European hydrotoponymy (III): from Old European to Palaeo-Germanic and the Nordwestblock

nordic-bronze-age-cultures

The study of hydrotoponymy shows a prevalent initial Old European layer in central and northern Germany, too, similar to the case in Iberia, France, Italy, and the British Isles.

The recent paper on Late Proto-Indo-European migrations by Frederik Kortlandt relies precisely on this ancestral layer as described by Jürgen Udolph to support a Danubian expansion of North-West Indo-European with East Bell Beakers, identified as the Alteuropäische (Old European) layer that was succeeded by Germanic in the North European Plain.

The Proto-Germanic homeland

The following are excerpts are translated from the German original (emphasis mine) in Udolph’s Namenkundliche Studien zum Germanenproblem, de Gruyter (1994):

udolph-namenkunde
Buy the book at De Gruyter’s site or at Amazon.

The following is a concise compilation of the investigation into nine points, which will be subsequently discussed: there are Brink (in the north brekk-), -by (on the Elbe), the name of the Elbe itself, germ, haugaz and blaiw, klint, malm / melm, the name of the Rhön, and the place name element -wedel.

I want to briefly summarize the results:

1. Brink has toponymically a clear focus in Germany between the Rhine and the Weser; in Schleswig-Holstein and Denmark it is almost completely missing, the Scandinavian place name documents show an accumulation in eastern Sweden. The English Brink names can not be associated with the Scandinavian ones. The “real” Scandinavian variant brekka, brekke, however, also appear on the Shetland and Orkney Islands and in central England.

2. The Central Elbian –by-place names have nothing to do with the Danish and Scandinavian -by-names.

3. The name of the Elbe has been carried from south to north and has become an appellative in Scandinavia. This clearly proves that a south-north migration has taken place.

4. The distribution of haugaz does not support a Nordic origin of the word. K. Bischoff in his thorough investigation never asked whether the reverse path from south to north would be possible. However, in comparison with the results of the study of other toponyms, this second option will be much more likely to be accepted. On the “problem of the gap” in the distribution (between Aller and northern Holstein) see page 910.

hlaiwaz-germanisch

5. Completely missing is the assumption of Nordic origin in the case of hlaiwaz. A look at Map 67 shows this clearly.

6. Even in the case of klint, Denmark and Scandinavia are only marginally involved in the distribution of names. This contradicts the thesis that the English Klint names are of Nordic origin. On the other hand, Map 68 (Klit- / Klett-) shows how Nordic place names can have an influence on the British Isles.

klint-germanisch

7. Even in the case of germ, melm (ablauting malm, mulm), everything speaks for a continental Germanic starting point: here are all ablaut stages in the appellative vocabulary and in the toponymy, which shows together with the name Melmer perhaps the most ancient -r-derivations, which are unknown to the Nordic area, while the Nordic names, in turn, have a distinct tendency to spread to eastern Sweden, towards the Baltic Sea.

8. The name of the Rhön can only be interpreted with the aid of the Nord Germanic apellative hraun “boulder field, stony ground, lava field”. This does not mean that Nord Germanic peoples have given this name, but that the Common or Proto-Germanic peoples knew the appelative still. The Rhön owes its name to this language stage.

9. The spread of the fronds names in Germany, classified by E. Schröder as “North Germanic invasion”, can be explained differently: more important than the often younger names north of the Elbe in Schleswig-Holstein (type Wedelboek) are the place names near Braunschweig, Büren (Westphalia), and in the Netherlands, in which case a south-north spread is more convincing than the assumption of a Nordic expansion.

wedel-germanisch

If you take the similar distribution maps 15 (wik), 31 (fenn), 36 (slk), 39 (büttel), 47 (live), 49 (quem), 50 (thing), 61 (brink) and 66 (haugaz) It can be seen from this (page 72, page 908) that there are parts of Germany which, to a lesser degree, are more heavily involved than others in Old Germanic place name formations: that applies to southern Thuringia, the Area between Werra and Fulda, the Magdeburger Börde and its western foothills to the Weser at the Porta Westfalica). On the other hand, the areas north of the Aller, Hanoverian Wendland and wide areas between the Lower Weser and the Lower Elbe (apart from the area around Osterholz-Scharmbeck as well as Kehdingen and Hadeln) are little and hardly affected.

There is no question that the reasons for the different dispersion can not lie in the name itself, but have other causes. H. Kuhn has considered the natural conditions of the landscape with the fronds. Comparing the place name expansion outlined here with a bog map of Lower Saxony, as found in numerous publications (Map 73, page 910), solves the problems: even today’s bog distribution of Lower Saxony, diminished through cultivation and drainage (albeit still considerable), reflects the fact that the early colonization and naming of northern Germany has been shaped and, to a certain extent, controlled by settler-friendly and not-settler-friendly conditions.

moorkarte-deutschland
Distribution of bogs in Germany. Source: M. Sommer, Institut für Bodenlandschaftsforschung, ZALF, Müncheberg.

On the location of the Germanic Urheimat

According to the space briefly outlined by the present study, the Old Germanic settlement area in toponymic terms is roughly to be located between the Erzgebirge, Thüringerwald, Elbe, Aller and an open border in Westphalia, for the following reasons:

  • High proportion of old European names. This is a basic requirement, which of course is also fulfilled by other areas, but not by Schleswig-Holstein, Denmark and Scandinavia. (…)
  • Of particular importance was the discussion about relations with the north (the generally accepted ancient Germanic settlement area, section L, p. 830-917). I believe that the detailed study of the geographical names no longer allows one to assume a Scandinavian homeland of Germanic tribes. Too many arguments speak against it. It is much more likely to start with a northward migration (…).
bell-beaker-germanic
Bell Beaker expansion ca. 2600-2200 BC. Top Left: Tentative location of the Pre-Proto-Germanic homeland (earliest stage), in the North European Plain between the Elbe and the the Aller (open border). Top right: PCA of the Bell Beaker period, with Netherlands EBA cluster (population west of the Germanic Urheimat) in red, and Battle Axe/Baltic CWC (population east and north of the Urheimat) in cyan. Bottom left: ADMIXTURE analysis of ancient DNA samples. Bottom right: Y-DNA haplogroup map. See full maps and PCAs.

Western border: Nordwestblock

Recently, W. Meid has once more dealt in detail with Kuhn’s thesis. After that, the most important criteria for the approach of this thesis are the following:

  1. -p- (and other shutter sounds) are partly not shifted in North German names;
  2. the existence of a -sí-suffix;
  3. -apa in river names;
  4. the suffix -andr-;
  5. certain words u. Name strains, e.g. Veneter, Belgian.
  6. Above-average relations of the northwestern block to Italic (Latin, Osco-Umbrian).

W. Meid agrees with Kuhn’s theses, but with limitations: “These evidences seem to indicate that the NW-space did not belong to the original settlement area of ​​the Teutons, but that the Germanization of this area or larger parts of it did not take place until relatively late, namely – as Kuhn thinks – after the Germanic sound shift or during its last phase. According to Kuhn’s own words this “space… appears as a block that has long defied Germanization”.

Udolph continues explaining why most of these non-Germanic examples are “optic illusions”, since he can explain most of them as from Old European to Old Germanic stages, which is mostly in agreement with the known features of Old European hydrotoponymy. For example, -apa- and -andra-names as Old European; -p- as before the Germanic sound shift; -st- and -s-formations as Northern European; -ithi- also unrelated to a hypothetic “Venetic” substrate.

I think that the point to discuss should not be the similarity with Old European or the oldest reconstructible Proto-Germanic stage (i.e. the closest to North-West Indo-European), or the appearance of these traits also in neighbouring Germanic territory, but the proportion of “more archaic” features contrasting with the proper Germanic area, and thus differences in frequency with the Germanic core territories.

Just as Udolph can’t accept the non-Indo-European nature of most cases, one can’t simply accept his preference for a Pre-Proto-Germanic nature either, for the same reason one can’t accept the relationship of Western European “Pre-Celtic” hydrotoponymy with Celtic peoples because of some shared appellatives whose Celtic nature is not proven.

NOTE. If there is something missing from this huge book is certainly statistical analyses with GIS, which would make this case much easier to discuss in graphical and numerical terms. Let’s hope Udolph can update the data in the near future, because he is still (fortunately) active.

In any case, the Nordwestblock remains a likely Old European hydrotoponymic area partially shared by Germanic, which doesn’t lie at the core of the spread of Old European place names and has a potential non-Indo-European substrate shared with Northern European groups. Combined with comparative grammar and with results of population genomics supporting the spread of East Bell Beakers of Yamna descent from the Carpathian Basin, this essentially renders interpretations of Old European expansion from Northern Europe devoid of support in linguistics.

Palaeo-Germanic expansion

To the north, the settlement movement depends on the location and spread of settlement-deficient areas, such as the moors northeast of Wolfsburg, north of Gifhorn, south of Fallingbostel, etc. As soon as this belt has been breached, the place name frequency in the eastern Lüneburg Heath indicates where more favorable settlement conditions are to be found: the Altmark in Saxony-Anhalt, the Jeetzel lowlands and especially the Ilmenau area near Uelzen, Bevensen and Lüneburg (it is difficult not to recall the name Jastorf here).

If one combines these findings with the dispersion of ancient Germanic place names, one will find that above all the section of the river east from Hamburg to about Lauenburg was particularly favorable for crossing. The onomastic data speaks in favour of this aspect, e.g. the following names lying north and south of this area.

brink-germanisch

1. Delvenau = Elbe-Lübeck Canal.

2. Neetze north of Lüneburg (-d-/-t-change).

3. Wipperau north of Lüneburg (-p-/-b- change).

4. The dispersion of the -wik places (Bardowik), cf. Map 15, p. 106.

5. The dissemination of the -r formations (Map 24, p. 191).

6. The -ithi formations Geesthacht, Bleckede u.a. south of the Elbe, Eckede north of the stream (see Map 28, p.272).

7. Fenn south of the Elbe in the north of Lüneburg (Map 31, p.315).

8. The distribution of the Hor name (Harburg) and northeast of it in Holstein (Map 32, p.328).

9. Germ, sik- with clear clusters southeast. and northeastern. from Hamburg (Map 36, p. 409).

10. Also the -büttel names show a concentration east of Hamburg on the one hand and a second accumulation at the estuary of the Elbe (Brunsbüttel) (map 39, p.438).

11. Gorleben and other places in Hann. Wendland south of the river (Map 47, p.503).

12. Werber-names southeast from Hamburg and in eastern Holstein (Map 53, p.742).

13. The scattering of brink names (Map 61, p. 843).

The place name distributions also make it possible to track the settlement movement north of the Elbe. It has been repeatedly emphasized that Schleswig-Holstein has little share in old Germanic toponymy. One tries to explain this fact, which reaches into the realm of the Old European hydronyms, by saying that, according to archeology, “large parts of Schleswig-Holstein in the 5th to 7th centuries were sparsely populated”.

scandinavia-neolithic-dagger-period
Close contacts in Fennoscandia. The distribution of Scandinavian flint daggers (A) in the east and south Baltic region and possible trends of “down the line” trade (B). Good size and quality flint zone in the south-west Baltic region is hatched (C). According to: Wojciechowski 1976; Olausson 1983, fig. 1; Madsen 1993, 126; Libera 2001; Kriiska & Tvauri 2002, 86. Image modified from Piličiauskas (2010).

If one summarizes these synoptically (Map 74, p.914) and also takes into account the not-included -leben-names (Map 47, p.503), then it is quite clear that Denmark by no means shares these types of names. The most important points are, in my opinion:

  1. North of today’s German-Danish border, the quantity of old place names drops rapidly and even tends towards zero. West Jutland in particular is rarely involved in the dispersion.
  2. Within Jutland there is a clear orientation to the east. The connection with southern Sweden is established via Funen and Zeeland.
  3. Disputed is in my opinion, whether the spread of toponymy followed a roughly direct line Fehmarn and Lolland/Falster. This is not to be excluded, but the maps of toponymy distribution do not give a clear indication in this direction.

The synoptic map makes it clear that both western Schleswig-Holstein and western Jutland are not to be regarded as Old Germanic settlement areas. Rather, East Jutland and the Danish islands were reached by Germanic tribes.

pca-bronze-age-germanic
Bronze Age groups ca. 2200-1750 BC. Top Left: Tentative location of (1) the Pre-Proto-Germanic homeland (earliest stage), in the North European Plain between the Elbe and the the Aller (open border), (2) the Pre-Proto-Germanic expansion area, coinciding with the Nordic Dagger Period, and (3) the Pre-Proto-Germanic-like Nord-West-Block. Top right: PCA of European Bronze Age groups. Bottom left: ADMIXTURE analysis of ancient DNA samples. Bottom right: Y-DNA haplogroup map. See full maps and PCAs.

Absolute chronology and Balto-Finnic

It is imprecise to estimate the age of settlement movements from toponymic research. I do not want to be involved in speculation, but I think that Klingberg’s estimate could have some arguments in its favor. In the approximate dating, however, it is important to include a fact that has already been briefly mentioned above and should be treated here in more detail: the fact of Germanic-Finnic relations.

W.P. Schmid has emphatically pointed out the difficulty that arises when one considers the unfolding of Germanic too far from the Baltic Sea settlement areas. Among other things, it draws attention to the fact that a Germanic homeland that were postulated too far west could not explain how Germanic loanwords might appear in the Finnic names of Northern Russia. These will be mentioned with reference to M. Vasmer: Randale to Finn. ranta “beach”, Pel’doza and Nimpel’da to Finn. pelto, Justozero to Finn. juusto “cheese”, Tervozero to Finn. terva “tar” and Rovdina Gora to Finn. rauta “ore”.

I think it is possible that the clear spread of Old and North Germanic toponyms, as described in the synoptic map 74 (p. 914) and in the already mentioned -ing, -lösa, -by, -sta(d) and -säter-maps (19, 46, 63-65), can offer some help: quite early the Germanic tribes reached the Swedish east coast. It is also clear that there have previously been contacts with Slavic and Finno-Ugric tribes by sea. However, intensive German-Finnic relations can, in my opinion, have come about only through close contacts on the mainland.

Pre-Indo-European substrate

In my investigation, I have repeatedly come up with suggestions to explain a hard-to-interpret North Germanic name from a Pre-Germanic, possibly Non-Indo-European substrate. Most of these were views of H. Kuhn, which he also used to support his so-called “Nord-West block”.

