North-West Indo-Europeans of Iberian Beaker descent and haplogroup R1b-P312

iron-age-early-mediterranean

The recent data on ancient DNA from Iberia published by Olalde et al. (2019) was interesting for many different reasons, but I still have the impression that the authors – and consequently many readers – focused on not-so-relevant information about more recent population movements, or even highlighted the least interesting details related to historical events.

I have already written about the relevance of its findings for the Indo-European question in an initial assessment, then in a more detailed post about its consequences, then about the arrival of Celtic languages with hg. R1b-M167, and later in combination with the latest hydrotoponymic research.

This post is thus a summary of its findings with the help of natural neighbour interpolation maps of the reported Germany_Beaker and France_Beaker ancestry for individual samples. Even though maps are not necessary, visualizing geographically the available data facilitates a direct comprehension of the most relevant information. What I considered key points of the paper are highlighted in bold, and enumerated.

NOTE. To get “more natural” maps, extrapolation for the whole Iberian Peninsula is obtained by interpolation through the use of external data from the British Isles, Central Europe, and Africa. This is obviously not ideal, but – lacking data from the corners of the Iberian Peninsula – this method gives a homogeneous look to all maps. Only data in direct line between labelled samples in each map is truly interpolated for the Iberian Peninsula, while the rest would work e.g. for a wider (and more simplistic) map of European Bronze Age ancestry components.

Chalcolithic

iberia-chalcolithic
Iberian Chalcolithic groups and expansion of the Proto-Beaker package. See full map.

The Proto-Beaker package may or may not have expanded into Central Europe with typical Iberia_Chalcolithic ancestry. A priori, it seems a rather cultural diffusion of traits stemming from west Iberia roughly ca. 2800 BC.

iberia-y-dna-map-chalcolithic
Map of Y-DNA haplogroups among Iberia Chalcolithic samples. See full map.

The situation during the Chalcolithic is only relevant for the Indo-European question insofar as it shows a homogeneous Iberia_Chalcolithic-like ancestry with typical Y-chromosome (and mtDNA) haplogroups of the Iberian Neolithic dominating over the whole Peninsula until about 2500 BC. This might represent an original Basque-Iberian community.

iberia-mtdna-map-chalcolithic
Map of mtDNA haplogroups among Iberia Chalcolithic samples. See full map.

Bell Beaker period

iberia-bell-beaker-period
Iberian Bell Beaker groups and potential routes of expansion. See full map.

The expansion of the Bell Beaker folk brought about a cultural and genetic change in all Europe, to the point where it has been rightfully considered by Mallory (2013) – the last one among many others before him – the vector of expansion of North-West Indo-European languages. Olalde et al. (2019) proved two main points in this regard, which were already hinted in Olalde et al. (2018):

(1) East Bell Beakers brought hg. R1b-L23 and Yamnaya ancestry to Iberia, ergo the Bell Beaker phenomenon was not a (mere) local development in Iberia, but involved the expansion of peoples tracing their ancestry to the Yamnaya culture who eventually replaced a great part of the local population.

iberia-ancestry-bell-beaker-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Bell Beaker period (ca. 2600-2250 BC). See full map.

(2) Classical Bell Beakers have their closest source population in Germany Beakers, and they reject an origin close to Rhine Beakers (i.e. Beakers from the British Isles, the Netherlands, or northern France), ergo the Single Grave culture was not the origin of the Bell Beaker culture, either (see here).

iberia-y-dna-map-bell-beaker-period
Map of Y-DNA haplogroups among Iberian Bell Beaker samples. See full map.
iberia-mtdna-map-bell-beaker-period
Map of mtDNA haplogroups among Iberian Bell Beaker samples. See full map.

Early Bronze Age

iberia-early-bronze-age
Iberian Early Bronze Age groups and likely population and culture expansions. See full map.

Interestingly, the European Early Bronze Age in Iberia is still a period of adjustments before reaching the final equilibrium. Unlike the situation in the British Isles, where Bell Beakers brought about a swift population replacement, Iberia shows – like the Nordic Late Neolithic period – centuries of genomic balancing between Indo-European- and non-Indo-European-speaking peoples, as could be suggested by hydrotoponymic research alone.

(3) Palaeo-Indo-European-speaking Old Europeans occupied first the whole Iberian Peninsula, before the potential expansion of one or more non-Indo-European-speaking groups, which confirms the known relative chronology of hydrotoponymic layers of Iberia.

iberia-ancestry-early-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Early Bronze Age period (ca. 2250-1750 BC). See full map.

