyses of the 16,000 Baikal seal remains from this well-dated site clearly show that sealing began here at least 9000 calendar years ago. The use of these animals at Sagan-Zaba appears to have peaked in the Middle Holocene, when foragers used the site as a spring hunting and processing location for yearling and juvenile seals taken on the lake ice. After 4800 years ago, seal use declined at the site, while the relative importance of ungulate hunting and fishing increased. Pastoralists began occupying Sagan-Zaba at some point during the Late Holocene, and these groups too utilized the lake’s seals. Domesticated animals are increasingly common after about 2000 years ago, a pattern seen elsewhere in the region, but spring and some summer hunting of seals was still occurring. This use of seals by prehistoric herders mirrors patterns of seal use among the region’s historic and modern groups.

Bronze Age movements in Fennoscandia

Regarding the shrinkage and expansion of different farming economic strategies in Scandinavia since the Neolithic, with potential relevance for population movements and thus ethnolinguistic change – either from Balto-Finnic peoples migrating back from eastern Sweden, or Germanic peoples moving to eastern Finland – from Vanhanen et al. (2019):

Cultivated plants at CWC sites in Finland were not discovered in the current investigation (Supplementary Results) or earlier studies. In Finland, the keeping of domestic animals is indicated by the evidence of dairy lipids and mineralized goat hairs. Charred remains and impressions of cultivated plants have been discovered at CWC sites in Estonia and east-central Sweden (Fig. 3: 12). In the eastern Baltic region, the earliest bones of domestic animals and a shift in subsistence occurred with the CWC. Whether CWC produced the cereals and other agricultural products found at PWC sites is difficult to estimate because only small amounts of plant remains have ever been discovered at CWC sites. The CWC seemingly reached east-central Sweden from regions further to the east, where there is evidence of animal husbandry, but only very few signs of plant cultivation.

For the Late Neolithic (LN), cereal grains have been found north of Mälaren and along the Norrland coast. In mainland Finland, the first cereal grains occur during the LN or Bronze Age, c. 1900–1250 cal BC. The earliest bones of sheep/goat from mainland Finland are earlier, dating back to 2200–1950 cal BC. Finds of Scandinavian bronze artefacts indicate an influx from east-central Sweden, which might well be a source area for these agricultural innovations. A similar development is found in the eastern Baltic region, where the earliest directly radiocarbon-dated cereals originate from the Bronze Age, 1392–1123 cal BC (2 sigma). Thus, agriculture was evident during the Bronze Age in the eastern Baltic, but at least animal keeping and probably crop cultivation were present earlier during the CWC phase.

It has been known for a while already that the only options left for the expansion of Finno-Saami into Fennoscandia are either Battle Axe (continued in Textile Ceramics) or Netted Ware (as proposed e.g. by Parpola), based, among other data, on language contacts, language estimates, cultural evolution, and population genomics. Data like this one on seal-hunting vocabulary also support the most likely option, which entails the identification of Corded Ware as the vector of expansion of Uralic languages.

NOTE. Also interesting in this regard is the lack of Slavic words for ‘seal’ – borrowed, in Russian from Samic, and in other Slavic dialects from Russian, Latin, or other languages -, and the coinage of a new term in East Baltic. Rather odd for an “autochthonous” Proto-Baltic (supposedly in contact with Pitted Ware, Germanic, and Balto-Finnic, then), and for a Proto-Slavic stemming from the Baltic. Quite appropriate, though, for a Proto-East Baltic arriving in the Baltic with Trzciniec and for a Proto-Slavic community evolving further south.

So, what new episode in this renewed 2000s R1b/R1a/N1c soap opera is it going to be, when eastern Fennoscandia shows Corded Ware-derived peoples of “steppe ancestry” (and mainly R1a-Z645 lineages) continue during the Bronze Age? Will the resurge and/or infiltration of I2 – maybe even N1c – lineages among Corded Ware-derived cultures of north-eastern Europe support or challenge this model, and why? Make your bet below.


How the genocidal Yamnaya men loved to switch cultures


After some really interesting fantasy full of arrows, it seems Kristiansen & friends are coming back to their most original idea from 2015, now in New Scientist’s recent clickbait Story of most murderous people of all time revealed in ancient DNA (2019):

Teams led by David Reich at Harvard Medical School and Eske Willerslev at the University of Copenhagen in Denmark announced, independently, that occupants of Corded Ware graves in Germany could trace about three-quarters of their genetic ancestry to the Yamnaya. It seemed that Corded Ware people weren’t simply copying the Yamnaya; to a large degree they actually were Yamnayan in origin.

If you think you have seen that movie, it’s because you have. They are at it again, Corded Ware from Yamna, and more “steppe ancestry” = “more Indo-European. It seems we haven’t learnt anything about “Steppe ancestry” since 2015. But there’s more:

Genocidal peoples who “switch cultures”

Burial practices shifted dramatically, a warrior class appeared, and there seems to have been a sharp upsurge in lethal violence. “I’ve become increasingly convinced there must have been a kind of genocide,” says Kristian Kristiansen at the University of Gothenburg, Sweden.