On one point H. Kuhn may have been right with an assumption of a Pre-Germanic substrate that did not provide the basis for further development in Germanic terms: he very clearly argued that Scandinavia too was Pre-Germanic, even Pre-Indo-European A substrate that stands out above all because of the lack of Lautverschiebung : “In the Nordic countries, we have to reckon with non-Germanic, non-Indo-European prehistoric names scarcely less than in the other Germanic languages”. In light of the results of the present work that makes a relatively late Germanization of Scandinavia very likely, this sentence should not be set aside in the future, but carefully examined on the basis of the material.

Both data, the known long-lasting Palaeo-Germanic – Finno-Samic contacts, and the underresearched presence of non-Indo-European vocabulary in Scandinavia, are likely related to the presence of a West Uralic(-like) substrate in Scandinavia and most likely also in Northern Europe, based on the disputed non-Indo-European components shared through the North European Plain (see above), and on the scarce ancient Indo-European hydrotoponymy in central-east Europe to the north of the Carpathians.

Population genomics

Although there is yet scarce genetic data from northern European territories, the haplogroup distribution among sampled peoples from the Germanic migration period and during the Viking expansion suggests a prevalence of R1b-U106 in the North European Plain (also found in Barbed Wire Beakers), and thus a later integration of typically Neolithic (I1) and CWC-related (R1a) subclades to the Germanic-speaking community during the expansion into Southern Scandinavia.

This is compatible with the described development of maritime elites by Bell Beakers, representing maritime mobility and trade, and an appealing ideology, similar to the prevalence of Athens over Sparta (Corded Ware in this analogy). It is also supported by the bottlenecks under R1b-U106 to the north of Schleswig-Holstein.

NOTE. Nevertheless, other R1b-L151 may have been part of the Germanic-speaking communities, especially during its earliest stage, and also R1b-U106 (and other R1b-L161) subclades may appear all the way from the Carpathians to Northern Europe, including the Eastern European Early Bronze Age.

germanic-iron-age
Common Germanic expansions ca. 500 BC on. Top Left: Early Iron Age cultures. Top right: PCA of groups from the Iron Age to the Middle Ages. Y-DNA haplogroups during the Germanic migrations (Bottom left) and during the Middle Ages (Bottom right). Notice a majority of R1b-U106 (practically absent from previous Bronze Age populations of Central Europe) among sampled Germanic tribes. See full maps and PCAs.

Archaeology

This sudden population bust to the south and predominance of a Southern Scandinavian maritime society in the Nordic circle seems to be also supported by inferences from archaeological data, too. For example, from the recent Human impact and population dynamics in the Neolithic and Bronze Age: Multi-proxy evidence from north-western Central Europe, by Feeser et al. The Holocene (2019):

The second boom between c. 3000 and 2900 cal. BC relates to increases in the palynological proxy and the binned all site SCDPD curve. From an archaeological point of view, this time reflects the transition from the Funnelbeaker to the Single Grave Culture. The emergence of this new cultural phenomenon is often regarded to have been associated with a shift in subsistence practices, that is, a shift from sedentary agricultural to mobile pastoral subsistence (Hinz, 2015; Hübner, 2005; Iversen, 2013; Sangmeister, 1972).

denmark-demography-bronze-age
Left: Map with pollen sites. Right: Bin sensitivity plots based on summed calibrated date probability distributions (SPD) using different degrees of binning on-site level (h = 0 no binning; h = 1000 high binning) and Kernel density plots (KDE) of available radiocarbon dates from the settlement context (settlement sites). Modified from the paper to include a red arrow showing Corded Ware bust and subsequent boom with the Dagger Period..

(…) there is palynological evidence for increased importance of cereal cultivation during the Young Neolithic in comparison to the Early Neolithic (Feeser et al., 2012). This, however, does not rule out an increased importance of pastoralism, as grazing on grasslands and extensive cereal cultivation are difficult to distinguish and to disentangle in the palynological record. Generally however, human impact on the environment and population levels, respectively, did not reach Funnelbeaker times maxima values during this boom phase at the beginning of the Younger Neolithic. The similar short-term synchronous developments in both the pollen profiles during 2800–2300 cal. BC could point to large-scale, over-regional uniform development during the Younger Neolithic in our study area (cf. also Feeser et al., 2016).

Between c. 2400 and 2300 cal. BC, the palynological proxy and the binned all site SCDPD curve show a similar distinct decrease (Figure 6), and we define a second bust phase accordingly. The soil erosion record, however, indicates elevated values at around this time but declines, although not very well defined, to a minimum at around 2200 cal. BC. Due to the generally low number of colluvial deposits recorded for the Younger Neolithic, this is not regarded to contradict our interpretation, as low sample sizes generally minimize the chances of identifying a robust pattern. A strong increase in all the three proxies between 2200 and 2100 cal. BC defines our third boom phase.

Bronze Age evolution

Candidate homelands for the succeeding (Palaeo-Germanic) stages of the language are shifted also in archaeology to the south, due to the economic influence of demographically stronger Nordic Bronze Age cultural groups of northern Germany over Southern Scandinavia.

A good description of societal changes in the Palaeo-Germanic stages is offered by the recent paper Cultural change and population dynamics during the Bronze Age: Integrating archaeological and palaeoenvironmental evidence for Schleswig-Holstein, Northern Germany, by Kneisel et al. The Holocene (2019):

schleswig-holstein-culture-demography
Qualitative data from material culture and demography in Schleswig-Holstein and Mecklenburg-Western Pomerania. Modified from the original to remark periods of likely demographic decrease (red square) and growth (blue square).

At each beginning of a boom phase and each end of a bust phase, changes in the material culture could be observed.

When the pressure on the landscape is at its lowest around 1500 BC and shortly before it rises again, the type of burial changes, hoards and bronzes increase, and monumental burial mounds are erected again. Vice versa, when the pressure on the landscape reaches its maximum value around 1250 BC, tools and hoard depositions decrease again and only the monumental burial and prestige goods are maintained. The ‘elite’ are continuing with their way of burial. The reduction in house surface area and the number of hoards takes place earlier, possibly because of material scarcity as could also be proven in Thy, northern Jutland (Bech and Rasmussen 2018).

Again, the human impact decreases, and at its lowest point at the beginning of Period IV ca. 1100 BC, the monumental burial custom and the addition of prestige goods also end. The number of hoards and graves begins to rise again, and cooking pits appear. Exchange networks shift with the beginning of Period V, while axes increase again together with a slight decrease in the human impact curve. The appearance of certain artefacts or burial rites at the beginning of such a period of upheaval seems to suggest the role of a trigger. With this analysis, we have defined several likely indicators for social change in the less distinct phases and societal change in the strongly pronounced phases around 1500 BC and 1100 BC and the most important triggers for the Schleswig-Holstein Bronze Age.

soegel-wohlde-nordic-bronze-age
Distribution of burials with Valsømagle, Sögel and Wohlde blades with provenance known to parish. q = Valsømagle blades; s = Wohlde blades (small = one grave with a blade; medium = two graves with a blade); l = Sögel blades (small = one grave with a blade, medium = two graves with a blade, large = three graves with a blade). From Bergerbrant (2007).

While population movements can’t be really understood without a proper genetic transect proving or disproving archaeological theories, it seems that the intermediate zone of the Nordic circle was subjected to at least two demographic busts and succeeding booms during the Middle and Late Bronze Age periods, which not only affected the hydrotoponymy of Schleswig-Holstein (see above), but probably served as dynamic changes in the linguistic evolution of Palaeo-Germanic-speaking communities up to the Common Germanic expansion.

Read more on the Northern Early Bronze Age province.

Related

Volosovo hunter-gatherers started to disappear earlier than previously believed

volosovo-corded-ware

Recent paper (behind paywall) Marmot incisors and bear tooth pendants in Volosovo hunter-gatherer burials. New radiocarbon and stable isotope data from the Sakhtysh complex, Upper-Volga region, by Macānea, Nordqvist, and Kostyleva, J. Archaeol. Sci. (2019) 26:101908.

Interesting excerpts (emphasis mine):

The Sakhtysh micro-region is located in the Volga-Oka interfluve, along the headwaters of the Koyka River in the Ivanovo Region, central European Russia (Fig. 1). The area has evidence of human habitation from the Early Mesolithic to the Iron Age, and includes altogether 11 long-term and seasonal settlements (Sakhtysh I–II, IIa, III–IV, VII–XI, XIV) and four artefact scatters (sites V–VI, XII–XIII), in addition to which burials have been detected at five sites (I–II, IIa, VII, VIII) (Kostyleva and Utkin, 2010). The locations have been known since the 1930s and intensively studied since the 1960s under the leadership of D.A. Kraynov, M.G. Zhilin, E.L. Kostyleva, and A.V. Utkin.

Sakhtysh II and IIa are the most extensively studied sites of the complex, with ca. 1500m2 and around 800m2 excavated, respectively. The burial grounds at both sites are considered as fully investigated.

volosovo-sakhtysh-dates
AMS datings from the sites Sakhtysh II and IIa. Sampled contexts are given in parentheses (burial/hoard), “crust” indicates samples of charred organic
residues on pottery from cultural layer. For data, see Tables 1–2.

Sakhtysh chronology

The AMS dates do not support the previously proposed phasing of the Sakhtysh burials to early (4750–4375 BP/3600–3000 cal BCE), late (or developed; 4375–4000 BP/3000–2500 cal BCE), and final (4000–3750 BP/2500–2200 cal BCE): the early and late burials at Sakhtysh IIa do not stand out as two separate groups, and also the burials and hoards from Sakhtysh II, connected to the final phase, are temporally overlapping with these. Neither the use sequence, where the settlement and burial phases are non-overlapping and also complementary between the sites (Kostyleva and Utkin, 2010, 2014), finds support in the present material.

The AMS datings indicate that the Volosovo people started to bury their dead at Sakhtysh IIa after 3700 cal BCE; dates earlier than this may be affected by FRE or suffer from mixed contexts and poor quality of dates. The present data questions the interpretation that the Sakhtysh IIa cemetery was used without interruptions between 4800 and 4080 BP (Kostyleva and Utkin, 2010), i.e. for a millennium between 3550 and 2600 cal BCE. The AMS dates rather suggest a use period of some centuries only around the mid-4th millennium cal BCE, tentatively 3650–3400 cal BCE. This would also be more realistic considering the number of burials at the site.

volosovo-sakhtysh-sites
The core area of Volosovo culture (after Kraynov, 1987) and the sites of the Sakhtysh complex (after Kostyleva and Utkin, 2010). Eurasian map base made with Natural Earth. Illustration: K. Nordqvist.

Volosovo chronology

The absolute dating of Volosovo culture was for a long time hampered by the small number of radiocarbon dates (see Kraynov, 1987). Today,>100 datings connected with it can be found in literature (Korolev and Shalapinin, 2010; Chernykh et al., 2011; Nikitin, 2012; Mosin et al., 2014). Unfortunately, the available dates do not form solid grounds for dating the cultural phenomenon, as many of them have quality-related issues, large measurement errors, and ambiguous cultural or physical contexts. Consequently, particular datings may be connected to different cultural phases by different scholars. Finally, a large part of the newly-published datings are obtained through direct dating of potsherds (Kovaliukh and Skripkin, 2007; Zaitseva et al., 2009), and therefore, their cogency must be faced with reservation (see Van der Plicht et al., 2016; Dolbunova et al., 2017).

The datings connected with Volosovo cover a wide time range between ca. 5500 BP (4400 cal BCE) and ca. 3700 BP (2100 cal BCE). However, datings from secure contexts, with good quality (error ca. 50 years or below) and no probable FRE, place the beginning of Volosovo culture to the first half of the 4th millennium cal BCE, around 3700–3600 cal BCE. This is also supported by the roughly coeval terminal dates given for the preceding Lyalovo (Zaretskaya and Kostyleva, 2011) and Volga-Kama cultures (Lychagina, 2018), as well as the appearance of related neighbouring cultures, for example, in the Kama region (Nikitin, 2012; Lychagina, 2018), the southern forest steppe area (Korolev and Shalapinin, 2014), and north-western Russia and Finland (Nordqvist, 2018). Still, the dating of many of these cultural phases suffers from the same problems as of Volosovo.

A handful of contested datings place the end of Volosovo culture to the final centuries of the 3rd millennium cal BCE, or even later (Kostyleva and Utkin, 2010; Chernykh et al., 2011; Nikitin, 2012). On the other hand, the new AMS dates indicate that Volosovo activities at Sakhtysh II and IIa ceased before or towards the early 3rd millennium cal BCE; if this reflects the general decline of Volosovo culture must be still confirmed by more dates from Sakhtysh and elsewhere. In this context, the general cultural development must be accounted for. To what extent – if at all – the Volosovo people were present after the arrival of the Corded Ware culture-related Fatyanovo-Balanovo populations? Based on the current, albeit scant and inconclusive radiocarbon data this took place from ca. 2700 cal BCE onwards (Krenke et al., 2013).

volosovo-fatyanovo-balanovo
Corded Ware and Comb Ware hunter-gatherer-related populations in north-eastern Europe from ca. 2600 BC. See full map.

Comments

One of the interesting genetic papers in the near future will be the one that finally includes samples from Corded Ware groups in the forest zone (i.e. Fatyanovo-Balanovo and Abashevo), which will most likely confirm that they are the origin of the known genetic profile of Central and East Uralic-speaking peoples, seeing how West Uralic peoples show genetic continuity in the East Baltic area, coinciding with the Battle Axe culture.

Uralicists have come a long way from the 1990s, when the picture of Uralic before Balto-Slavic in the Baltic was already evident, and Uralians were identified with Comb Ware peoples. The linguistic data and relative chronology are still valid, despite the now outdated interpretations of absolute archaeological chronology, as happens with interpretations of Krahe or Villar about Old European.

As an example, here are some relevant excerpts from Languages in the Prehistoric Baltic Sea Region, by Kallio (2003):

NOTE. Kallio’s contribution appeared in the book Languages in Prehistoric Europe (2003), which I hold nostalgically close in my Indo-European library (now almost impossible to read fully). It is still one of my preferred books (from those made up of mostly unconnected chunks on European linguistic prehistory), because it contains Oettinger’s essential update of North-West Indo-European common vocabulary, which led us indirectly to our Modern Indo-European project from 2005 on.

In any case, the Uralic arrival in the region east of the Baltic Sea preceded the Indo-European one (…).