This balancing is seen in terms of Germany_Beaker vs. Iberia_Chalcolithic ancestry, but also in terms of Y-chromosome haplogroups, with the most interesting late developments happening in southern Iberia, around the territory where El Argar eventually emerged in radical opposition to the Bell Beaker culture.

iberia-y-dna-map-early-bronze-age
Map of Y-DNA haplogroups among Iberia Early Bronze Age samples. See full map.

(4) Bell Beakers and descendants expanded under male-driven migrations, proper of the Indo-European patrilineal tradition, seen in Yamnaya and even earlier in Khvalynsk:

We obtained lower proportions of ancestry related to Germany_Beaker on the X-chromosome than on the autosomes (Table S14), although the Z-score for the differences between the estimates is 2.64, likely due to the large standard error associated to the mixture proportions in the X-chromosome.

germany-beaker-x-chromosome

iberia-mtdna-map-early-bronze-age
Map of mtDNA haplogroups among Iberia Early Bronze Age samples. See full map.

Regarding the PCA, Iberia Bronze Age samples occupy an intermediate cluster between Iberia Chalcolithic and Bell Beakers of steppe ancestry, with Yamnaya-rich samples from the north (Asturias, Burgos) representing the likely source Old European population whose languages survived well into the Roman Iron Age:

iberia-pca-bronze-age
PCA of ancient European samples. Marked and labelled are Bronze Age groups and relevant samples. See full image.

Middle Bronze Age

iberia-middle-bronze-age
Iberian Middle Bronze Age groups and likely population and culture expansions. See full map.

During the Middle Bronze Age, the equilibrium reached earlier is reversed, with a (likely non-Indo-European-speaking) Argaric sphere of influence expanding to the west and north featuring Iberia Chalcolithic and lesser amount of Germany_Beaker ancestry, present now in the whole Peninsula, although in varying degrees.

iberia-ancestry-middle-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Middle Bronze Age period (ca. 1750-1250 BC). See full map.

All Iberian groups were probably already under a bottleneck of R1b-DF27 lineages, although it is likely that specific subclades differed among regions:

iberia-y-dna-map-middle-bronze-age
Map of Y-DNA haplogroups among Iberia Middle Bronze Age samples. See full map.
iberia-mtdna-map-middle-bronze-age
Map of mtDNA haplogroups among Iberia Middle Bronze Age samples. See full map.

Late Bronze Age

iberia-late-bronze-age
Iberian Late Bronze Age groups and likely population and culture expansions. See full map.

The Late Bronze Age represents the arrival of the Urnfield culture, which probably expanded with Celtic-speaking peoples. A Late Bronze Age transect before their genetic impact still shows a prevalent Germany_Beaker-like Steppe ancestry, probably peaking in north/west Iberia:

iberia-ancestry-late-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Late Bronze Age period (ca. 1250-750 BC). See full map.

(5) Galaico-Lusitanians were descendants of Iberian Beakers of Germany_Beaker ancestry and hg. R1b-M269. Autosomal data of samples I7688 and I7687, of the Final Bronze (end of the reported 1200-700 BC period for the samples), from Gruta do Medronhal (Arrifana, Coimbra, Portugal) confirms this.

In the 1940s, human bones, metallic artifacts (n=37) and non-human bones were discovered in the natural cave of Medronhal (Arrifana, Coimbra). All these findings are currently housed in the Department of Life Sciences of the University of Coimbra and are analyzed by a multidisciplinary team. The artifacts suggest a date at the beginning of the 1st millennium BC, which is confirmed by radiocarbon date of a human fibula: 890–780 cal BCE (2650±40 BP, Beta–223996). This natural cave has several rooms and corridors with two entrances. No information is available about the context of the human remains. Nowadays these remains are housed mixed and correspond to a minimum number of 11 individuals, 5 adults and 6 non-adults.

In particular, sample I7687 shows hg. R1b-M269, with no available quality SNPs, positive or negative, under it (see full report). They represent thus another strong support of the North-West Indo-European expansion with Bell Beakers.

iberia-y-dna-map-late-bronze-age
Map of Y-DNA haplogroups among Iberian Late Bronze Age samples. See full map.
iberia-mtdna-map-late-bronze-age
Map of mtDNA haplogroups among Iberian Late Bronze Age samples. See full map.

NOTE. To understand how the region around Coimbra was (Proto-)Lusitanian – and not just Old European in general – until the expansion of the Turduli Oppidani, see any recent paper on Bronze Age expansion of warrior stelae, hydrotoponymy, anthroponymy, or theonymy (see e.g. about Spear-vocabulary).