The collaboration revealed that the origin and initial spread of Bell Beaker culture had little to do – at least genetically – with the expansion of the Yamnaya or Corded Ware people into central Europe. “It started in It is in that region that the earliest Bell Beaker objects – including arrowheads, copper daggers and distinctive Bell-shaped pots – have been found, in archaeological sites carbon-dated to 4700 years ago. Then, Bell Beaker culture began to spread east, although the people more or less stayed put. By about 4600 years ago, it reached the most westerly Corded Ware people around where the Netherlands now lies. For reasons still unclear, the Corded Ware people fully embraced it. “They simply take on part of the Bell Beaker package and become Beaker people,” says Kristiansen.

The fact that the genetic analysis showed the Britons then all-but disappeared within a couple of generations might be significant. It suggests the capacity for violence that emerged when the Yamnaya lived on the Eurasia steppe remained even as these people moved into Europe, switched identity from Yamnaya to Corded Ware, and then switched again from Corded Ware to Bell Beaker.

Notice what Kristiansen did there? Yamnaya men “switched identities” into Corded Ware, then “switched identities” into Bell Beakers…So, the most aggresive peoples who have ever existed, exterminating all other Europeans, were actually not so violent when embracing wholly different cultures whose main connection is that they built kurgans (yes, Gimbutas lives on).

NOTE. By the way, just so we are clear, only Indo-Europeans are “genocidal”. Not like Neolithic farmers, or Palaeolithic or Mesolithic populations, or more recent Bronze Age or Iron Age peoples, who also replaced Y-DNA from many regions…


In fact, there is much stronger evidence that these Yamnaya Beakers were ruthless. By about 4500 years ago, they had pushed westwards into the Iberian Peninsula, where the Bell Beaker culture originated a few centuries earlier. Within a few generations, about 40 per cent of the DNA of people in the region could be traced back to the incoming Yamnaya Beakers, according to research by a large team including Reich that was published this month. More strikingly, the ancient DNA analysis reveals that essentially all the men have Y chromosomes characteristic of the Yamnaya, suggesting only Yamnaya men had children.

“The collision of these two populations was not a friendly one, not an equal one, but one where the males from outside were displacing local males and did so almost completely,” Reich told New Scientist Live in September. This supports Kristiansen’s view of the Yamnaya and their descendants as an almost unimaginably violent people. Indeed, he is about to publish a paper in which he argues that they were responsible for the genocide of Neolithic Europe’s men. “It’s the only way to explain that no male Neolithic lines survived,” he says.

So these unimaginably violent Yamnaya men had children exclusively with their Y chromosomes…but not Dutch Single Grave peoples. These great great steppe-like northerners switched culture, cephalic index…and Y-chromosome from R1a (and others) to R1b-L151 to expand Italo-Celtic From The West™.

It’s hilarious how (exactly like their latest funny episode of PIE from south of the Caucasus) this new visionary idea copied by Copenhagen from amateur friends (or was it the other way around?) had been already rejected before this article came out, in Olalde et al. (2019), and that “Corded Ware=Indo-European” fans have become a parody of themselves.

What’s not to love about 2019 with all this back-and-forth hopping between old and new pet theories?

NOTE. I would complain (again) that the obsessive idea of the Danes is that Denmark CWC is (surprise!) the Pre-Germanic community, so it has nothing to do with “steppe ancestry = Indo-European” (or even with “Corded Ware = Indo-European”, for that matter), but then again you have Koch still arguing for Celtic from the West, Kortlandt still arguing for Balto-Slavic from the east, and – no doubt worst of all – “R1a=IE / R1b=Vasconic / N1c=Uralic” ethnonationalists arguing for whatever is necessary right now, in spite of genetic research.

So prepare for the next episode in the nativist and haplogroup fetishist comedy, now with western and eastern Europeans hand in hand: Samara -> Khvalynsk -> Yamnaya -> Bell Beaker spoke Vasconic-Tyrsenian, because R1b. Wait for it…

Vanguard Yamnaya groups

On a serious note, interesting comment by Heyd in the article:

A striking example of this distinction is a discovery made near the town of Valencina de la Concepción in southern Spain. Archaeologists working there found a Yamnaya-like kurgan, below which was the body of a man buried with a dagger and Yamnaya-like sandals, and decorated with red pigment just as Yamnaya dead were. But the burial is 4875 years old and genetic information suggests Yamnaya-related people didn’t reach that far west until perhaps 4500 years ago. “Genetically, I’m pretty sure this burial has nothing to do with the Yamnaya or the Corded Ware,” says Heyd. “But culturally – identity-wise – there is an aspect that can be clearly linked with them.” It would appear that the ideology, lifestyle and death rituals of the Yamnaya could sometimes run far ahead of the migrants.

NOTE. I have been trying to find which kurgan is this, reviewing this text on the archaeological site, but didn’t find anything beyond occasional ochre and votive sandals, which are usual. Does some reader know which one is it?

Yamna expansion and succeeding East Bell Beaker expansion, without color on Bell Beaker territories. Notice vanguard Yamna groups in blue where East Bell Beakers later emerge. See original image with Bell Beaker territories.