This theory that the ancestors of Finno-Saamic speakers arrived in the Baltic Sea region earlier than those of Balto-Slavic speakers is still rejected by some scholars (e.g. Napolskikh 1993: 41-44), who claim, for instance, that Finno-Saamic speakers would not have known salmons before they met Balts because the Finno-Saamic word for ‘salmon’ (i.e. *losi) is a borrowing from Baltic. Similarly, one could claim that English speakers would not have known salmons before they met Frenchmen because English salmon is a borrowing from French. In other words, Worter und Sachen are not necessarily borrowed hand in hand. Otherwise, it would not be so easy to explain how many Finnish names of body parts are borrowings from Baltic (e.g. hammas ‘tooth’, kaula ‘neck’, reisi ‘thigh’) and from Germanic (e.g. hartia ‘shoulder’, lantio ‘loin’, maha ‘stomach’).

A more probative argument is the fact that Balto-Slavic features in Finno-Saamic are mostly lexical ones (i.e. typical superstrate features), where Finno-Saamic features in Balto-Slavic are mostly non-lexical ones (i.e. typical substrate features). Note that there are more Balto-Slavic features in Finnic than in Saamic and more Finno-Saamic features in Baltic than in Slavic. This fact could be explained by presuming that Pre-Saamic was spoken north of the Corded Ware area and Pre-Slavic was spoken south of the Typical Pit-Comb Ware area, whereas Pre-Finnic and Pre-Baltic alone were spoken in the area, where both the Typical Pit-Comb Ware culture (ca. 4000-3600 BC) and the Corded Ware culture (ca. 3200-2300 BC) were situated. This area was most probably bilingual, until Finnic and Baltic won in the north and in the south, respectively.

As is well-known, the idea of Uralic substrate features in Balto-Slavic is not new (cf. e.g. Pokorny 1936/1968: 181-185). As recent studies (e.g. Bednarczuk 1997) have shown, their density is the most remarkable in the four Balto-Slavic languages spoken in the earlier Pit-Comb Ware area (i.e. Latvian, Lithuanian, Belorussian, Russian). On the other hand, occasional Uralisms in the other Balto-Slavic languages spoken west of the Vistula and south of the Pripyat may rather be considered adstrate features spread from the northeast.

comb-ware-uralic
Our beliefs from the 2000s. A hypothetic Uralic Comb Ware distribution before the arrival of a hypothetic North-West Indo-European-speaking Corded Ware. “Generalized distribution of the Pit-Comb Ware cultural complex (Mallory & Adams 1997: 430, Carpelan 1999: 257) and the most probable homelands of Saamic, Finnic, Mordvin, Mari, and Permic.”

The idea of Indo-European superstrate features in Finnic is not new either (cf. e.g. Posti 1953). As Jorma Koivulehto (1983) has recently shown, the earliest Indo-European loanword stratum in the westernmost Uralic branches alone can be considered Northwest Indo-European and connected with the Corded Ware culture (ca. 3200-2300 BC). Since this layer, there have been continuous contacts between Baltic and Finnic. According to Koivulehto (1990), the following stratum can be called Proto-Balt(o-Slav)ic and dated to the Late Neolithic period (ca. 2300-1500 BC). Note that this Proto-Balt(o-Slav)ic dating agrees with the established ones (cf. e.g. Shevelov 1964: 613-614, Kortlandt 1982: 181), when we remember the fact that archaeologists have also moved their datings back by centuries during the last decades.

Finally, there is also a Baltic loanword stratum which was not borrowed from the ancestral stage of Latvian, Lithuanian and/or Old Prussian but from some extinct Baltic language or dialect (Nieminen 1957). However, as these words still go back to the early Proto-Finnic stage, they can hardly be dated later than Bronze-Age ( ca. 1500-500 BC). Therefore, we may conclude that they were probably borrowed from a Baltic superstrate, which arrived in the Finnish Gulf area during the Corded Ware period and survived there until the Bronze Age, when it was no longer identical with other Baltic dialects. In any case, as later Baltic loanword strata concern southern Finnic languages alone, we may presume that this ‘North Baltic’superstrate had become extinct.

The traditional association of Uralic with Volosovo hunter-gatherers doesn’t make sense, since they neither miraculously survived for thousands of years nor mixed for hundreds of years with Corded Ware peoples, so we can now more confidently reject the recent assumption by Carpelan & Parpola that their language was adopted by incoming Fatyanovo, Balanovo and Abashevo groups, to develop into the known Uralic languages (more here). This includes one of the many models of the the Copenhagen group, who simplistically follow “Steppe ancestry” for Indo-Europeannes.

If one combines the known relative linguistic chronology with the North-West Indo-European hydrotoponymy layer, now more clearly identified as Old Europeans expanding with East Bell Beakers and derived Early Bronze Age groups, I think there is little space left for maneuvering out of the overwhelming evidence for a Uralic homeland in the forest-steppes, linked to the spread of late Sredni Stog/Corded Ware ancestry into north-eastern Europe and beyond the Urals.

Related

Villabruna cluster in Late Epigravettian Sicily supports South Italian corridor for R1b-V88

epipalaeolithic-whg-expansion

New preprint Late Upper Palaeolithic hunter-gatherers in the Central Mediterranean: new archaeological and genetic data from the Late Epigravettian burial Oriente C (Favignana, Sicily), by Catalano et al. bioRxiv (2019).

Interesting excerpts (emphasis mine):

Grotta d’Oriente is a small coastal cave located on the island of Favignana, the largest (~20 km2) of a group of small islands forming the Egadi Archipelago, ~5 km from the NW coast of Sicily.

The Oriente C funeral pit opens in the lower portion of layer 7, specifically sublayer 7D. Two radiocarbon dates on charcoal from the sublayers 7D (12149±65 uncal. BP) and 7E, 12132±80 uncal. BP are consistent with the associated Late Epigravettian lithic assemblages (Lo Vetro and Martini, 2012; Martini et al., 2012b) and refer the burial to a period between about 14200-13800 cal. BP, when Favignana was connected to the main island (Agnesi et al., 1993; Antonioli et al., 2002; Mannino et al. 2014).

sicily-grotta-oriente
A-B) Geographic location of Grotta d’Oriente.

The anatomical features of Oriente C are close to those of Late Upper Palaeolithic populations of the Mediterranean and show strong affinity with other Palaeolithic individuals of Sicily. As suggested by Henke (1989) and Fabbri (1995) the hunter-gatherer populations were morphologically rather uniform.

Genetic analysis

We confirmed the originally reported mitochondrial haplogroup assignment of U2’3’4’7’8’9. This haplogroup is present in both pre- and post-LGM populations, but is rare by the Mesolithic, when U5 dominates (Posth et al.2016).

Lipson et al. (2018) (their supplementary Figure S5.1) and Villalba-Mouco et al. (2019) (their Figure 2A) showed that European Late Palaeolithic and Mesolithic hunter-gatherers fall along two main axes of genetic variation. Multidimensional scaling (MDS) of f3-statistics shows that these axes form a “V” shape (Fig. 3). (…)

Focusing further on Oriente C, we find that it shares most drift with individuals from Northern Italy, Switzerland and Luxembourg, and less with individuals from Iberia, Scandinavia, and East and Southeast Europe (Fig. 4A-B). Shared drift decreases significantly with distance (Fig. 4C) and with time (Fig. 4D) although in a linear model of drift with distance and time as a covariate, only distance (p=1.3×10-6) and not time (p=0.11) is significant. Consistent with the overall E-W cline in hunter-gatherer ancestry, genetic distance to Oriente C increases more rapidly with longitude than latitude, although this may also be affected by geographic features. For example, Oriente C shares significantly more drift with the 8,000 year-old 1,400 km distant individual from Loschbour in Luxembourg (Lazaridis et al.,2014), than with the 9,000 year old individual from Vela Spila in Croatia (Mathieson et al.,2018) only 700 km away as shown by the D-statistic (Patterson et al.,2012) D (Mbuti, Oriente C, Vela Spila, Villabruna); Z=3.42. Oriente C’s heterozygosity was slightly lower than Villabruna (14% lower at 1240k transversion sites), but this difference is not significant (bootstrap P=0.12).

oriente-c-villabruna-f3-statistics
Multidimensional scaling of outgroup f3-statistics for Late 531 Upper Palaeolithic and Mesolithic hunter-gatherers.

Discussion and Conclusion

The robust record of radiocarbon dates proves that they reached Sicily not before 15-14 ka cal. BP, several millennia after the LGM peak. In our opinion, in fact, the hypothesis about an early colonization of Sicily by Aurignacians (Laplace, 1964; Chilardi et al., 1996) must be rejected, on the basis of a recent reinterpretation of the techno-typological features of the lithic industries from Riparo di Fontana Nuova (Martini et al., 2007; Lo Vetro and Martini, 2012; on this topic see also Di Maida et al., 2019).

These analyses have implications for understanding the origin and diffusion of the hunter-gatherers that inhabited Europe during the Late Upper Palaeolithic and Mesolithic. Our findings indicate that Oriente C shows a strong genetic relationship with Western European Late Upper Palaeolithic and Mesolithic hunter-gatherers, suggesting that the “Western hunter-gatherers” was a homogeneous population widely distributed in the Central Mediterranean, presumably as a consequence of continuous gene flow among different groups, or a range expansion following the LGM.

shared-drift-whg-villabruna-oriente-c
The same statistic as in A plotted with geographic position

The South Italian corridor

Once again, a hypothesis based on phylogeography – apart from scarce archaeological and palaeolinguistic data (“Semitic”-like topo-hydronymy and substrates in Europe) – seems to be confirmed step by step. Since the finding of the Villabruna individual of hg. R1b-L754 (likely R1b-V88, like south-eastern European lineages expanded with WHG ancestry), it was quite likely to find out that southern Europe was the origin of the expansion of R1b-V88 into Africa.

The most likely explanation for the presence of “archaic” R1b-V88 subclades among modern Sardinians was, therefore, that they represented a remnant from a Late Upper Palaeolithic/Early Mesolithic population that had not been replaced in subsequent migrations, and thus that the migration of these lineages into Northern Africa and the Green Sahara happened during a period when Italy was connected by a shallower Mediterranean (and more land connections) to Northern Africa.

late-epigravettian
Likely Late Epigravettian/Mesolithic expansion of R1b-V88 into Northern Africa. See full map.

Nevertheless, the arguments for a quite recent expansion of R1b-V88 through the Mediterranean and into Africa keep being repeated, probably based on ancestry from the few ancient (and many modern) populations that have been investigated to date, a simplistic approach prone to important errors that overarch whole migration models.

For example, in the recent paper by Marcus et al. (2019) the presence of these lineages among ancient Sardinians (from the late 4th millennium BC on) is interpreted as an expansion of R1b-V88 with the Cardial Neolithic based on their ancestry, disregarding the millennia-long gap between these samples and the presence of this haplogroup in Palaeolithic/Mesolithic Northern Iberia and Northern Italy, and the comparatively much earlier splits in the phylogenetic tree and dispersal among African populations.

Afroasiatic and Nostratic

I was asked recently if I really believed that we could reconstruct Proto-Nostratic and connect it with any ancestral population. My answer is simple: until the Chalcolithic – when the whole picture of Indo-Europeans, Uralians, Egyptians or Semites becomes quite clear – we have just very few (linguistic, archaeological, genetic) dots which we would like to connect, and we do so the best we can. The earlier the population and proto-language, the more difficult this task becomes.

NOTE. 1) I tentatively connected hg. R with Nostratic in a previous text – when it appeared that R1a expanded from around Lake Baikal, hence Eurasiatic; R1b from the south with AME-WHG ancestry, hence Afroasiatic; and R2 with Dravidian.

2) After that, I though it was more likely to be connected to AME ancestry and the Middle East, because of the apparent expansion of WHG from south-eastern Europe, and the potential association of Afroasiatic and (Elamo-?)Dravidian to Middle Eastern populations.

3) However, after finding more and more R1b samples expanding through northern Eurasia, spreading through the (then wider) steppe regions; and R1a essentially surviving among other groups in eastern Europe for thousands of years without being associated to significant migrations (like, say, hg. C after the Palaeolithic), it didn’t seem like this division was accurate, hence my most recent version.

But, in essence, it’s all about connecting the dots, and we have very few of them…

eurasiatic-phylum-ultraconserved-words
Phylogenetic tree from Pagel et al. (2013), partially in agreement with Kortlandt’s view on Eurasiatic. “Consensus phylogenetic tree of Eurasiatic superfamily (A) superimposed on Eurasia and (B) rooted tree with estimated dates of origin of families and of superfamily. (A) Unrooted consensus tree with branch lengths (solid lines) shown to scale and illustrating the correspondence between the tree and the contemporary north-south and east-west geographical positions of these language families. Abbreviations: P (proto) followed by initials of language family: PD, proto-Dravidian; PK, proto-Kartvelian; PU, proto-Uralic; PIE, proto–Indo-European; PA, proto-Altaic; PCK, proto–Chukchi-Kamchatkan; PIY, proto–Inuit-Yupik. The dotted line to PIY extends the inferred branch length into the area in which Inuit-Yupik languages are currently spoken: it is not a measure of divergence. The cross-hatched line to PK indicates that branch has been shortened (compare with B). The branch to proto-Dravidian ends in an area that Dravidian populations are thought to have occupied before the arrival of Indo-Europeans (see main text). (B) Consensus tree rooted using proto-Dravidian as the outgroup. The age at the root is 14.45 ± 1.75 kya (95% CI = 11.72–18.38 kya) or a slightly older 15.61 ± 2.29 kya (95% CI = 11.72–20.40 kya) if the tree is rooted with proto-Kartvelian. The age assumes midpoint rooting along the branch leading to proto-Dravidian (rooting closer to PD would produce an older root, and vice versa), and takes into account uncertainty around proto–Indo-European date of 8,700 ± 544 (SD) y following ref. 35 and the PCK date of 692 ± 67 (SD) y ago.”

In linguistics, I trust traditional linguists who tend to trust other more experimental linguists (like Hyllested or Kortlandt) who consider that – in their experience – an Indo-Uralic and a Eurasiatic phylum can be reconstructed. Similarly, linguists like Kortlandt are apparently (partially) supportive of attempts like that of Allan Bomhard with Nostratic – although almost everyone is critic of the Muscovite school‘s attachment to the Brugmannian reconstruction, stuck in pre-laryngeal Proto-Indo-Anatolian and similar archaisms.

I mostly use Nostratic as a way to give a simplistic ethnolinguistic label to the genetically related prehistoric peoples whose languages we will probably never know. I think it’s becoming clear that the strongest connection right now with the expansion of potential Eurasiatic dialects is offered by ANE-related populations (hence Y-chromosome bottlenecks under hg. R, Q, probably also N), however complicated the reconstruction of that hypothetic community (and its dialectalization) may be.