Iron Age

iberia-iron-age-early
Iberian Pre-Roman Iron Age groups and likely population and culture expansions. See full map.

In a complex period of multiple population movements and language replacements, the temporal transect in Olalde et al. (2019) offers nevertheless relevant clues for the Pre-Roman Iron Age:

(6) The expansion of Celtic languages was associated with the spread of France_Beaker-like ancestry, most likely already with the LBA Urnfield culture, since a Tartessian and a Pre-Iberian samples (both dated ca. 700-500 BC) already show this admixture, in regions which some centuries earlier did not show it. Similarly, a BA sample from Álava ca. 910–840 BC doesn’t show it, and later Celtiberian samples from the same area (ca. 4th c. BC and later) show it, depicting a likely north-east to west/south-west routes of expansion of Celts.

iberia-ancestry-iron-age-france_beaker
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

(7) The distribution of Germany_Beaker ancestry peaked, by the Iron Age, among Old Europeans from west Iberia, including Galaico-Lusitanians and probably also Astures and Cantabri, in line with what was expected before genetic research:

iberia-ancestry-iron-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

A probably more precise picture of the Final Bronze – Early Iron Age transition is obtained by including the Final Bronze samples I2469 from El Sotillo, Álava (ca. 910-875 BC) as Celtic ancestry buffer to the west, and the sample I3315 from Menorca (ca. 904-861 BC), lacking more recent ones from intermediate regions:

iberia-ancestry-ia-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.
iberia-ancestry-ia-france_beaker
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.

In terms of Y-DNA and mtDNA haplogroups, the situation is difficult to evaluate without more samples and more reported subclades:

iberia-y-dna-map-iron-age
Map of Y-DNA haplogroups among Iberian Iron Age samples. See full map.
iberia-mtdna-map-iron-age
Map of mtDNA haplogroups among Iberian Iron Age samples. See full map.

In the PCA, Proto-Lusitanian samples occupy an intermediate cluster between Iberian Bronze Age and Bronze Age North (see above), including the Final Bronze sample from Álava, while Celtic-speaking peoples (including Pre-Iberians and Iberians of Celtic descent from north-east Iberia) show a similar position – albeit evidently unrelated – due to their more recent admixture between Iberian Bronze Age and Urnfield/Hallstatt from Central Europe:

iberia-pca-iron-age
PCA of ancient European samples. Marked and labelled are Iron Age groups and relevant samples. See full image.

(8) Iberian-speaking peoples in north-east Iberia represent a recent expansion of the language from the south, possibly accompanied by an increase in Iberia_Chalcolithic/Germany_Beaker admixture from east/south-east Iberia.

(9) Modern Basques represent a recent isolation + Y-DNA bottlenecks after the Roman Iron Age population movements, probably from Aquitanians migrating south of the Pyrenees, admixing with local peoples, and later becoming isolated during the Early Middle Ages and thereafter:

[Modern Basques] overlap genetically with Iron Age populations showing substantial levels of Steppe ancestry.

Assuming that France_Beaker ancestry is associated with the Urnfield culture (spreading with Celtic-speaking peoples), Vasconic speakers were possibly represented by some population – most likely from France – whose ancestry is close to Rhine Beakers (see here).

Alternatively, a Vasconic language could have survived in some France/Iberia_Chalcolithic-like population that got isolated north of the Pyrenees close to the Atlantic Façade during the Bronze Age, and who later admixed with Celtic-speaking peoples south of the Pyrenees, such as the Vascones, to the point where their true ancestry got diluted.

In any case, the clear Celtic Steppe-like admixture of modern Basques supports for the time being their recent arrival to Aquitaine before the proto-historical period, which is in line with hydrotoponymic research.

Conclusion

The most interesting aspects to discuss after the publication of Olalde et al. (2019) would have been thus the nature of controversial Palaeohispanic peoples for which there is not much linguistic data, such as:

  • the Astures and the Cantabri, usually considered Pre-Celtic Indo-European (see here);
  • the Vaccaei, usually considered Celtic;
  • the Vettones, traditionally viewed as sharing the same language as Lusitanians due to their apparent shared hydrotoponymic, anthroponymic, and/or theonymic layers, but today mostly viewed as having undergone Celticization and helped the westward expansion of Celtic languages (and archaeologically clearly divided from Old European hostile neighbours to the west by their characteristic verracos);
  • the Pellendones or the Carpetani, who were once considered Pre-Celtic Indo-Europeans, too;
  • the nature of Tartessian as Indo-European, or maybe even as “Celtic”, as defended by Koch;
  • or the potential remote connection of Basque and Iberian languages in a common trunk featuring Iberian/France_Chalcolithic ancestry (also including Palaeo-Sardo).
pre-roman-palaeohispanic-languages-peoples-iberia-300bc
Pre-Roman Palaeohispanic peoples ca. 300 BC. See full map. Image modified from the version at Wikipedia, a good example of how to disseminate the wrong ideas about Palaeohispanic languages.