Notice how, if you add all those vanguard Yamna findings of Central and Western Europe, including this one from southern Spain, you begin to get a good idea of the territories occupied by East Bell Beakers expanding later. More or less like vanguard Abashevo and Sintashta finds in the Zeravshan valley heralded the steppe-related Srubna-Andronovo expansions in Turan…

It doesn’t seem like Proto-Beaker and Yamna just “crossed paths” at some precise time around the Lower Danube, and Yamna men “switched cultures”. It seems that many Yamna vanguard groups, probably still in long-distance contact with Yamna settlers from the Carpathian Basin, were already settled in different European regions in the first half of the 3rd millennium BC, before the explosive expansion of East Bell Beakers ca. 2500 BC. As Heyd says, there are potentially many Yamna settlements along the Middle and Lower Danube and tributaries not yet found, connecting the Carpathian Basin to Western and Northern Europe.

These vanguard groups would have more easily transformed their weakened eastern Yamna connections with the fashionable Proto-Beaker package expanding from the west (and surrounding all of these loosely connected settlements), just like the Yamna materials from Seville probably represent a close cultural contact of Chalcolithic Iberia with a Yamna settlement (the closest known site with Yamna traits is near Alsace, where high Yamna ancestry is probably going to be found in a Bell Beaker R1b-L151 individual).

This does not mean that there wasn’t a secondary full-scale migration from the Carpathian Basin and nearby settlements, just like Corded Ware shows a secondary (A-horizon?) migration to the east with R1a-Z645. It just means that there was a complex picture of contacts between Yamna and European Chalcolithic groups before the expansion of Bell Beakers. Doesn’t seem genocidal enough for a popular movie, tho.


Arrival of steppe ancestry with R1b-P312 in the Mediterranean: Balearic Islands, Sicily, and Iron Age Sardinia


New preprint The Arrival of Steppe and Iranian Related Ancestry in the Islands of the Western Mediterranean by Fernandes, Mittnik, Olalde et al. bioRxiv (2019)

Interesting excerpts (emphasis in bold; modified for clarity):

Balearic Islands: The expansion of Iberian speakers

Mallorca_EBA dates to the earliest period of permanent occupation of the islands at around 2400 BCE. We parsimoniously modeled Mallorca_EBA as deriving 36.9 ± 4.2% of her ancestry from a source related to Yamnaya_Samara; (…). We next used qpAdm to identify “proximal” sources for Mallorca_EBA’s ancestry that are more closely related to this individual in space and time, and found that she can be modeled as a clade with the (small) subset of Iberian Bell Beaker culture associated individuals who carried Steppe-derived ancestry (p=0.442).

Suppl. Materials: The model used was with Bell_Beaker_Iberia_highsteppe, a group of outliers from Iberia buried in a Bell Beaker mortuary context who unlike most individuals from this context in that region had high proportions of Steppe ancestry (p=0.442).

Our estimates of Steppe ancestry in the two later Balearic Islands individuals are lower than the earlier one: 26.3 ± 5.1% for Formentera_MBA and 23.1 ± 3.6% for Menorca_LBA, but the Middle to Late Bronze Age Balearic individuals are not a clade relative to non-Balearic groups. Specifically, we find that f4(Mbuti.DG, X; Formentera_MBA, Menorca_LBA) is positive when X=Iberia_Chalcolithic (Z=2.6) or X=Sardinia_Nuragic_BA (Z=2.7). While it is tempting to interpret the latter statistic as suggesting a genetic link between peoples of the Talaiotic culture of the Balearic islands and the Nuragic culture of Sardinia, the attraction to Iberia_Chalcolithic is just as strong, and the mitochondrial haplogroup U5b1+16189+@16192 in Menorca_LBA is not observed in Sardinia_Nuragic_BA but is observed in multiple Iberia_Chalcolithic individuals. A possible explanation is that both the ancestors of Nuragic Sardinians and the ancestors of Talaiotic people from the Balearic Islands received gene flow from an unsampled Iberian Chalcolithic-related group (perhaps a mainland group affiliated to both) that did not contribute to Formentera_MBA.

This sample, like another one in El Argar, is of hg. R1b-P312. So there you are, the data that connects the Proto-Iberian expansion (replacing IE-speaking Bell Beakers) to the Iberian Chalcolithic population, signaled by the increase in Iberian Chalcolithic ancestry after the arrival of Bell Beakers, most likely connected originally to the Argaric and post-Argaric expansions during the MBA.

PCA with previously published ancient individuals (non-filled symbols), projected onto variation from present-day populations (gray squares).

Steppe in Sardinia IA: Phocaeans from Italy?

Most Sardinians buried in a Nuragic Bronze Age context possessed uniparental haplogroups found in European hunter-gatherers and early farmers, including Y-haplogroup R1b1a[xR1b1a1a] which is different from the characteristic R1b1a1a2a1a2 spread in association with the Bell Beaker complex. An exception is individual I10553 (1226-1056 calBCE) who carried Y-haplogroup J2b2a, previously observed in a Croatian Middle Bronze Age individual bearing Steppe ancestry, suggesting the possibility of genetic input from groups that arrived from the east after the spread of first farmers. This is consistent with the evidence of material culture exchange between Sardinians and mainland Mediterranean groups, although genome-wide analyses find no significant evidence of Steppe ancestry so the quantitative demographic impact was minimal.

Another interesting data, these (Mesolithic) remnant R1b-V88 lineages closely related to the Italian Peninsula, the most likely region of expansion of these lineages into Africa, in turn possibly connected to the expansion of Proto-Afroasiatic.