Therefore, the multiple expansions of lineages more or less closely associated to ANE-related peoples – like R1b-V88 in the case of Afrasian, or R2 in the case of Dravidians – are the easiest to link to the traditionally described Nostratic dialects and their highly hypothetic relationship.

green-sahara-neolithic
Reconstruction of North African vegetation during past green Sahara periods. Estimated and reconstructed MAP for the Holocene GSP (6–10 kyr BP) projected onto a cross-section along the eastern Sahara (left panel) and map view of reconstructed MAP, vegetation and physiographic elements [7,8,11,45] (right panel). Image from Larrasoaña et al. (2013).

What should be clear to anyone is that the attempt of many modern Afroasiatic speakers to connect their language to their own (or their own community’s main) haplogroups, frequently E and/or J, is flawed for many reasons; it was simplistic in the 2000s, but it is absurd after the advent of ancient DNA investigation and more recent investigation on SNP mutation rates. R1b-V88 should have been on the table of discussions about the expansion of Afroasiatic communities through the Green Sahara long ago, whether one supports a Nostratic phylum or not.

The fact that the role of R1b bottlenecks and expansions in the spread of Afroasiatic is usually not even discussed despite their likely connection with the most recent population expansions through the Green Sahara fitting a reasonable time frame for Proto-Afroasiatic reconstruction, a reasonable geographical homeland, and a compatible dialectal division – unlike many other proposed (E or J) subclades – reveals (once again) a lot about the reasons behind amateur interest in genetics.

Just like seeing the fixation in (and immobility of) recent writings about the role of I1, I2, or (more recently) R1a in the Proto-Indo-European expansion, R1b with Vasconic, or N1c with Proto-Uralic.

NOTE. That evident interest notwithstanding, it is undeniable that we have a much better understanding of the expansions of R1b subclades than other haplogroups, probably due in great part to the easier recovery of ancient DNA from Eurasia (and Europe in particular), for many different – sociopolitical, geographical, technological – reasons. It is quite possible that a more thorough temporal transect of ancient DNA from the Middle East and Africa might radically change our understanding of population movements, especially those related to the Afroasiatic expansion. I am referring in this post to interpretations based on the data we currently have, despite that potential R1b-based bias.

Related

How to interpret past human mobility patterns

celtic-europe-national-geographic

New paper (behind paywall), Interpreting Past Human Mobility Patterns: A Model, by Reiter and Frei Eur J Archaeol (2019).

Interesting excerpts (modified for clarity; emphasis mine):

Present investigations of mobility can be divided into two main groups: 1) individual mobility, and 2) group mobility.

Research approach

(…) it is arguable that, ‘the reality of a mobile existence is far more complex than the ordering principles used to describe it’ (Wendrich & Barnard, 2008: 15). It seems that the most accurate means of modelling mobility is through a thorough examination of a variety of phenomena in combination with archaeological context. Notable examples of these defining criteria include:

  1. Mobility (length of time, season);
  2. Number of journeys;
  3. Segment of the population which moved (as defined by gender, age, health, occupation, or social position);
  4. General socio-political organization;
  5. Logistics and available modes of transport.

means-identifying-individual-vs-group-mobility

In an ideal world, these five categories should be investigated via multiple samples from multiple individuals from a site, region, and culture group who represent the full gamut of ages, sexes, and social levels. Unfortunately, the fragmentary nature of the archaeological record rarely includes material suitable for covering all parameters.

A mobility model

Thirty years ago, David Anthony criticized archaeologists for their approach to migration: ‘instead of developing the needed tools, archaeologists have avoided the subject’ (Anthony, 1990: 895).

Although there are (and always will be) holes in the record, we propose a mobility model composed of four over-arching mobility patterns which we have named as follows:

NOTE. Cases explored in the paper are within brackets.

  1. Non-migratory [no mobility: The Case of Singen (Germany)];
  2. Point-to-point migratory [The Case of the Skrydstrup Woman (Denmark)];
  3. Back-and-forth [The case of Haraldskaer Woman (Denmark)];
  4. Repeated mobility, subdivided into
    • Cyclical mobility [The cases of Nieder-Mörlen (Germany) and Ötzi (Italy)]
    • Non-cyclical mobility [The cases of the medieval Silk Road, Roman York, Viking Age Trelleborg, and La Tène Bohemia]

human-mobility-model

All told, the mobility patterns identified in the present model cleave to three overarching kinds of mobility: non-mobility, single mobility/migration, and multiple movements. The causes of non-mobility and different types of mobility can be manifold.

Non-mobility may include lack of sufficient funds or surplus, social obligations, health status, age, and social standing (serf, slave, landed gentry).

Single, unidirectional movements may have been caused by marriage alliances; family movements; social, political, or economic instability; violence (enslavement, kidnapping); or health issues.

By contrast, individuals who show evidence of multiple movement were likely to have been moving because mobility formed part of their employment, beliefs (ritual), or lifestyle. Although a warrior or soldier, herder, trader, or traveller within an extensive kinship network may present very different mobility patterns, they are all unified by the fact that their chosen occupation or social group(s) exhibit some form of mobility mandate.

The causes of back-and-forth mobility are difficult to define as different reasons could spur a single to-and-from journey to a specific place of cultural, religious, or personal importance.

Repeated mobility, be it cyclical or more irregular (non-cyclical), can also be closely related to social status. For example, a peddler, small-scale trader, or migrant worker’s identity and integration (or nonintegration) into the society (or societies) with which they have contact can be defined by their transitory lifestyles. (…) both the profession and its mobile nature removed metalworkers from ‘normal’ society; in many cases, they formed a separate social category (Neipert, 2006). This could also be the case with warriors. Although contact with migratory workers or specialists was necessary for temporary collaboration, prolonged contact might involve severe social change (Neaher, 1979; Bollig, 1987).

Related

Sea Peoples behind Philistines were Aegeans, including R1b-M269 lineages

New open access paper Ancient DNA sheds light on the genetic origins of early Iron Age Philistines, by Feldman et al. Science Advances (2019) 5(7):eaax0061.

Interesting excerpts (modified for clarity, emphasis mine):

Here, we report genome-wide data from human remains excavated at the ancient seaport of Ashkelon, forming a genetic time series encompassing the Bronze to Iron Age transition. We find that all three Ashkelon populations derive most of their ancestry from the local Levantine gene pool. The early Iron Age population was distinct in its high genetic affinity to European-derived populations and in the high variation of that affinity, suggesting that a gene flow from a European-related gene pool entered Ashkelon either at the end of the Bronze Age or at the beginning of the Iron Age. Of the available contemporaneous populations, we model the southern European gene pool as the best proxy for this incoming gene flow. Last, we observe that the excess European affinity of the early Iron Age individuals does not persist in the later Iron Age population, suggesting that it had a limited genetic impact on the long-term population structure of the people in Ashkelon.

philistines-pca
Ancient genomes (marked with color-filled symbols) projected onto the principal components inferred from present-day west Eurasians (gray circles). The newly reported Ashkelon populations are annotated in the upper corner.

Genetic discontinuity between the Bronze Age and the early Iron Age people of Ashkelon

In comparison to ASH_LBA, the four ASH_IA1 individuals from the following Iron Age I period are, on average, shifted along PC1 toward the European cline and are more spread out along PC1, overlapping with ASH_LBA on one extreme and with the Greek Late Bronze Age “S_Greece_LBA” on the other. Similarly, genetic clustering assigns ASH_IA1 with an average of 14% contribution from a cluster maximized in the Mesolithic European hunter-gatherers labeled “WHG” (shown in blue in Fig. 2B) (15, 22, 26). This component is inferred only in small proportions in earlier Bronze Age Levantine populations (2 to 9%).

In agreement with the PCA and ADMIXTURE results, only European hunter-gatherers (including WHG) and populations sharing a history of genetic admixture with European hunter-gatherers (e.g., as European Neolithic and post-Neolithic populations) produced significantly positive f4-statistics (Z ≥ 3), suggesting that, compared to ASH_LBA, ASH_IA1 has additional European-related ancestry.

We find that the PC1 coordinates positively correlate with the proportion of WHG ancestry modeled in the Ashkelon individuals, suggesting that WHG reasonably tag a European-related ancestral component within the ASH_IA1 individuals.

philistines-admixture
We plot the ancestral proportions of the Ashkelon individuals inferred by qpAdm using Iran_ChL, Levant_ChL, and WHG as sources ±1 SEs. P values are annotated under each model. In cases when the three-way model failed (χ2P < 0.05), we plot the fitting two-way model. The WHG ancestry is necessary only in ASH_IA1.

The best supported one (χ2P = 0.675) infers that ASH_IA1 derives around 43% of ancestry from the Greek Bronze Age “Crete_Odigitria_BA” (43.1 ± 19.2%) and the rest from the ASH_LBA population.

(…) only the models including “Sardinian,” “Crete_Odigitria_BA,” or “Iberia_BA” as the candidate population provided a good fit (χ2P = 0.715, 49.3 ± 8.5%; χ2P = 0.972, 38.0 ± 22.0%; and χ2P = 0.964, 25.8 ± 9.3%, respectively). We note that, because of geographical and temporal sampling gaps, populations that potentially contributed the “European-related” admixture in ASH_IA1 could be missing from the dataset.

The transient impact of the “European-related” gene flow on the Ashkelon gene pool

The ASH_IA2 individuals are intermediate along PC1 between the ASH_LBA ones and the earlier Bronze Age Levantines (Jordan_EBA/Lebanon_MBA) in the west Eurasian PCA (Fig. 2A). Notably, despite being chronologically closer to ASH_IA1, the ASH_IA2 individuals position closer, on average, to the earlier Bronze Age individuals.

philistines-y-dna
See more information on Y-DNA SNP calls, including ASH067 as R1b-M269 (xL151).

The transient excess of European-related genetic affinity in ASH_IA1 can be explained by two scenarios. The early Iron Age European-related genetic component could have been diluted by either the local Ashkelon population to the undetectable level at the time of the later Iron Age individuals or by a gene flow from a population outside of Ashkelon introduced during the final stages of the early Iron Age or the beginning of the later Iron Age.

By modeling ASH_IA2 as a mixture of ASH_IA1 and earlier Bronze Age Levantines/Late Period Egyptian, we infer a range of 7 to 38% of contribution from ASH_IA1, although no contribution cannot be rejected because of the limited resolution to differentiate between Bronze Age and early Iron Age ancestries in this model.

Hg. R1b-M269 and the Aegean

I already predicted this relationship of Philistines and Aegeans (Greeks in particular) months ago, based on linguistics, archaeology, and phylogeography, although it was (and still is) yet unclear if these paternal lineages might have come from other nearby populations which might be descended from Common Anatolians instead, given the known intense contacts between Helladic and West Anatolian groups.

luwian-civilization-sea-peoples
The alternative view: The Sea Peoples can be traced back to the Aegean, so they could also have consisted of Luwian petty kingdoms, who had formed an alliance and attacked Hatti from the south.

The deduction process for the Greek connection was quite simple:

Palaeo-Balkan populations

We know that R1b-Z2103 expanded with Yamna, including West Yamna settlers: they appear in Vučedol, which means they formed part of the earliest expansion waves of Yamna settlers into the Carpathian Basin, and they also appear scattered among Bell Beakers (apart from dominating East Yamna and Afanasevo), which suggests that they were possibly one of the most successful lineages during the late Repin/early Yamna expansion.

The “Steppe ancestry” associated with I2a-L699 samples among Balkan BA peoples may have also been associated with recent Bronze Age expansions, and this haplogroup’s presence among modern Balkan peoples may also suggest that it expanded with Palaeo-Balkan languages. Nevertheless, we don’t know which specific lineages and “Steppe ancestry” they represent, sadly.

These samples may well be related to remnants of previous Balkan populations like Cernavodă or Ezero, because there has been no peer-reviewed attempt at distinguishing Khvalynsk-/Novodanilovka- from Sredni Stog- from Yamnaya-related populations (see here), and some groups that are associated with this ancestry, like Corded Ware, are known to be culturally distinct from Yamna.

In any case, Proto-Greeks from the southern Balkans (say, Sitagroi IV and related groups) are probably going to show, based on Palaeo-Balkan substrate and Pre-Greek substrate and on the available Mycenaean samples, a process of decreasing proportion of R1b-Z2103 lineages relative to local ones, and a relatively similar cline of Yamna:EEF ancestry from northern to southern areas, at least in the periods closest to the Yamna expansion.

NOTE. The finding of “archaic” R1b-L389 (R1b-V1636) and R1a-M198 subclades among modern Greeks and the likely Neolithic origin of these paternal lineages around the Caucasus suggest that their presence in Greece may be from any of the more recent migrations that have happened between Anatolia and the Balkans, especially during the Common Era, rather than Indo-Anatolian migrations; probably very very recently.

-chalcolithic-late-balkans
Bronze Age cultures in the Balkans and the Aegean. See full map including ancient samples with Y-DNA, mtDNA, and ADMIXTURE.

Minoans and haplogroup J

In the Aegean, it is already evident that the population changed language partly through cultural diffusion, probably through elite domination of Proto-Greek speakers. Whether that happened before the invasion into the Greek Peninsula or after it is unclear, as we discussed recently, because we only have one reported Y-chromosome haplogroup among Mycenaeans, and it is J (probably continuing earlier lineages).

Now we have more samples from the so-called Emporion 2 cluster in Olalde et al. (2019), which shows Mycenaean-like eastern Mediterranean ancestry and 3 (out of 3) samples of haplogroup J, which – given the origin of the colony in Phocea – may be interpreted as the prevalence of West Anatolian-like ancestry and lineages in the eastern part of the Aegean (and possibly thus south Peloponnese), in line with the modern situation.

NOTE. It does not seem likely that those R or R1b-L23 samples from the Emporion 1 cluster are R1b-Z2103, based on their West European-like ancestry, although they still may be, because – as we know – ancestry (unlike haplogroup) changes too easily to interpret it as an ancestral ethnolinguistic marker.

anatolia-greek-aegean
PCA of ancient samples related to the Aegean, with Minoans, Mycenaeans (including the Emporion 2 cluster in the background) Anatolia N-Ch.-BA and Levantine BA-LBA populations, including Tel Shadud samples. See more PCAs of ancient Eurasian populations.

Greeks and haplogroup R1b-M269

Therefore, while the presence of R1b-Z2103 among ancient Balkan peoples connected to the Yamna expansion is clear, one might ask if R1b-Z2103 really spread up to the Peloponnese by the time of the Mycenaean Civilization. That has only one indirect answer, and it’s most likely yes.