Despite these interesting questions still open for discussion, the paper remarked something already known for a long time: that modern Basques had steppe ancestry and Y-DNA proper of the Yamnaya 5,000 years ago, and that Bell Beakers had brought this steppe ancestry and R1b-P312 lineages to Iberia. This common Basque-centric interpretation of Iberian prehistory is the consequence of a 19th-century tradition of obsessively imagining Vasconic-speaking peoples in their medieval territories extrapolated to Cro-Magnons and Atapuerca (no, really), inhabiting undisturbed for millennia a large territory encompassing the whole Iberia and France, “reduced” or “broken” only with the arrival of Celts just before the Roman conquests. A recursive idea of “linguistic autochthony” and “genetic purity” of the peoples of Iberia that has never had any scientific basis.

Similarly, this paper offered the Nth proof already in population genomics that traditional nativist claims for the origin of the Bell Beaker folk in Western Europe were wrong, both southern (nativist Iberian origin) and northern European (nativist Lower Rhine origin). Both options could be easily rejected with phylogeography since 2015, they were then rejected in Olalde et al. and Mathieson et al (2017), then again with the update of many samples in Olalde et al. (2018) and Mathieson et al (2018), and it has most clearly been rejected recently with data from Wang et al. (2018) and its Yamnaya Hungary samples. Findings from Olalde et al. (2019) are just another nail to coffins that should have been well buried by now.

Even David Anthony didn’t have any doubt in his latest model (2017) about the Carpathian Basin origin of North-West Indo-Europeans (see here), and his latest update to the Proto-Indo-European homeland question (2019) shows that he is convinced now about R1b bottlenecks and proper Pre-Yamnaya ancestry stemming from a time well before the Bell Beaker expansion. This won’t be the last setback to supporters of zombie theories: like the hypotheses of an Anatolian, Armenian, or OIT origin of the PIE homeland, other mythical ideas are so entrenched in nationalist and/or nativist tradition that many supporters will no doubt prefer them to die hard, under the most numerous and shameful rejections of endlessly remade reactionary models.

Related

Cogotas I Bronze Age pottery emulated and expanded Bell Beaker decoration

bronze_age_iberia

Copying from Sherds. Creativity in Bronze Age Pottery in Central Iberia (1800-1150 BC), by Antonio Blanco-González, In: J. Sofaer (ed.): Considering Creativity Creativity, Knowledge and Practice in Bronze Age Europe. Archaeopress (2018), Oxford: 19-38

Interesting excerpts (emphasis mine):

Several Iberian scholars have referred to stab-and-drag designs in both Bell-Beaker and Bronze Age ceramics (Maluquer de Motes 1956, 180, 196; Fernández-Posse 1982, 137), although these have not always been correctly appraised. In the 1980s it was finally realized that the sherds retrieved at the Boquique Cave should be dated to the Middle-Late Neolithic (4400-3300 BC), and that the same technique was also widely used in the Late Bronze Age (Fernández-Posse 1982, 147-149). Thus, nowadays it is possible to track this technique in inland Iberia at different moments throughout later prehistory (Alday and Moral 2011, 67). The earliest stab-and-drag motifs (Figure 2.2, 1) are, in fact, older than was initially thought (Fernández-Posse 1982); they actually date to the Early Neolithic (5500-4400 BC), contemporary to the Mediterranean Cardial impressed wares (Alday 2009, 135-137). There are also a few sporadic examples of stab-and-drag motifs among Bell-Beaker pottery (2600-2000 BC), such as the Ciempozuelos-style bowl from Las Carolinas (Madrid) (Figure 2.2, 2a) featuring so-called ‘symbolic’ schematic stags drawn by using this technique (Blasco and Baena 1996, 431, Lám. II; Garrido Pena 2000, 108). It is also possible to recognize this technique in a large Beaker from Molino Sanchón II (Zamora) (Abarquero et al. 2012, 206, fig. 190; Guerra-Doce et al. 2011, 812) (Figure 2.2, 2b) and there are other possible cases (e.g. Montero and Rodríguez 2008, 166, Lám. IX). Finally, the widespread use of this technique occurred in the Late Bronze Age (Figure 2.2, 3a & 3b) from c.1450 BC (e.g. Rodríguez Marcos 2007, 362-364; Abarquero 2005).