We detect definitive evidence of Iranian-related ancestry in an Iron Age Sardinian I10366 (391-209 calBCE) with an estimate of 11.9 ± 3.7.% Iran_Ganj_Dareh_Neolithic related ancestry, while rejecting the model with only Anatolian_Neolithic and WHG at p=0.0066 (Supplementary Table 9). The only model that we can fit for this individual using a pair of populations that are closer in time is as a mixture of Iberia_Chalcolithic (11.9 ± 3.2%) and Mycenaean (88.1 ± 3.2%) (p=0.067). This model fits even when including Nuragic Sardinians in the outgroups of the qpAdm analysis, which is consistent with the hypothesis that this individual had little if any ancestry from earlier Sardinians.

Proportions of ancestry using a distal qpAdm framework on an individual basis (a), and based on qpWave clusters

Sicily EBA: The Lusitanian/Ligurian connection?

(…) While a previously reported Bell Beaker culture-associated individual from Sicily had no evidence of Steppe ancestry, (…) we find evidence of Steppe ancestry in the Early Bronze Age by ~2200 BCE. In distal qpAdm, the outlier Sicily_EBA11443 is parsimoniously modeled as harboring 40.2 ± 3.5% Steppe ancestry, and the outlier Sicily_EBA8561 is parsimoniously modeled as harboring 23.3 ± 3.5% Steppe ancestry. (…) The presence of Steppe ancestry in Early Bronze Age Sicily is also evident in Y chromosome analysis, which reveals that 4 of the 5 Early Bronze Age males had Steppe-associated Y-haplogroup R1b1a1a2a1a2. (Online Table 1). Two of these were Y-haplogroup R1b1a1a2a1a2a1 (Z195) which today is largely restricted to Iberia and has been hypothesized to have originated there 2500-2000 BCE. This evidence of west-to-east gene flow from Iberia is also suggested by qpAdm modeling where the only parsimonious proximate source for the Steppe ancestry we found in the main Sicily_EBA cluster is Iberians.

What’s this? An ancestral connection between Sicel Elymian and Galaico-Lusitanian or Ligurian (based on an origin in NE Iberia)? Impossible to say, especially if the languages of these early settlers were replaced later by non-Indo-European speakers from the eastern Mediterranean, and by Indo-European speakers from the mainland closely related to Proto-Italic during the LBA, but see below.

Regarding the comment on R1b-Z195, it is associated with modern Iberians, as DF27 in general, due to founder effects beyond the Pyrenees. It is a very old subclade, split directly from DF27 roughly at the same time as it split from the parent P312, i.e. it can be found anywhere in Europe, and it almost certainly accompanied the expansion of Celts from Central Europe under the subclade R1b-M167/SRY2627.

The connection is thus strong only because of the qpAdm modeling, since R1b-DF27 and subclade R1b-Z195 are certainly lineages expanded quite early, most likely with Yamna settlers in Hungary and East Bell Beakers.

In this case, if stemming from Iberia, it is most likely of subclade R1b-Z220 – or another Z195 (xM167) lineage – originally associated with the Old European substrate found in topo-hydronymy in Iberia, whose most likely remnants attested during the Iron Age were Lusitanians.

Left: Modern distribution of R1b-Z195 (YFull estimate 2700 BC); Right: Modern distribution of DF27. Both include later founder effects within Iberia, so the increase in the Basque country and the Crown of Aragon and the decrease in Portugal can safely be ignored. Contour maps of the derived allele frequencies of the SNPs analyzed in Solé-Morata et al. (2017).

We detect Iranian-related ancestry in Sicily by the Middle Bronze Age 1800-1500 BCE, consistent with the directional shift of these individuals toward Mycenaeans in PCA. Specifically, two of the Middle Bronze Age individuals can only be fit with models that in addition to Anatolia_Neolithic and WHG, include Iran_Ganj_Dareh_Neolithic. The most parsimonious model for Sicily_MBA3125 has 18.0 ± 3.6% Iranian-related ancestry (p=0.032 for rejecting the alternative model of Steppe rather than Iranian-related ancestry), and the most parsimonious model for Sicily_MBA has 14.9 ± 3.9% Iranian-related ancestry (p=0.037 for rejecting the alternative model).

The modern southern Italian Caucasus-related signal identified in Raveane et al. (2018) is plausibly related to the same Iranian-related spread of ancestry into Sicily that we observe in the Middle Bronze Age (and possibly the Early Bronze Age).

The non-Indo-European Sicanians and Elymians were possibly then connected to eastern Mediterranean groups before the expansion of the Sea Peoples.

For the Late Bronze Age group of individuals, qpAdm documented Steppe-related ancestry, modeling this group as 80.2 ± 1.8% Anatolia_Neolithic, 5.3 ± 1.6% WHG, and 14.5 ± 2.2% Yamnaya_Samara. Our modeling using sources more closely related in space and time also supports Sicily_LBA having Minoan-related ancestry or being derived from local preceding populations or individuals with ancestries similar to those of Sicily_EBA3123 (p=0.527), Sicily_MBA3124 (p=0.352), and Sicily_MBA3125 (p=0.095).