We already had some R1b-Z2103 among Thracians and around the Armenoid homeland, which offers another clue at the migration of these lineages from the Balkans. The distribution of different “archaic” R1b-Z2103 subclades among modern Balkan populations and around the Aegean offered more support to this conclusion.

But now we have two interesting ancient populations that bear witness to the likely intrusion of R1b-M269 with Proto-Greeks:

An Ancient Greek of hg. R1b

A single ancient sample supports the increase in R1b-Z2103 among Greeks during the “Dorian” invasions that triggered the Dark Ages and the phenomenon of the Aegean Sea Peoples. It comes from a Greek lab study, showing R1b1b (i.e. R1b-P297 in the old nomenclature) as the only Y-chromosome haplogroup obtained from the sampling of the Gulf of Amurakia ca. 470-30 BC, i.e. before the Roman foundation of Nikopolis, hence from people likely from Anaktorion in Ancient Acarnania, of Corinthian origin.

ancient-greeks-y-dna-mtdna

Even with the few data available – and with the caution necessary for this kind of studies from non-established labs, which may be subject to many different kinds of errors – one could argue that the western Greek areas, which received different waves of migrants from the north and shows a higher distribution of R1b-Z2103 in modern times, was probably more heavily admixed with R1b-Z2103 than southern and eastern areas, which were always dominated by Greek-speaking populations more heavily admixed with locals.

The Dorian invasion and the Greek Dark Ages may thus account for a renewed influx of R1b-Z2103 lineages accompanying the dialects that would eventually help form the Hellenic Koiné. In a sense, it is only natural that demographically stronger populations around the Bronze Age Aegean would suffer a limited (male) population replacement with the succeeding invasions, starting with a higher genetic impact in the north-west and diminishing as they progressed to the south and the east, coupled with stepped admixture events with local populations.

This would be therefore the late equivalent of what happened at the end of the 3rd millennium BC, with Mycenaeans and their genetic continuity with Minoans.

pre-greek-ssos
Distribution of Pre-Greek place-names ending in -ssos/-ssa or -sos/-sa. See original images and more on the south/east cline distribution of Pre-Greek place-names here.

Sea peoples of hg. R1b-M269

Thanks to Wang et al. (2018) supplementary materials we knew that one of the two Levantine LBA II samples from Tel Shadud (final 13th–early 11th c. BC) published in van den Brink (2017) was of hg. R1b-M269 – in fact, the one interpreted as a Canaanite official residing at this site and emulating selected funerary aspects of Egyptian mortuary culture.

Both analyzed samples, this elite individual and a commoner of hg. J buried nearby, were genetically similar and indistinguishable from local populations, though:

Principal Components Analysis of L112 and L126 was carried out within the framework described in Lazaridis et al. (2016). This analysis showed that the two individuals cluster genetically, with similar estimated proportions of ancestry from diverse West Eurasian ancestral sources. These results are consistent with the hypothesis that they derive from the same population, or alternatively that they derive from two quite closely related populations.

We know that ancestry changes easily within a few generations, so there was not much information to go on, except for the fact that – being R1b-M269 – this individual could trace his paternal ancestor at some point to Proto-Indo-Europeans.

One might think that, because many haplogroups in this spreadsheet were wrong, this is also wrong; nevertheless, many haplogroups are correctly identified by Yleaf, and finding R1b-M269 in the Levant after the expansion of Sea Peoples could not be that surprising, because they were most likely related to populations of the Aegean Sea. Any other related hg. R1b (R1b-M73, R1b-V88, even R1b-V1636) wouldn’t fit as well as R1b-M269.

sea-peoples-egypt-rameses-iii

However, the early expansion of Proto-Indo-Aryans into the Middle East, as well as the later expansion of Armenians from the Balkans through Anatolia and of West Iranians from the east may have all potentially been related to this sample. But still, the previous linguistic and archaeological theories concerning the Philistines and the expansion of Sea Peoples in the Levant made this sample a likely (originally) Greek “Dorian” lineage, rather than the other (increasingly speculative) alternatives.

In any case, it was obvious to anyone – that is, to anyone with a minimum knowledge of how population genomics works – that just the two samples from van den Brink (2017) couldn’t be used to get to any conclusions about the ancestral origin of these individuals (or their differences) beyond Levantine peoples, because their ancestry was essentially (i.e. statistically) the same as the other few available ancient samples from nearby regions and similar periods.

If anything, the PCA suggested an origin of the R1b sample closer to Aegean populations relative to the J individual (see PCA above), and this should have been supported also by amateur models, without any possible confirmation (as with the ASH_IA2 cluster in this paper). However, if you have followed online discussions of Tel Shadud R1b-M269 sample since it was mentioned first on Eupedia months ago – including another wave of misguided speculation based on the ancestry of both individuals triggered by a discussion on this blog -, you have once more proof of how misleading ancestry analyses can be in the wrong hands.

NOTE. This is the Nth proof (and that only in 2019) of how it’s best to just avoid amateur analyses and interpretations altogether, as I did in the recent publication of the books. All those who didn’t take into account whatever was commented about the ancestry of these samples haven’t lost a single bit of relevant information on Levantine peoples, and have had more time for useful reads, compared to those dedicated to endless void speculation, once again gone awfully wrong, as does everything related to cocky ancient DNA crackpottery 😉

bronze-age-late-aegean
Late Bronze Age population movements in the Eastern Mediterranean and the Middle East. See full map including ancient DNA samples with Y-DNA, mtDNA, and ADMIXTURE.

Admittedly, though, even accepting the evident Mediterranean origin of this lineage, one could have argued that this sample may have been of R1b-L151 subclade, if one were inclined to support the theory that Italic peoples were behind Sea Peoples expanding east – and consequently that the ancestors of Etruscans had migrated eastward into the Aegean (e.g. into Lemnos), so that it could be asserted that Tyrsenian might have been a remnant language of an ancient population of northern Italy.

Philistines

Fortunately, some of the samples recovered in Feldman et al. (2019) that could be analyzed (those of the cluster ASH_IA1) offer a very specific time frame where European ancestry appeared (ca. 1250 BC) before it subsequently became fully diluted (as seen in cluster ASH_IA2) among the prevalent Levantine ancestry of the area.

Also fortunately, this precise cluster shows another R1b-M269 sample, likely R1b-Z2103 (because it is probably xL151), and this sample together with others from the same cluster prove that the ancestry related to the original southern European incomers was:

  1. Recent, related thus to LBA population movements, as expected; and
  2. More closely related to coeval Aegeans, including Mycenaeans with Steppe-related ancestry.

NOTE. I say “fortunately” because, as you can imagine if you have dealt with amateurish discussions long enough, without this cluster with evident Aegean ancestry and the R1b-M269 (Z2103) sample precisely associated to it, some would enter again in endless comment loops created by ancestry magicians, showing how Aegean peoples were not behind Sea Peoples, or not behind Philistines, or not behind the R1b-M269 among Philistines, depending on their specific agendas.

aegean-sea-peoples
Map of the Sea People invasions in the Aegean Sea and Eastern Mediterranean at the end of the Late Bronze Age (blue arrows).. Some of the major cities impacted by the raids are denoted with historical dates. Inland invasions are represented by purple arrows. From Kaniewski et al. (2011). Some of the major cities impacted by the raids are denoted with historical dates. Inland invasions are represented by purple arrows.

The results of the paper don’t solve the question of the exact origin of all Sea Peoples (not even that of Philistines), but it is quite clear that most of those forming this seafaring confederation must have come from sites around the Aegean Sea. This supports thus the traditional origin attributed to them, including a hint at the likely expansion of Eastern Mediterranean ancestry and lineages into the Italian Peninsula precisely from the Aegean, as some oral communications have already disclosed.

As an indirect conclusion from the findings in this paper, then, we can now more confidently support that Tyrsenian speakers most likely expanded into the Appenines and the Alps originally from a Tyrsenian-speaking LBA population from Lemnos, due to the social unrest in the whole Aegean region, and might have become heavily admixed with local Italic peoples quite quickly, as it happened with Philistines, resulting in yet another case of language expansion through (the simplistically called) elite domination.

Conclusion

Even more interesting than these specific findings, this paper confirms yet another hypothesis based on phylogeography, and proves once again two important starting points for ancient DNA interpretation that I have discussed extensively in this blog:

  • The rare R1b-M269 Y-chromosome lineage of Tel Shadud offered ipso facto the most relevant clue about the ancestral geographical origin of this Canaanite elite male’s paternal family, most likely from the north-west based on ancient phylogeography, which indirectly – in combination with linguistics and archaeology – supported the ancestral ethnolinguistic identification of Philistines with the Aegean and thus with (a population closest to) Ancient Greeks.
  • Ancestry analyses are often fully unreliable when assessing population movements, especially when few samples from incomplete temporal-geographical transects are assessed in isolation, because – unlike paternal (and maternal) haplogroups – ancestry might change fully within a few generations, depending on the particular anthropological setting. Their investigation is thus bound by many limitations – of design, statistical, and anthropological (i.e. archaeological and linguistic) – which are quite often not taken into account.

These cornerstones of ancient DNA interpretation have been already demonstrated to be valid not only for Levantine populations, as in this case, but also for Balkan peoples, for Bell Beakers, for steppe populations (like Khvalynsk, Sredni Stog, Yamna, Corded Ware), for Basques, for Balto-Slavs, for Ugrians and Samoyeds, and for many other prehistoric peoples.

I rest my case.

Related

Bronze Age cultures in the Tarim Basin and the elusive Proto-Tocharians

andronovo-xiaohe-horizon

Master’s thesis Shifting Memories: Burial Practices and Cultural Interaction in Bronze Age China: A study of the Xiaohe-Gumugou cemeteries in the Tarim Basin, by Yunyun Yang, Uppsala University, Department of Archaeology and Ancient History (2019).

Summary excerpts, mainly from the conclusions (emphasis mine):

Both the Xiaohe and the Gumugou groups are suggested as possibly originating from southern Siberia or Central Asia and being related to Afanasievo and Andronovo people (Han 1986, 1994; Li et al. 2010, 2015). But a latest research suggest that the Xiaohe males are genetic distinct from the Afanasievo males, considering the paternal lineages (Hollard et al. 2018). From genetic evidence, it is suggested that southern Siberia and Central Asia were dominated by Europeans during the Bronze Age. Southern Siberia was predominant by Europeans since the Bronze Age as a result of eastward migration of Kurgan people (Keyser et al. 2009). Central Asia started to have an eastern Eurasian maternal lineage that coexisted with the previous western maternal lineage from around 700 BCE (Lalueza-Fox et al. 2004). Based on the research mentioned above, we can conclude as that the Xiaohe and the Gumugou people possibly came from the southern Siberia or Central Asia.

Origin of the Xiaohe horizon

There are two hypotheses about the origins of the Xiaohe horizon. The “steppe hypothesis” assumes that the early settlers (Gumugou people) of the Tarim Basin came from the Afanasievo culture in the Minusinsk Basin-Altai Mountains regions (Kuz’mina et al. 2008; Mallory et al. 2008). The “oasis hypothesis” argues that the early settlers were related to the spreading of the oasis-based agricultural groups from the Bactria and Margiana parts of the southern Central Asia area (Chen et al. 1995). Both hypotheses mainly relied on the use of some materials such as animal cattle, sheep/goats, camel hair, and plant wheat, whose origins were bound to western traditions. But these proofs cannot provide enough support to claim that the Xiaohe horizon cultures were from Afanasievo or BMAC cultures, except for telling there were possible cultural connections or interactions among them. What’s more, there were no horses or potteries in the Xiaohe horizon.

It is worth noting that Ephedra plant is commonly thought as a strong candidate of the Soma or Haoma sacred drink for the ancient Indians or Iranians. Soma is the name recorded in the Vedic Brahmanism religious literature Rigveda, Haoma in the Zoroastrianism Avesta, and indicates as a ritual drink from plant juice. The reason to address Ephedra plant to Soma-Haoma drink is mainly because of its ephedrine, which works on muscle strength, low blood pressure, (and asthma) to make people get rid of tiredness (Houben 2013). Furthermore, it is thought that Ephedra with anti-fatigue function gives gods or the dead immortality, longevity, and resurrection (Mahdihassan 1987). From a mobile consideration of Vedic Aryans perspective, it is thought Vedic Aryans made use of Ephedra, cannabis and poppy to produce Soma drink in Margiana, only Ephedra in Bactria and in Indian mountains area, but other substitutes in Indian plains (Shah 2014). From the Ephedra perspective, it is agreeable that the Xiaohe-Gumugou people were related to the Indo-Aryan peoples (Mallory et al. 1997; Wang 2017).

gumugou-xiaohe
The distribution map of the sites in the Xiaohe cultural horizon.

Burial customs

Both the Xiaohe and the Gumugou groups maintained similar burial customs, but we can distinguish a developing process from the slight diverse ways of the Gumugou cemetery to the highly consistent and advanced technology in making coffins of the Xiaohe cemetery. In terms of the dressing, the dead wore a felt cap, a pair of leather boots, a bracelet twined on the right wrist, and was wrapped in a big felt mantle. The dead in the Xiaohe cemetery also wore a loin-cloth. Commonly, both cemeteries contained burials goods of Ephedra twigs, grains of wheat and millet, grass-made baskets, animal ears (such as calf ears), and livestock. Wooden coffins in the two cemeteries were constructed in a similar way, by assembling two side-planks, two end-boards, a lid consisting of a few short straight boards, and covered with livestock hide (mainly cattle hide in the Xiaohe cemetery and sheep/goats hide in the Gumugou cemetery).

Considering the similar and continuous burial behaviours in the two cemeteries, it can be assumed that both the Xiaohe and the Gumugou societies were stable and consistent. The Xiaohe cemetery had both the special clay-lid wooden coffins and the normal coffins in its early phase (burial layers 4th-5th), then turned to be stable and consistent with the normal coffins (burial layers 1st-3rd), and have developed better construction of the boat-shape coffins. The Gumugou cemetery contained two main burial patterns, type I; the sun-radiating-spokes burials and type II; the normal burials, which coexisted during the same time. Burials of type II were similar but not limited to strict rules. Burials in both the Xiaohe and the Gumugou cemetery were fairly heterogeneous, and the clay-lid wooden coffins in the Xiaohe cemetery and the sun-radiating-spokes burials in the Gumugou cemetery only took up in a small percentage of each cemetery. These special burial types could indicate special roles of the dead in their related societies. Either the dead had high social positions or possibly they actually had a different ancestry origin. It is argued here that the latter is something that is quite possible, considering the mixed populations in the two cemeteries.