This increase in Steppe-related ancestry in a western site during the LBA most likely represents either an expansion from the Aegean or – maybe more likely, given the archaeological finds – a regional population similar to Sicily EBA re-emerging or rather being displaced from the eastern part of the island because of a westward movement from nearby Calabria.

Whether this population sampled spoke Indo-European or not at this time is questionable, since the Iron Age accounts show non-IE Elymians in this region.

Actually, Elymians seem to have spoken Indo-European, which fits well with the increase in steppe ancestry.

EDIT (21 MAR): Interesting about a proposed incoming Minoan-like ancestry is the potential origin of the Iran Neolithic-related ancestry that is going to appear in Central Italy during the LBA. This could then be potentially associated with Tyrsenians passing through the area, although the traditional description may be more more compatible with an arrival of Sea Peoples from the Adriatic.

Sad to read this:

This manuscript is dedicated to the memory of Sebastiano Tusa of the Soprintendenza del Mare in Palermo, who would have been an author of this study had he not tragically died in the crash of Ethiopia Airlines flight 302 on March 10.


Iberia: East Bell Beakers spread Indo-European languages; Celts expanded later


New paper (behind paywall), The genomic history of the Iberian Peninsula over the past 8000 years, by Olalde et al. Science (2019).

NOTE. Access to article from Reich Lab: main paper and supplementary materials.


We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia’s ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European–speaking regions but also into non-Indo-European–speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean.

Interesting excerpts:

From the Bronze Age (~2200–900 BCE), we increase the available dataset (6, 7, 17) from 7 to 60 individuals and show how ancestry from the Pontic-Caspian steppe (Steppe ancestry) appeared throughout Iberia in this period (Fig. 1, C and D), albeit with less impact in the south (table S13). The earliest evidence is in 14 individuals dated to ~2500–2000 BCE who coexisted with local people without Steppe ancestry (Fig. 2B). These groups lived in close proximity and admixed to form the Bronze Age population after 2000 BCE with ~40% ancestry from incoming groups (Fig. 2B and fig. S6).

Y-chromosome turnover was even more pronounced (Fig. 2B), as the lineages common in Copper Age Iberia (I2, G2, and H) were almost completely replaced by one lineage, R1b-M269. These patterns point to a higher contribution of incoming males than females, also supported by a lower proportion of nonlocal ancestry on the X-chromosome (table S14 and fig. S7), a paradigm that can be exemplified by a Bronze Age tomb from Castillejo del Bonete containing a male with Steppe ancestry and a female with ancestry similar to Copper Age Iberians.


For the Iron Age, we document a consistent trend of increased ancestry related to Northern and Central European populations with respect to the preceding Bronze Age (Figs. 1, C and D, and 2B). The increase was 10 to 19% (95% confidence intervals given here and in the percentages that follow) in 15 individuals along the Mediterranean coast where non-Indo-European Iberian languages were spoken; 11 to 31% in two individuals at the Tartessian site of La Angorrilla in the southwest with uncertain language attribution; and 28 to 43% in three individuals at La Hoya in the north where Indo-European Celtiberian languages were likely spoken (fig. S6 and tables S11 and S12).

This trend documents gene flow into Iberia during the Late Bronze Age or Early Iron Age, possibly associated with the introduction of the Urnfield tradition (18). Unlike in Central or Northern Europe, where Steppe ancestry likely marked the introduction of Indo-European languages (12), our results indicate that, in Iberia, increases in Steppe ancestry were not always accompanied by switches to Indo-European languages.

I think it is obvious they are extrapolating the traditional (not that well-known) linguistic picture of Iberia during the Iron Age, believing in continuity of that picture (especially non-Indo-European languages) during the Urnfield period and earlier.

What this data shows is, as expected, the arrival of Celtic languages in Iberia after Bell Beakers and, by extension, in the rest of western Europe. Somewhat surprisingly, this may have happened during the Urnfield period, and not during the La Tène period.

Also important are the precise subclades:

We thus detect three Bronze Age males who belonged to DF27 (154, 155), confirming its presence in Bronze Age Iberia. The other Iberian Bronze Age males could belong to DF27 as well, but the extremely low recovery rate of this SNP in our dataset prevented us to study its true distribution. All the Iberian Bronze Age males with overlapping sequences at R1b-L21 were negative for this mutation. Therefore, we can rule out Britain as a plausible proximate origin since contemporaneous British males are derived for the L21 subtype.

New open access paper Survival of Late Pleistocene Hunter-Gatherer Ancestry in the Iberian Peninsula, by Villalba-Mouco et al. Cell (2019):

BAL0051 could be assigned to haplogroup I1, while BAL003 carries the C1a1a haplogroup. To the limits of our typing resolution, EN/MN individuals CHA001, CHA003, ELT002 and ELT006 share haplogroup I2a1b, which was also reported for Loschbour [73] and Motala HG [13], and other LN and Chalcolithic individuals from Iberia [7, 9], as well as Neolithic Scotland, France, England [9], and Lithuania [14]. Both C1 and I1/ I2 are considered typical European HG lineages prior to the arrival of farming. Interestingly, CHA002 was assigned to haplogroup R1b-M343, which together with an EN individual from Cova de Els Trocs (R1b1a) confirms the presence of R1b in Western Europe prior to the expansion of steppe pastoralists that established a related male lineage in Bronze Age Europe [3, 6, 9, 13, 19]. The geographical vicinity and contemporaneity of these two sites led us to run genomic kinship analysis in order to rule out any first or second degree of relatedness. Early Neolithic individual FUC003 carries the Y haplogroup G2a2a1, commonly found in other EN males from Neolithic Anatolia [13], Starçevo, LBK Hungary [18], Impressa from Croatia and Serbia Neolithic [19] and Czech Neolithic [9], but also in MN Croatia [19] and Chalcolithic Iberia [9].

See also

Updates to ASoSaH: new maps, updated PCA, and added newest research papers


The title says it all. I have used some free time to update the series A Song of Sheep and Horses:

I basically added information from the latest papers published, which (luckily enough for me) haven’t been too many, and I have added images to illustrate certain sections.

I have updated the PCAs by including North Caucasus samples from Wang et al. (2018), whose position I could only infer for older versions from previously published PCA graphs.

PCA of ancient and modern Eurasian samples. Early Eneolithic admixture events in the steppe drawn.

I have also added to the supplementary materials the “Tip of the Iceberg” R1b tree by Mike Walsh from the FTDNA R1b group, with permission, because some relevant genetic sections are centered on the evolution of R1b lineages, and the reader can get easily lost with so many subclades.

I have also updated maps, including some of the Y-DNA ones, and managed to finish two new maps I was working on, and I added them to the supplementary materials and to the menu above:

One on Yamna kurgans in Hungary, coupled with contemporaneous sites of Baden-Boleráz or Kostolac cultures:

Map of attested Yamnaya pit-grave burials in the Hungarian plains; superimposed in shades of blue are common areas covered by floods before the extensive controls imposed in the 19th century; in orange, cumulative thickness of sand, unfavourable loamy sand layer. Marked are settlements/findings of Boleráz (ca. 3500 BC on), Baden (until ca. 2800 BC), Kostolac (precise dates unknown), and Yamna kurgans (from ca. 3100/3000 BC on).

Another one on Steppe ancestry expansion, with a tentative distribution of “steppe ancestry” divided into that of Sredni Stog/Corded Ware origin vs. that of Repin/Yamna origin, a difference that has been known for quite some time already.

It is tentative because there hasn’t been any professional study or amateur attempt to date to differentiate both “steppe ancestries” in Yamna, and especially in Bell Beakers. So much for the call of professional geneticists since 2018 (see here and here) and archaeologists since 2017 (see e.g. here and here) to distinguish fine-scale population structure to be able to follow neighbouring populations which expanded with different archaeological (and thus ethnolinguistic) groups.

Tentative map of fine-scale population structure during steppe-related expansions (ca. 3500–2000 BC), including Repin–Yamna–Bell Beaker/Balkans and Sredni Stog–Corded Ware groups. Data based on published samples and pairwise comparisons tested to date. Notice that the potential admixture of expanding Repin/Early Yamna settlers in the North Pontic area with the late Sredni Stog population (and thus Sredni Stog-related ancestry in Yamna) has been omitted for simplicity purposes, assuming thus a homogeneous Yamna vs. Corded Ware ancestry.

I think both maps are especially important today, given the current Nordicist reactionary trends arguing (yet again) for an origin of Indo-Europeans in The North™, now based on the Fearsome Tisza River hypothesis, on cephalic index values, and a few pairwise comparisons – i.e. an absolutely no-nonsense approach to the Indo-European question (LOL). At least I get to relax and sit this year out just observing how other people bury themselves and their beloved “steppe ancestry=IE” under so many new pet theories…

NOTE. Not that there is anything wrong with a northern origin of North-West Indo-European from a linguistic point of view, as I commented recently – after all, a Corded Ware origin would roughly fit the linguistic guesstimates, unlike the proposed ancestral origins in Anatolia or India. The problem is that, like many other fringe theories, it is today just based on tradition, or (even worse) ethnic, political, or personal desires, and it doesn’t make sense when all findings from disciplines involved in the Indo-European and Uralic questions are combined.

Simple ancestry percentages in modern populations. Recent image by Iain Mathieson 2019 (min. 5.57). A simplistic “Steppe ancestry” defining Indo-European speakers…? Sure.

Within 20 or 30 years, when genetic genealogists (or amateur geneticists, or however you want to call them) ask why we had the opportunity since 2015 to sample as many Hungarian Yamnaya individuals as possible and we didn’t, when it is clear that the number of unscathed kurgans is diminishing every year (from an estimated 4,000 in the 20th century, of the original tens of thousands, to less than 1,500 today) the answer will not be “because this or that archaeologist or linguist was a dilettante or a charlatan‘, as they usually describe academics they dislike.

It will be precisely because the very same genetic genealogists – supposedly interested today in the origin of R1b-L151 and/or genetic marker associated with North-West Indo-Europeans – are obsessed with finding them anywhere else but for Hungary, and prefer to use their money and time to play with a few statistical tools within a biased framework of flawed assumptions and study designs, obtaining absurd results and accepting far-fetched interpretations of them, to be told exactly what they want to hear: be it the Franco-Cantabrian homeland, the Dutch or Moravian Beaker from CWC homeland, the Maykop homeland, or the Moon homeland.