The sun-radiating-spokes burials share some features with a similar type of grave, constructed of circular stone kerbs of the stone-pit graves. The sun-radiating-spokes burials might represent an adaption to the local desert environment, which had better access to wood rather than stones. Circular stone kerbs with stone-pit in centre were widely seen in Bronze Age Afanasievo and Andronovo burials, and also in the late Bronze Age and early Iron Age burials along the Tian Shan. The present study suggests a high possibility that the six males buried in the sun-radiating-spokes graves came from the contemporary parallel Andronovo horizon, and kept some of their own ancestry memories in an adapted way.

xinjiang-afanasievo-andronovo-bmac-tian-shan
An assumption of the spreading/expansion routes stone burial construct.

Societies

Although the Xiaohe and Gumugou societies were stable and consistent, it does not mean that the societies were isolated, and we can see strong indications of them being open to the outside. With time, the Xiaohe population were getting even more diverse origins, as newcomers kept joining the group from outside. However, the burial behaviours in the Xiaohe cemetery did not change as a consequence if these additions. This suggests that the newcomers inherited the local burial customs, and strongly indicates that they became part of the community and adopted the new social identity, possibly through marriage. As a result, the diverse populations can well explain the coexistence of different cultural elements in the burials, e.g. cattle, sheep/goats, camel hair (from Central Asia), grains of wheat (from the west) and millet (from the east), etc.

The Xiaohe and the Gumugou societies were similar, but the Xiaohe society developed to a more advanced level both in economy and in social structure. First, the oasis-based economic system of the Xiaohe and the Gumugou had similar husbandry, but later this was developed to different extent. Both societies mainly relied on livestock, and while the Xiaohe people favoured cattle, the Gumugou people favoured sheep/goats. The two societies also developed agriculture, which can be seen from the grains of wheat and millet. It has been shown that grains of wheat are bread wheat. The Xiaohe people also cooked porridge with millet and milk, and had dairy products.

From these evidences, we can assume that the Xiaohe people have developed a stronger economic level. Secondly, the Xiaohe society had more distinguished gender roles, resulting in different social roles for men and women in terms of work and religions. The female and male dead were buried in a distinguished way with loin-cloths and wooden monuments. Sexual identity on a social level refers to how people consider and expect different genders to act and behave under the social and cultural framework. In the Xiaohe society, men carried out hunting tasks (creatures like vultures, badgers, lizards, snakes); women were associated to the rebirth of lives. To synthesize, a possible relation between the Xiaohe and the Gumugou societies is that they represent two parallel groups who shared similar economic systems because of the similar environment, or that there is a chronological difference where the Gumugou people may have existed earlier. The absolute dating information from the two cemeteries is insufficient to rule out the second situation.

tarim-basin-regions
The area division of the Tarim Basin and its surroundings (The division is made based on the mountain ranges including Altai Mountains, Tian Shan, and Kunlun Mountains, and also the distribution of ancient cemeteries in the whole Xinjiang generally.)

Surroundings

To place the Xiaohe horizon in the larger context of the Bronze Age burials in its surroundings, the hypothesis presented in this study is that the Xiaohe-Gumugou people might possibly represent a parallel to the Andronovo groups, with an eastward migration, that developed their own societies and ethnicities in the Tarim Basin with some ancestral memories still preserved. Considering the location and the geographical features of Xinjiang, the Altai Mountains and the Tian Shan left open access from the Eurasian Steppe to the Dzungarian Basin. The Hami Basin-the Balikun Grassland was the first intersection area to combine the possible western and eastern cultural influences. To pass by the Turpan Basin and enter into the Tarim Basin, there were two possible routes, one northern route along the southern edge of Tian Shan, and one southern route along the northern edge of Kunlun Mountains.

In the early Bronze Age, the burials in Xinjiang had some clear typical geographic features that distinguish them from their surroundings. But from the late Bronze Age to the early Iron Age, the tradition with circular kerbs of stones with stone-pits burials expanded along the southern edge of the Tian Shan, which was a major shift of burial practice that possibly could be linked to the expansion of the Andronovo horizon or a general nomadic expansion.

Although there were no horses or wagons found in the Xiaohe burials, the wooden horse-hoof objects were an indication of horses, which did not exist in their daily lives anymore, but possibly were related to some settlers’ ancestral memories of their nomadic origins. However, it was more important for them to assimilate to the common social identities of their new group. After people died, it was preferred to be buried in the communal cemetery. Even if the dead bodies were lost, wooden substitutes will be used in graves to represent the dead, since they believed in afterlife and thought that the end of the death is rebirth.

Comments

While the results of Li et al. (2010, 2015) of Xiaohe mummies regarding Y-chromosome haplogroups – showing mostly R1a(xZ93) – and radiocarbon dates of the samples are yet to be confirmed, Proto-Tocharians are known to have had contacts with Samoyeds, early Indo-Iranians (in turn in contact with the BMAC language), then into Common Tocharian with ancient Iranians, and then Indo-Aryan and Iranian languages again (for more on this, see Ged Carling‘s publications).

The connection of the Tocharian branch with Afanasevo is essentially indisputable today, like that of Late Proto-Indo-European with late Repin/early Yamna, even more so than it was just 10 years ago, thanks to the most recent genetic investigation. The common genetic stock of Yamna and Afanasevo – as well as that of East Bell Beakers and Palaeo-Balkan peoples – fits perfectly earlier predictions based on the linguistic estimates of the separation and evolution of the diverse language communities, and the tentative attribution to Eurasian steppe-related cultures.

early-bronze-age-tocharian-chemurchek
Tentative identification of language groups among Early Bronze Age cultures. Pre-/Proto-Tocharian is traditionally associated with Chemurchek. See full image.

The trail leading from Afanasevo to Common Tocharians, on the other hand, seems to be more tricky, not unlike many other Indo-European-speaking groups from Europe and Asia, whose precise evolution until their historical attestation is often unclear. Nevertheless, the eventual presence of diverse haplogroups among historical Tocharians – whether they coincide with ancient DNA recovered from BMAC, South India, Andronovo, or Bronze Age Tian Shan populations – will only be relevant to understand the genetic evolution of the speakers of Tocharian during its different stages.

If the genetic trail backwards from known Tocharians to (earlier) unknown Common Tocharians, and forwards from known Pre-Tocharians to (later) unknown Proto-Tocharians leads unequivocally to these populations from the Xiaohe cultural horizon, this paper shows one of the mechanisms through which peoples of the Andronovo cultural horizon (or, more precisely, male lines derived from it) may have become integrated into a Tocharian-speaking population, not dissimilar to what happened in the steppes between Uralic-speaking Abashevo and Pre-Proto-Indo-Iranian-speaking Catacomb-Poltavka to form the Proto-Indo-Iranian-speaking Sintashta-Potapovka-Filatovka culture.

As we have discussed in this blog many times over, to solve this ethnolinguistic identification of prehistoric cultures one needs to investigate ancient DNA in combination with linguistic guesstimates and the Indo-European homeland problem from a wide anthropological perspective. People not understanding this simple concept are bound to end up in some comical Tocharo-Indo-Iranian grouping related to Corded Ware ancestry from Andronovo, similar to the Celto-Ibero-Basques of elevated CEU BA ancestry and hg. R1b-P312 to the south of the Pyrenees during the Iron Age from Olalde et al. (2019), and to the Balto-Finno-Slavs of hg. R1a-Z283 and elevated “Steppe ancestry” in the BA-IA East Baltic from Saag et al. (2019)

Related

A Song of Sheep and Horses, revised edition, now available as printed books

cover-song-sheep-and-horses

As I said 6 months ago, 2019 is a tough year to write a blog, because this was going to be a complex regional election year and therefore a time of political promises, hence tenure offers too. Now the preliminary offers have been made, elections have passed, but the timing has slightly shifted toward 2020. So I may have the time, but not really any benefit of dedicating too much effort to the blog, and a lot of potential benefit of dedicating any time to evaluable scientific work.

On the other hand, I saw some potential benefit for publishing texts with ISBNs, hence the updates to the text and the preparation of these printed copies of the books, just in case. While Spain’s accreditation agency has some hard rules for becoming a tenured professor, especially for medical associates (whose years of professional experience are almost worthless compared to published peer-reviewed papers), it is quite flexible in assessing one’s merits.

However, regional and/or autonomous entities are not, and need an official identifier and preferably printed versions to evaluate publications, such as an ISBN for books. I took thus some time about a month ago to update the texts and supplementary materials, to publish a printed copy of the books with Amazon. The first copies have arrived, and they look good.

series-song-sheep-horses-cover

Corrections and Additions

Titles
I have changed the names and order of the books, as I intended for the first publication – as some of you may have noticed when the linguistic book was referred to as the third volume in some parts. In the first concept I just wanted to emphasize that the linguistic work had priority over the rest. Now the whole series and the linguistic volume don’t share the same name, and I hope this added clarity is for the better, despite the linguistic volume being the third one.

Uralic dialects
I have changed the nomenclature for Uralic dialects, as I said recently. I haven’t really modified anything deeper than that, because – unlike adding new information from population genomics – this would require for me to do a thorough research of the most recent publications of Uralic comparative grammar, and I just can’t begin with that right now.

Anyway, the use of terms like Finno-Ugric or Finno-Samic is as correct now for the reconstructed forms as it was before the change in nomenclature.

west-east-uralic-schema

Mediterranean
The most interesting recent genetic data has come from Iberia and the Mediterranean. Lacking direct data from the Italian Peninsula (and thus from the emergence of the Etruscan and Rhaetian ethnolinguistic community), it is becoming clearer how some quite early waves of Indo-Europeans and non-Indo-Europeans expanded and shrank – at least in West Iberia, West Mediterranean, and France.

Finno-Ugric
Some of the main updates to the text have been made to the sections on Finno-Ugric populations, because some interesting new genetic data (especially Y-DNA) have been published in the past months. This is especially true for Baltic Finns and for Ugric populations.

ananino-culture-new

Balto-Slavic
Consequently, and somehow unsurprisingly, the Balto-Slavic section has been affected by this; e.g. by the identification of Early Slavs likely with central-eastern populations dominated by (at least some subclades of) hg. I2a-L621 and E1b-V13.

Maps
I have updated some cultural borders in the prehistoric maps, and the maps with Y-DNA and mtDNA. I have also added one new version of the Early Bronze age map, to better reflect the most likely location of Indo-European languages in the Early European Bronze Age.

As those in software programming will understand, major changes in the files that are used for maps and graphics come with an increasing risk of additional errors, so I would not be surprised if some major ones would be found (I already spotted three of them). Feel free to communicate these errors in any way you see fit.

bronze-age-early-indo-european
European Early Bronze Age: tentative langage map based on linguistics, archaeology, and genetics.

SNPs
I have selected more conservative SNPs in certain controversial cases.

I have also deleted most SNP-related footnotes and replaced them with the marking of each individual tentative SNP, leaving only those footnotes that give important specific information, because:

  • My way of referencing tentative SNP authors did not make it clear which samples were tentative, if there were more than one.
  • It was probably not necessary to see four names repeated 100 times over.
  • Often I don’t really know if the person I have listed as author of the SNP call is the true author – unless I saw the full SNP data posted directly – or just someone who reposted the results.
  • Sometimes there are more than one author of SNPs for a certain sample, but I might have added just one for all.
ancient-dna-all
More than 6000 ancient DNA samples compiled to date.

For a centralized file to host the names of those responsible for the unofficial/tentative SNPs used in the text – and to correct them if necessary -, readers will be eventually able to use Phylogeographer‘s tool for ancient Y-DNA, for which they use (partly) the same data I compiled, adding Y-Full‘s nomenclature and references. You can see another map tool in ArcGIS.

NOTE. As I say in the text, if the final working map tool does not deliver the names, I will publish another supplementary table to the text, listing all tentative SNPs with their respective author(s).

If you are interested in ancient Y-DNA and you want to help develop comprehensive and precise maps of ancient Y-DNA and mtDNA haplogroups, you can contact Hunter Provyn at Phylogeographer.com. You can also find more about phylogeography projects at Iain McDonald’s website.

Graphics
I have also added more samples to both the “Asian” and the “European” PCAs, and to the ADMIXTURE analyses, too.

I previously used certain samples prepared by amateurs from BAM files (like Botai, Okunevo, or Hittites), and the results were obviously less than satisfactory – hence my criticism of the lack of publication of prepared files by the most famous labs, especially the Copenhagen group.

Fortunately for all of us, most published datasets are free, so we don’t have to reinvent the wheel. I criticized genetic labs for not releasing all data, so now it is time for praise, at least for one of them: thank you to all responsible at the Reich Lab for this great merged dataset, which includes samples from other labs.

NOTE. I would like to make my tiny contribution here, for beginners interested in working with these files, so I will update – whenever I have time – the “How To” sections of this blog for PCAs, PCA3d, and ADMIXTURE.

-iron-age-europe-romans
Detail of the PCA of European Iron Age populations. See full versions.

ADMIXTURE
For unsupervised ADMIXTURE in the maps, a K=5 is selected based on the CV, giving a kind of visual WHG : NWAN : CHG/IN : EHG : ENA, but with Steppe ancestry “in between”. Higher K gave worse CV, which I guess depends on the many ancient and modern samples selected (and on the fact that many samples are repeated from different sources in my files, because I did not have time to filter them all individually).

I found some interesting component shared by Central European populations in K=7 to K=9 (from CEU Bell Beakers to Denmark LN to Hungarian EBA to Iberia BA, in a sort of “CEU BBC ancestry” potentially related to North-West Indo-Europeans), but still, I prefer to go for a theoretically more correct visualization instead of cherry-picking the ‘best-looking’ results.

Since I made fun of the search for “Siberian ancestry” in coloured components in Tambets et al. 2018, I have to be consistent and preferred to avoid doing the same here…

qpAdm
In the first publication (in January) and subsequent minor revisions until March, I trusted analyses and ancestry estimates reported by amateurs in 2018, which I used for the text adding my own interpretations. Most of them have been refuted in papers from 2019, as you probably know if you have followed this blog (see very recent examples here, here, or here), compelling me to delete or change them again, and again, and again. I don’t have experience from previous years, although the current pattern must have been evidently repeated many times over, or else we would be still talking about such previous analyses as being confirmed today…

I wanted to be one step ahead of peer-reviewed publications in the books, but I prefer now to go for something safe in the book series, rather than having one potentially interesting prediction – which may or may not be right – and ten huge mistakes that I would have helped to endlessly redistribute among my readers (online and now in print) based on some cherry-picked pairwise comparisons. This is especially true when predictions of “Steppe“- and/or “Siberian“-related ancestry have been published, which, for some reason, seem to go horribly wrong most of the time.