Poetic justice this heritage destruction, whose indirect causes will remain written in Internet archives for everyone to see, as a good lesson for future generations.

Happy new year 2019…and enjoy our new books!


Sorry for the last weeks of silence, I have been rather busy lately. I am having more projects going on, and (because of that) I also wanted to finish a project I have been working on for many months already.

I have therefore decided to publish a provisional version of the text, in the hope that it will be useful in the following months, when I won’t be able to update it as often as I would like to:

EDIT (20 JAN 2019): For those of you who are more comfortable reading in your native language, I have placed some links to automatic translations by Google Translate. They might work especially well for the texts of A Game of Clans & A Clash of Chiefs.

Don’t forget to check out the maps included in the supplementary materials: I have added Y-DNA, mtDNA, and ADMIXTURE data using GIS software. The PCA graphics are also important to follow the main text.

NOTE. Right now the files are only in my server. I will try to upload them to Academia.edu and Research Gate when I have time, I have uploaded them to Academia.edu and ResearchGate, in case the websites are too slow.

I would have preferred to wait for a thorough revision of the section on archaeology and the linguistic sections on Uralic, but I doubt I will have time when the reviews come, so it was either now or maybe next December…

I say so in the introduction, but it is evident that certain aspects of the book are tentative to say the least: the farther back we go from Late Proto-Indo-European, the less clear are many aspects. Also, linguistically I am not convinced about Eurasiatic or Nostratic, although they do have a certain interest when we try to offer a comprehensive view of the past, including ethnolinguistic identities.

I cannot be an expert in everything, and these books cover a lot. I am bound to publish many corrections as new information appears and more reviews are sent. For example, just days ago (before SNP calls of Wang et al. 2018 were published) some paragraphs implied that AME might have expanded Nostratic from the Middle East. Now it does not seem so, and I changed them just before uploading the text. That’s how tentative certain routes are, and how much all of this may change. And that only if we accept a Nostratic phylum…

NOTE. Since the first book I wrote was the linguistic one, and I have spent the last months updating the archaeology + genetics part, now many of you will probably understand 1) why I am so convinced about certain language relationships and 2) how I used many posts to clarify certain ideas and receive comments. Many posts offer probably a good timeline of what I worked with, and when.


I did not add this section to the books, because they are still not ready for print, but I think this is due somewhere now. It is impossible to reference all who have directly or indirectly contributed to this, so this is a list of those I feel have played an important role.

I am indebted to the following people (which does not mean that they share my views, obviously):

First and foremost, to Fernando López-Menchero, for having the patience to review with detail many parts on Indo-European linguistics, knowing that I won’t accept many of his comments anyway. The additional information he offers is invaluable, but I didn’t want to turn this into a huge linguistic encyclopaedia with unending discussions of tiny details of each reconstructed word. I think it is already too big as it is.

I would not have thought about doing this if it were not for the interest of Wekwos (Xavier Delamarre) in publishing a full book about the Indo-European demic diffusion model (in the second half of 2017, I think). It was them who suggested that I extended the content, when all I had done until then was write an essay and draw some maps in my free time between depositing the PhD thesis and defending it.

Sadly, as much as I would like to publish a book with a professional publisher, I don’t think ancient DNA lends itself for the traditional format, so my requests (mainly to have free licenses and being able to review the text at will, as new genetic papers are published) were logically not acceptable. Also, the main aim of all volumes, especially the linguistic one, is the teaching of essentials of Late Proto-Indo-European and related languages, and this objective would be thwarted by selling each volume for $50-70 and only in printed format. I prefer a wider distribution.

At first I didn’t think much of this proposal, because I do not benefit from this kind of publications in my scientific field, but with time my interest in writing a whole, comprehensive book on the subject grew to the point where it was already an ongoing project, probably by the start of 2018.

I would not have been in contact with Wekwos if it were not for user Camulogène Rix at Anthrogenica, so thanks for that and for the interest in this work.

I would not have thought of writing this either if not for the spontaneous support (with an unexpected phone call!) of a professor of the Complutense University of Madrid, Ángel Gómez Moreno, who is interested in this subject – as is his wife, a professor of Classics more closely associated to Indo-European studies, and who helped me with a search for Indo-Europeanists.

EDIT (1 JAN 2019): I remembered that Karin Bojs sent me her book after reading the demic diffusion model. I may have also thought about writing a whole book back then, but mid-2017 is probably too early for the project.

Professor Kortlandt is still to review the text, but he contributed to both previous essays in some very interesting ways, so I hope he can help me improve the parts on Uralic, and maybe alternative accounts of expansion for Balto-Slavic, depending on the time depth that he would consider warranted according to the Temematic hypothesis.

The maps are evidently (for those who are interested in genetics) in part the result of the effort of the late Jean Manco: As you can see from the maps including Y-DNA and mtDNA samples, I have benefitted from her way of organising data and publishing it. Similarly, the work of Iain McDonald in assessing the potential migration routes of R1b and R1a in Europe with the help of detailed maps was behind my idea for the first maps, and consequently behind these, too.

I should thank all people responsible for the release of free datasets to work with, including the Reich and Jena labs, the Veeramah Lab, and also researchers from the Max Planck Institute or the Mainz Palaeogenetics group, who didn’t mind to share with me datasets to work with.