I am sure whole books can be written about why and how this happened (and how this is going to keep happening), based on psychology and sociology, but the reasons are irrelevant, and that would be a futile effort; like writing books about glottochronology and its intermittent popularity due to misunderstood scientist trends. The most efficient way to deal with this problem is to avoid such information altogether, because – as you can see in the current revised text – they wouldn’t really add anything essential to the content of these books, anyway.

Continue reading

Official site of the book series:
A Song of Sheep and Horses: eurafrasia nostratica, eurasia indouralica

Genetic continuity among Uralic-speaking cultures in north-eastern Europe

east-europe-bronze-age

The recent study of Estonian Late Bronze Age/Iron Age samples has shown, as expected, large genetic continuity of Corded Ware populations in the East Baltic area, where West Uralic is known to have been spoken since at least the Early Bronze Age.

The most interesting news was that, unexpectedly for many, the impact of “Siberian ancestry” (whatever that actually means) was small, slow, and gradual, with slight increases found up to the Middle Ages, compatible with multiple contact events in north-eastern Europe. Haplogroup N became prevalent among Finnic populations only through late bottlenecks, as research of modern populations have long suggested, and as ancient DNA research hinted since at least 2015.

I risked to correlate the arrival of chiefs from the south-west with the infiltration of N1c-VL29 subclades during the transition to the Iron Age, coupled with that minimal “Siberian” ancestry (see e.g. here and here). Now we know that the penetration of this non-CW ancestry started, as predicted, in the Iron Age; that it was highly variable in the few samples where it appeared, with ca. 1-4%, while most Iron Age individuals show 0%; and that it was not especially linked to individuals of N1c-Vl29 lineages.

It is also basically confirmed, based on the (ancient and Modern Swedish) N1c-L550 subclades found among Iron Age Estonians, that N1c-VL29 lineages and the so-called “Siberian” ancestry will be found simultaneously around the Baltic coastal areas, and that different lineages must have suffered later founder effects among Finns, which suggests that these alliances through exogamy brought exactly as much language change in Sweden, Lithuania, or Poland, as they did in the East Baltic region…

On the other hand, the paper has also shown a potential movement of Corded Ware-derived peoples, if the change from LBA to IA samples is meaningful; in fact, even more Corded Ware-like than Baltic and Estonian BA populations. The exact origin of that movement is difficult to pinpoint, and it may not be related to the arrival of Akozino warrior-traders from the south-east, since theirs seems to be a minor impact proper of elites in a chiefdom system around the Baltic.

fortified-settlements-lba-ia
Distribution of fortified settlements (filled circles) and other hilltop sites (empty circles) of the Late Bronze Age and Pre-Roman Iron Ages in the East Baltic region. Tentative area of most intensive contacts between Baltic and Balto-Finnic communities marked with a dashed line. Image modified from (Lang 2016).

Also suggesting a potential movement is the ‘southern’ shift observed in the West and East Baltic areas, likely showing the arrival of Proto-East Baltic speakers (such as the Trzciniec outlier), as we have already discussed in this blog. The unexpected increase in Corded Ware-like ancestry in the Eastern Baltic, coupled with the expected large continuity of hg. R1a-Z283 in the homeland of Balto-Finnic expansions, gives even more support to the known complex system of exogamy along the Baltic coasts, and offers another potential reason for the rise of Baltic-speaking territories in the West Baltic: elite domination.

It is nevertheless important to understand that, even among the most “genetic continuous” regions like Estonia, not a single population in Europe is heir of some ancestral, immutable people. Not in terms of haplogroups, and not in terms of admixture. Balto-Finnic speakers, however continuous they might seem (e.g. in Southern Estonians) aren’t an exception.

After all, this blog was (re)born to fight the currently prevalent sheer stupidity surrounding the simplistic “R1a/steppe ancestry=Indo-European” association, so I wouldn’t like to see it replaced with some other stupid continuity or purity ideas within 10 to 20 years…

Late Uralic stems from East Corded Ware groups

With the currently available tools – linguistics, archaeology, and now genetics -, I don’t think there is any argument to date to question the direct connection of the Late Proto-Uralic expansion with all Eastern Corded Ware groups (i.e. Battle Axe, Fatyanovo-Balanovo, and Abashevo), and thus at least with the unifying A-horizon of Corded Ware and the bottlenecks under R1a-Z645.

NOTE. The only out-group among Corded Ware cultures is the Single Grave culture. It appears to be an early Corded Ware offshoot, reflected in their non-unitary cultural traits (distinct from later unifying waves), in their varied patrilineal clans, and in the short-lasting cultural effect in northern Europe before their complete demise under pressure of expanding Yamna/Bell Beaker peoples from the Danube. The culture’s minimal (if any) effects on succeeding peoples might be seen mostly in the (mainly phonetic) Uralic substrate found in Balto-Slavic – although this may also stem from a more eastern influence, close to the Baltic – and in the contacts of Celtic with Uralic. The huge time depth between this early hypothetic Uralic layer in northern Europe and the emergence of peoples inhabiting these territories in recorded history have no doubt been erroneously interpreted as a lack of Uralic presence in the area.

1) That connection was evident in the Yamna – CWC differences in archaeology, and especially later, with at least Fatyanovo-Balanovo and Abashevo representing the obvious replacement of the Volosovo culture before further expansions of CWC-related groups west and east of the Urals.

The mythical millennia-long continuity of Volosovo hunter-gatherers, including centuries among Corded Ware peoples, as expected lately by the Copenhagen group (and anyone who doesn’t want to question the 1960s association of Indo-European with CWC) must be rejected today in population genomics, as the recent studies of ancient and modern populations show, and as ancient DNA from the region will confirm.

2) In linguistics, the survival of Volosovo as The Uralic-speaking culture was also hardly believable. From Kallio (2015):

While we can say at least something about Uralic substrates in Northeastern Europe, non-Uralic substrates cannot at all easily be identified, because of multiple language shifts, viz. first from non-Uralic to Uralic and then from Uralic to Russian. Yet the Soviet Uralicist Boris Serebrennikov (1956, 1959) argued that there are some non-Uralic substrate toponyms in the Volga-Oka region, but his idea was never taken seriously in the west (cf. Sauvageot 1958), and it pretty soon also sank into oblivion in Russia, even though it can still occasionally pop up there in non-onomastic circles (cf. Napolskikh 1995: 18–19). However, not all the hypotheses on non-Uralic substrates in Northeastern Europe should be rejected (see e.g. Helimski 2001b).

bronze-age-early-languages-east-europe
Tentative map of the distribution of known languages in Eastern Europe during the Early Bronze Age. See full map.

Helimski (2001) argues for a non-Uralic topo-hydronomy in Northern Russia, whose population may have kept their languages up to the Common Era despite the Corded Ware expansion, which is in line with the survival of some non-Indo-European languages everywhere in Europe after the expansion of Yamna and its offshoots:

It should be borne in mind that these [Uralic] hydronyms reached us mainly through Northern Russian and, accordingly, with a tendency to phonetic-morphological adaptation and unification (for river names it is “natural” to be, like the word ‘river’ itself, feminine and to end in -a). Taking into account this circumstance, it may turn out to be non-useless for etymological identification of at least some of the hydronyms on the Finno-Ugric basis.

On the other hand, I wouldn’t exclude the possibility that some parts of this large geographical area were never (completely) Finno-Ugric. The population that created the most important part of the hydronymy of the Russian North could be finally pushed aside or assimilated only at the end of the 1st – beginning of the 2nd millennium AD, during the Russian colonization, retaining the memory of the White-Eyed Chude in its own memory.

NOTE. For more on this non-IE substrate in (especially West) Uralic, see e.g. Zhivlov (2015),

The same non-Uralic substrate is most likely behind most of the shared traits by Mordvinic and Balto-Finnic (see below).

3) In genetics, I don’t think the picture could get any clearer. I don’t know what “Steppe ancestry = Indo-European” proponents expected from 2019, if they expected anything at all (I haven’t seen any coherent model, proposal, or prediction for a long time now), but I doubt the recent results are compatible with any of their implied expectations.

corded-ware-pca-sub-neolithic-europe
Detail of the PCA of the Corded Ware expansion. See full PCA and more related files.

Notice, from the PCA above, how this Baltic Late Neolithic group shows actually a shift from Sredni Stog (see PCA with Sredni Stog) towards typical Khvalynsk-Urals-related ancestry, i.e. populations from eastern European forested regions, derived from hunter-gatherer pottery groups, as I have proposed for a very long time, since the first time a Baltic LN “outlier” appeared. It’s amazing how some amateurs can find 0.1% of any Siberian outlier’s ancestry among Uralians 4,000 years later, but fail to see the direct connection here. The esoteric uses of qpAdm, I guess…

Especially noticeable is the extra WHG-like ancestry and corresponding shift, seen especially marked in late Polish CWC samples, but also in Baltic CWC and especially in one Sweden Battle Axe sample, all of them shifting apparently closer to Pitted Ware and SHG. While that may have been interpreted as an in situ admixture in Scandinavia before, the late Polish CWC samples show likely a resurgence of local populations, so we can assume that both shifts (to SHG- and EHG-like populations) of available CWC samples around the Baltic are clearly part of the WHG:EHG continuum that will be found in the eastern European sub-Neolithic cultures, from Narva to Volosovo.

This WHG-related ancestry is clearly predominant in groups with which Battle Axe peoples admixed, based on the shift towards Pitted Ware, which – I can only guess based on modern Volga Finns – is different from the shift we will see in Netted Ware, more towards the Khvalynsk-Urals cluster. This is in line with the expansion of Battle Axe eastward through coastal areas (West to East Baltic and Finland into Sweden), while Fatyanovo peoples probably emerged from a slightly different route, but also a northern one, if one is to follow archaological similarities and their chronology.

bronze-age-europe-baltic
Detail of the PCA of European Bronze Age populations. See full PCA and more related files.

During the Iron Age, the only peoples that probably shifted strongly (based on modern populations) are West Baltic ones, getting closer to the available Late Trzciniec samples, and even closer to the Trzciniec outlier, i.e. away from the earlier Eastern Corded Ware cluster, and towards Central European groups like Czech EBA or Poland EBA, both of them clearly derived from Bell Beakers, but also admixed with (and thus shifted toward) CW-like populations.

If one looks carefully at the previous PCA on Bronze Age populations, and the next one on Iron Age clusters, it is evident that adding the Swedish LN outlier to East Baltic BA (both strongly related to Battle Axe populations) essentially gives us the continuity of East Baltic BA into the Iron Age. This cluster is continued also in two outliers from Sigtuna, a Viking town close to the Gulf of Finland, known to be an important trading site, 1,500 years later. Not much of a change around the Gulf of Finland, then:

iron-age-eastern-europe
Detail of the PCA of East and North European Iron Age populations. See full PCA and more related files.

Based on the two simplistic Uralic clines one might see described (among the many that certainly existed, from Corded Ware to different Eurasian populations), and just like BOO was for some months fashionable as “Samic”, some may be tempted to say that certain Sintashta or Srubna outliers close to the Urals mark the True Uralic™ peoples. Because, of course they do. Ghost haplogroup N and stuff. And Corded Ware never ever Uralic. Because Gimbutas, and my IE R1a grandfather.

NOTE. Funny thing here: there might be Corded Ware, Iranian, Slavic, Germanic, etc… outliers or out-groups, and they might form the widest genetic clusters ever seen, but they are all of one language, because archaeology and linguistics; however, one “outlier” (also, put your own definition of “outlier” here, let’s say 1% of whatever, and strontium isotope potentially from 100 km away) ca. 600 BC in the Baltic who (surprise!) happens to show hg. N, and he signals the first incoming True Uralic™ speaker from wherever… It won’t be the first or the last time some people resort to “the complexity of Uralic-speaking peoples” in ancestry, just to look for “hg. N = Uralic” like crazy. You only need common sense to understand that this is not how this works. Amateur genomics can’t get more embarrassing than the current “let’s look for ‘Siberian ancestry’ in every individual of haplogroup N” trend. Or maybe it can, and it will, but I can’t see it yet.

If one were to insist on looking for ‘foreign’ contributions among Iron Age Estonians, though, I think one should also check out first archaeology, and then the PC3 (or, more graphically, a 3D plot), to understand what might be happening with the many Uralic clines derived from Corded Ware, before starting to play around with bioinformatic tools to discover a teeny tiny 1% admixture of the wrong population, and rushing to build far-fetched narratives. Apparently, one of the different clines formed roughly between southern (steppe – forest-steppe) and northern (tundra-taiga) populations in Uralians is also seen in some Iron Age Estonian individuals – especially in some late samples from Ingria…This is not my main interest, so I will leave this here for others to keep wasting their time chasing the white whale of the 0.5% of True Uralic™ ancestry in ancient Baltic samples of hg. N.

pca-3d-estonians-iron-age-boo-samic
Still images of the 3D plot of Eurasian samples. Typical PC1 vs. PC2 visualization to the left, and shift of the view to PC3 on the right image. See full PCA and more related files.

An exclusive Volga-Kama homeland for Disintegrating Uralic?

Since I don’t believe in macro-regions of largely continuous ethnolinguistic communities, as I have often said about Slavic (naively associated with prehistoric tribes of Eastern Europe) or Germanic (absurdly considered to be represented by Battle Axe), it is difficult for me to believe that Battle Axe-derived cultures remained of the same Finno-Samic dialects since the Corded Ware expansion…unless we live in Westeros, where everything happens “for thousands of years”.

I have to admit, then, that the now prevalent identification among Uralicists has become quite attractive:

  • Fatyanovo-Balanovo as Finno-Permic:
    • Fatyanovo/Netted Ware with West Uralic (also called Finno-Mordvinic).
    • Balanovo/Chirkovo-Kazan with Central Uralic (Mari-Permic).
  • Abashevo, into the Andronovo-like Horizon through the Seima-Turbino phenomenon, with East Uralic (also Ugro-Samoyedic).

Exactly like the identification of Yamna Hungary – Bell Beaker transition as the North-West Indo-European homeland, it gives us simplicity and small and late ethnolinguistic communities, away from the traditionally overused big and early language territories.

This late homeland would be supported, among others, by:

  • The presence of Indo-Iranian loanwords in Finno-Permic and Ugric (probably also in Samoyedic, either lost, or – much more likely – underresearched), compatible with the immediate contact between Abashevo – Sintashta-Potapovka-Filatovka and Fatyanovo-Balanovo.
  • The supposed expansion of Netted Ware from Fatyanovo to the north-west, which may be explained as the split and expansion of Balto-Finnic and Samic ca. 1900 BC.
  • A longer-lasting Finno-Permic (West+Central Uralic) community contrasting with the early separation of East Uralic.
  • The compatibility of this late expansion with the late expansion of Pre-Germanic from Denmark with the Dagger Period, and of Balto-Slavic with Trzciniec, which puts all three dialects reaching the Baltic Sea in the EBA.

NOTE. I meant to update the linguistic text to include the most recently favoured phylogenetic tree of Uralic languages after Häkkinen (2007, 2009, 2014), which has very quickly become the new normal among Uralicists, but I don’t think I will have enough time to review the necessary papers for that. I am rushing to publish a printed edition, so the text will wind up being a mixture of “traditional” (meaning, basically, pre-2010s) description of Uralic dialects but using modern divisions; say, “West Uralic” instead of “Finno-Samic”. By the way, I am still amazed that none of my reader-haters (or any online user discussing Uralic migrations, for that matter) have come up with the questions that the new division pose, and it supports my suspicion about the complete lack of interest in linguistics of most (a)DNA fans, except for the occasional use of old and free PDFs Googled to support new narratives invented expressly for some qpAdm results…

textile-ceramics-europe-bronze-age
Textile ceramic styles and influence of Bronze Age cultures divided in clusters.

Problems with this Parpola-Carpelan’s (2012-2018) interpretation include:

  • The differentiation between Fennoscandian Textile Ceramics vs. Netted Ware, which is not warranted in archaeology. The assumption that Netted Ware expanded to the Baltic Sea (as Kallio does, following the traditional view) is thus weak, and it was probably a question of cultural contacts coupled with short-distance population movements/exchange in both directions (from the Baltic to the Volga and vice versa). In fact, the culture division relies on some fairly common and technically simple ornamentation patterns, widespread all over northern Europe, even before the Corded Ware expansion, and it is very difficult to separate certain neighboring Textile Ceramics from Netted Ware groups in southern Finland (i.e. Sarsa-Tomitsa groups).
  • The strict and radical direction described for the Netted Ware by Carpelan, as an eastward and northward expansion, within a very short time frame (ca. 1900-1800 BC), based on few radiocarbon dates, which seems to me like a very risky assumption. We know how this kind of descriptions of direction of culture expansion based on radiocarbon dates has turned out in much more complex “packages”, like the Bell Beaker culture… In fact, the earliest dates for Textile Ware are from the East Baltic, earlier than those of Netted Ware.
  • The assumption that Balto-Finnic traits shared with Mordvinic are a) late and b) meaningful for dialectalization of two closely related dialects, when it is clear that both dialects separated quite early. Phonologically Finnic is more conservative, morphologically less so, and the shared traits include a handful of non-Uralic substrate words which can’t be traced to a single common source, hence they were adopted when both languages had already separated… All in all, Finnic – Mordvinic correspondances are not even close to Italo-Celtic ones, which is clearly fully incompatible with a proposal of a Finnic separation from Mordvinic coinciding with the LBA-IA transition.

Especially problematic for Parpola’s model is the lack of genetic impact in Bronze Age or Iron Age Estonians, not reaching a significant level under any possible statistical threshold – which I am sure was quite disappointing for some of my readers -, but is in line with major archaeological continuity of groups the from region, only disturbed in cultural (and Y-chromosome) terms by the expansion of Akozino warrior-traders all over the Baltic Sea. Any proposed population movement will be very difficult to support in genetics, given the Corded Ware-derived populations that we will see in both regions, and the continued Baltic-Volga contacts since the Corded Ware expansion.

Problems with an interpretation of such a small impact in population genomics includes the similarly weak impacts and haplogroup infiltrations that can be seen among populations basically everywhere in Eurasia, during any given period, and much greater genetic impacts that are supposed to be (or that were certainly) followed by ethnolinguistic continuity.

akozino-malar-axes-fennoscandia
Distribution of the Akozino-Mälar axes according to Sergej V. Kuz’minykh (1996: 8, Abb. 2).

The Battle Axe question

From Kallio (2015), about choosing a tentative homeland for Proto-Uralic:

(…) linguistically uniform Proto-Uralic would have been spoken in the Volga-Oka region until the mid-third millennium BC when the Proto-Uralic-speaking area would have expanded to the Volga-Kama region as well. By the end of the same millennium, this expansion would have led to the earliest dialectal splits within Uralic into Finno-Mordvin, Mari-Permic, and Ugro-Samoyed. The splitting up of these three soon followed during the early second millennium BC when the Uralic-speaking area finally stretched from the Baltic Sea in the west to the Altai mountains in the east. Indeed, no matter where Proto-Uralic was spoken, the branching into the nine well-attested subgroups (viz. Finnic, Saami, Mordvin, Mari, Permic, Hungarian, Mansi, Khanty, and Samoyed) must have taken less than a millennium, because their shared phonological and morphosyntactic isoglosses are rather limited (see Salminen 2002). The traditional view that all this branching would have taken several millennia violates everything linguistic typology teaches us about the rate of language change.

The basic problem of this identification of Fatyanovo-Balanovo as West-Central Uralic and Abashevo as East Uralic is the nature of the Battle Axe culture, including the Bronze Age East Baltic and Gulf of Finland area. Even if it is accepted that Fatyanovo-Balanovo represented all Western groups, Battle Axe must have represented West Uralic-like dialects.

The ethnolinguistic identification of Battle Axe depends ultimately on the nature of contacts of Fatyanovo/Netted Ware with Battle Axe/Textile Ceramics. If both groups were close and interacted profusely, as it seems, it doesn’t seem granted that we will be able to distinguish a close Para-West Uralic dialect of Scandinavia from the actual expanding Balto-Finnic and Samic dialects, if they were actually linked to the Netted Ware expansion. Also from Kallio (2015):

No doubt the most convincing substrate theory has recently been put forward by the Saami Uralicist Ante Aikio (2004), who has not only rehabilitated but also improved the old idea of a non-Uralic substrate in Saami. His study shows that there were still non-Uralic languages spoken in Northern Fennoscandia as recently as the first millennium AD. Most of all, they were not only genetically non-Uralic but also typologically non-Uralic-looking, bearing a closer resemblance to the so-called Palaeo-European substrates (for which see e.g. Schrijver 2001; Vennemann 2003).

In comparison, the case of Finnic is much more difficult. The fact that Proto-Uralic was not spoken in the East Baltic region means that this area must have originally been non-Uralic-speaking, but so far the evidence for a non-Uralic substrate in Finnic has consisted of appellatives and proper names with no etymology (cf. Ariste 1971; Saarikivi 2004a). Contrary to the proposed substrate words in Saami, those in Finnic show no structural non-Uralisms, as if they had indeed been borrowed from some genetically related or at least typologically similar languages, as I suggested above. Also none of them is more recent than the Middle Proto-Finnic stage, which makes them at least two millennia old. All this agrees with archaeological evidence discussed earlier that the Uralicization of the East Baltic region occurred during the Bronze Age (ca. 1900–500 BC).

The discussion of the paper continues with an unsuccessful attempt to find a hypothetical ancient Indo-European substrate that Kallio believes must be associated with the expansion of Corded Ware, in line with the traditional belief. For example, the often mentioned – almost folk etymology-like, unsurprisingly popular among amateurs – ‘Neva’ as derived from IE “young” is logically rejected…Unlike Parpola, Kallio’s view seems to be confident that Netted Ware (as Textile Ware) expanded into the East Baltic, on both sides of the Gulf of Finland, already during the Bronze Age.

As it has become apparent in population genomics, none of them was right, and Textile Ceramics will essentially show – like Netted Ware – a large genetic continuity of Corded Ware peoples in the whole north-eastern European forest zone – despite small regional population movements, obviously -, which necessarily implies that the whole Corded Ware culture – and not only Fatyanovo-Balanovo and Abashevo – were Uralic-speaking territories.

The similarities in terms of culture and Y-DNA bottlenecks between Battle Axe and Fatyanovo-Balanovo also imply that the linguistic differences between these groups were probably not many, and became strongly divided only after their territorial division. Continued contacts between Battle Axe- and Fatyanovo-derived groups can explain the proposed contacts (Finnic with Samic, Finnic with Mordvinic) after their linguistic-but-not-physical separation.

east-european-fatyanovocwc
East European movement directions (arrows) of the representatives of the Central European Corded Ware Culture (according to I.I. Artemenko).

Battle Axe spoke “Para-Balto-Finnic”?

The Balto-Finnic-speaking nature of Battle Axe is thus supported by:

  • The lack of non-Uralic substrates in Balto-Finnic territory (Kallio 2015).
  • The early separation of Samic and Finnic from Mordvinic, and the virtual identity of Proto-West-Uralic and Proto-Uralic, which suggests that Proto-Uralic spread fast (Parpola 2012).
  • The scarce non-Uralic topo-hydronymy in the East Baltic and around the Gulf of Finland (Saarikivi 2004), comparable to that on the Upper Volga region.
  • The strong influence of a Balto-Finnic-like substrate on Pre-Germanic (or, in Kallio’s opinion, the same Scandinavian substrate influencing both Germanic and Balto-Finnic at the same time), and the continued influence of Balto-Finnic on Proto-Baltic and Proto-Slavic.
  • The continued influence of Corded Ware-derived groups in central-east Sweden in Finland and the East Baltic in terms of agricultural innovations appearing in the LBA, compatible with Schrijver’s proposal of intermediate Germanic-shifted Balto-Finnic groups and Balto-Finnic groups influenced by their pronunciation.
  • The intense Palaeo-Germanic and late Balto-Slavic / early Proto-Baltic superstrate on Balto-Finnic, which place all three dialects around the Baltic Sea since the Early Bronze Age.
  • The easy replacement of a hypothetic Para-Balto-Finnic dialect by incoming Proto-Balto-Finnic-speaking peoples (say, with textile ceramics), without much linguistic impact.

In fact, the continuous contacts of the East Baltic with the Volga, and especially the close interaction with Akozino warrior-traders just before the Tarand-grave period, could be the actual origin of the recent (if any) Finnic-Mordvinic connections that need to be traced back to the LBA-IA (maybe here the number ‘ten’), since most of them can be related to a Pit-Comb Ware culture substrate and earlier contacts through the forest zone, which Samic (due to its early split and presence to the north of the Gulf of Finland during the BA) does not share. In fact, some of them can be traced back to Balto-Finnic first

These are the most often mentioned, in order of descending relevance for a shared ancient community:

  • Noun paradigms and the form and function of individual cases.
  • The geminate *mm (foreign to Proto-Uralic before the development of Fennic under Germanic influence) and other non-Uralic consonant clusters.
  • The change of numeral *luka ‘ten’ with (non-Uralic) *kümmen.
  • The presence of loanwords of non-Uralic origin, related to farming and trees, potentially Palaeo-European in nature.

It’s not only a question of quantity. Are these shared Mordvinic – Balto-Finnic traits really more relevant than, say, those between Italo-Celtic, which are supposed to have formed a community for a very short period at the end of the 3rd millennium around the Alps? Are these traits even sufficient to propose a common early Mordvinic-Finnic group within West Uralic, rather than loose Mordvinic – Balto-Finnic contacts, i.e. contacts between East Baltic (Textile Ceramics) and Volga-Kama (Netted Ware)?

Based on the alternative (Kallio’s) view of continued contacts between Textile Ceramics groups, even without knowing anything about linguistics, you can guess that Parpola is spinning very thin when assuming that these changes suggest that Balto-Finnic may have expanded with Akozino warrior-traders, separating thus ca. 800 BC from Mordvinic…

Genetic findings now clearly help dismiss any meaningful population impact in the LBA-IA transition, although any linguist can obviously argue for linguistic change in spite of major genetic continuity. But then we are stuck in the pre-ancient DNA era, so what’s ancient DNA for.

netted-ware-textile-ceramics
Middle Bronze Age cultures of Eastern Europe.

Genetic continuity = language continuity?

In the end, it’s very difficult to say how much language continuity there is around Estonia since the arrival of Corded Ware peoples. Looking at Modern Estonians, they have been clearly influenced by recent contacts with Baltic- and Germanic-speaking peoples clustering to the south-west in the PCA. They seem to have also received contacts from north(-east)ern peoples, likely from Finland, evidenced by their shifts toward the modern Estonian cluster during and after the Middle Ages, with a slight increase in Siberian ancestry and N1c subclades associated with Lovozero Ware. How much language change did these contacts bring? Maybe an expansion of Gulf of Finland Finnic (Northern Estonian) over Inland Finnic (Southern Estonian) and Gulf of Riga Finnic (Livonian)? Difficult to know, exactly, but, in the traditional view of Balto-Finnic dialectal distribution among Uralicists like Kallio, possibly no change at all.

So, if the obvious changes in the Estonia_MA cluster relative to Estonia_IA cluster and Estonia_Modern relative to Estonia_MA do not represent radical language change…Why would Estonia_IA represent a change relative to Estonia_BA, when it is statistically basically the same? Or Estonia_BA relative to CWC_Baltic? Because of the infiltration of haplogroup N1c around the whole Baltic? Because of the occasional 1% “Siberian” ancestry in some non-locals of varied haplogroups across the whole Baltic area?

In spite of all this, the amount of special pleading we are seeing among openly Nordicist amateurs when discussing the Uralic homeland relative to the Indo-European question in genetics has become a matter of plain willful ignorance. Like the living corpses of the Anatolian homeland, the Armenian homeland, the OIT proponents, or the nativist Basque R1b association, the personal involvement in the revival of “R1a=Indo-European” and “N=Uralic” trends is just painful to watch.

[Next post in this line, if I manage to make time for it: “Genetic (dis)continuity in Central Europe“. Let’s see if early Balts and early Slavs, as well as Germanic peoples, show a cluster closer to Danubian EBA (viz. Maros), Hungary-Balkans BA, and Urnfield-related samples than their predecessors in their areas, i.e. away from East Corded Ware groups… If you want, you can enjoy for the moment the new PCAs I could get done and the tentative map of languages in the Early Bronze Age, that will probably give you the right idea about early Indo-European and Uralic population movements]

bronze-age-early-indo-european
European Early Bronze Age: tentative language map based on linguistics, archaeology, and genetics. See full map.

Related