Readers of this blog with interesting comments have also been essential for the improvement of the texts. You can probably see some of your many contributions there. I may not answer many comments, because I am always busy (and sometimes I just don’t have anything interesting to say), but I try to read all of them.

EDIT (1 JAN 2019) I think I should mention at least Chetan, Egg, or Robert George; but then I would leave out old europe, Sgr Ganesh, or Tileman Ehlen; and if I include them I would leave out others…

Users of other sites, like Anthrogenica, whose particular points of view and deep knowledge of some very specific aspects are sometimes very useful. In particular, user Anglesqueville helped me to fix some issues with the merging of datasets to obtain the PCAs and ADMIXTURE, and prepared some individual samples to merge them.

Even without posting anything, Google Analytics keeps sending me messages about increasing user fidelity (returning users), and stats haven’t really changed (which probably means more people are reading old posts), so thank you for that.

I hope you enjoy the books.

Happy new year!

A very “Yamnaya-like” East Bell Beaker from France, probably R1b-L151


Interesting report by Bernard Sécher on Anthrogenica, about the Ph.D. thesis of Samantha Brunel from Institut Jacques Monod, Paris, Paléogénomique des dynamiques des populations humaines sur le territoire Français entre 7000 et 2000 (2018).

NOTE. You can visit Bernard Sécher’s blog on genetic genealogy.

A summary from user Jool, who was there, translated into English by Sécher (slight changes to translation, and emphasis mine):

They have a good hundred samples from the North, Alsace and the Mediterranean coast, from the Mesolithic to the Iron Age.

There is no major surprise compared to the rest of Europe. On the PCA plot, the Mesolithic are with the WHG, the early Neolithics with the first farmers close to the Anatolians. Then there is a small resurgence of hunter-gatherers that moves the Middle Neolithics a little closer to the WHGs.

From the Bronze Age, they have 5 samples with autosomal DNA, all in Bell Beaker archaeological context, which are very spread on the PCA. A sample very high, close to the Yamnaya, a little above the Corded Ware, two samples right in the Central European Bell Beakers, a fairly low just above the Neolithic package, and one last full in the package. The most salient point was that the Y chromosomes of their 12 Bronze Age samples (all Bell Beakers) are all R1b, whereas there was no R1b in the Neolithic samples.

Finally they have samples of the Iron Age that are collected on the PCA plot close to the Bronze Age samples. They could not determine if there is continuity with the Bronze Age, or a partial replacement by a genetically close population.

Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are interesting samples; In red, likely position of late Yamna Hungary / early East Bell Beakers An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here. To understand the drawn potential Caucasus Mesolithic cluster, see above the PCA from Lazaridis et al. (2018).

The sample with likely high “steppe ancestry“, clustering closely to Yamna (more than Corded Ware samples) is then probably an early East Bell Beaker individual, probably from Alsace, or maybe close to the Rhine Delta in the north, rather than from the south, since we already have samples from southern France from Olalde et al. (2018) with high Neolithic ancestry, and samples from the Rhine with elevated steppe ancestry, but not that much.

This specific sample, if confirmed as one of those reported as R1b (then likely R1b-L151), as it seems from the wording of the summary, is key because it would finally link Yamna to East Bell Beaker through Yamna Hungary, all of them very “Yamnaya-like”, and therefore R1b-L151 (hence also R1b-L51) directly to the steppe, and not only to the Carpathian Basin (that is, until we have samples from late Repin or West Yamna…)

NOTE. The only alternative explanation for such elevated steppe ancestry would be an admixture between a ‘less Yamnaya-like’ East Bell Beaker + a Central European Corded Ware sample like the Esperstedt outlier + drift, but I don’t think that alternative is the best explanation of its position in the PCA closer to Yamna in any of the infinite parallel universes, so… Also, the sample from Esperstedt is clearly a late outlier likely influenced by Yamna vanguard settlers from Hungary, not the other way round…

Unexpectedly, then, fully Yamnaya-like individuals are found not only in Yamna Hungary ca. 3000-2500 BC, but also among expanding East Bell Beakers later than 2500 BC. This leaves us with unexplained, not-at-all-Yamnaya-like early Corded Ware samples from ca. 2900 BC on. An explanation based on admixture with locals seems unlikely, seeing how Corded Ware peoples continue a north Pontic cluster, being thus different from Yamna and their ancestors since the Neolithic; and how they remained that way for a long time, up to Sintashta, Srubna, Andronovo, and even later samples… A different, non-Indo-European community it is, then.

Image modified from Olalde et al. (2018). PCA of 999 Eurasian individuals. Marked is the Espersted Outlier with the approximate position of Yamna Hungary, probably the source of its admixture. Different Bell Beaker clines have been drawn, to represent approximate source of expansions from Central European sources into the different regions. In red, likely zone of Yamna Hungary and reported early East Bell Beaker individual from France.

Let’s wait and see the Ph.D. thesis, when it’s published, and keep observing in the meantime the absurd reactions of denial, anger, bargaining, and depression (stages of grief) among BBC/R1b=Vasconic and CWC/R1a=Indo-European fans, as if they had lost something (?). Maybe one of these reactions is actually the key to changing reality and going back to the 2000s, who knows…

Featured image: initial expansion of the East Bell Beaker Group, by Volker Heyd (2013).