Analogies between Bell-Beaker and Bronze Age wares

Several Bell-Beaker styles can be discerned in the Iberian Meseta (e.g. Harrison 1977, 55-67; Garrido Pena 2000; 2014). In this subsection attention will be drawn primarily to the most frequent of these variants, the Ciempozuelos style, although more localised similarities can be recognised between the Beaker impressed-comb style and some early Cogotas I pottery. The Ciempozuelos ware (Delibes 1977; Harrison 1977, 19-20; Blasco 1994; Garrido Pena 2000, 116-126; Rodríguez Marcos 2007, 252-256) was widespread throughout the Meseta between 2600-2000 BC, in the same region subsequently occupied by Cogotas I communities (1800-1150 BC) (Fernández-Posse 1998; Abarquero 2005) (Figure 2.1). There is a wide array of resemblances between both pottery assemblages, a point that has been highlighted since the 1920s (e.g. Almagro Basch 1939, 143-144; Maluquer de Motes 1956, 196; Harrison 1977, 20; Jimeno 1984, 117-118).

iberian-peninsula-cogotas-i-culture
The Iberian Peninsula and the area of the Cogotas I culture (1800-1150 cal BC). Sites mentioned in the text: 1. Molino Sanchón II (Villafáfila, Zamora); 2. La Horra (El Cerro, Burgos); 3. El Mirador cave (Atapuerca, Burgos); 4. Cueva Maja (Cabrejas del Pinar, Soria); 5. Cueva del Asno (Los Rábanos, Soria); 6. Castilviejo de Yuba (Medinaceli, Soria); 7. Majaladares (Borja, Zaragoza); 8. Cova dels Encantats (Serinyá, Girona); 9. Boquique cave (Plasencia, Cáceres); 10. Cerro de la Cabeza (Ávila); 11. Las Cogotas (Cardeñosa, Ávila); 12. Madrid; 13. Las Carolinas (Madrid); 14. La Indiana (Pinto, Madrid); 15. Llanete de los Moros (Montoro, Córdoba); 16. Peñalosa (Baños de la Encina, Jaén): 17. Cuesta del Negro (Purullena, Granada); 18. Gatas (Turre, Almería); 19. Cabezo Redondo (Villena, Alicante)

The key ornamental traits that define the Ciempozuelos style are also reproduced among Cogotas I ware and are the following:

a) Widespread deployment among the early Cogotas I pottery of the more ubiquitous incised motifs in the Ciempozuelos style: herringbones, spikes and reticulates (Garrido Pena 2000, 119-120, fig. 48, themes 6 and 9; Rodríguez Marcos 2012, 155). During the Middle Bronze Age other less frequent themes are also similar to Bell-Beaker decorations, such as incised triangles filled with lines. Late Bronze Age wares feature the so-called ‘pseudo-Kerbschnitt’ (Rodríguez Marcos 2007, 369) which has striking precedents among Ciempozuelos ware (Harrison 1977, 20; Garrido Pena 2000, 120, fig. 48, theme 12) (Figure 2.3, 1a & 1b).

b) The extensive use of internal rim decoration, almost always deploying chevron motifs. This is ‘a Ciempozuelos leitmotiv’ (Harrison 1977, 20) in the Northern Meseta, where between 30% – 50% of all rims exhibit such a feature (Delibes 1977; Garrido Pena 2000, 163). The decoration of internal rims is even more widespread among Cogotas I vessels (Jimeno 1984; Rodríguez Marcos 2012, 158) (Figure 2.3, 1a).

c) White paste rubbed into the geometric decorations (Delibes 1977; Harrison 1977, 20; Jimeno 1984). Maluquer de Motes (1956, 186) in fact regarded excised and stab-and-drag techniques not as decorations per se, but as a way of anchoring encrusted inlays. He also reported that the bulk of rims in Cogotas I vessels exhibit white accretions (Maluquer de Motes 1956, 192) (Figure 2.3).

In addition, several authors agree on the likeness between the Bell-Beaker impressed-comb style and certain Cogotas I local pottery variants corresponding to its earliest phase (1800-1450 BC) (Garrido Pena 2000, 113-116). This is particularly striking for one micro-style from the western Meseta region, whose ceramics feature numerous impressed-comb motives (e.g. Fabián 2012; Rodríguez Marcos 2012, 158).

bell-beaker-cienpozuelos-cogotas-i
1a) Encrusted Beaker carinated bowls with pseudo-excised motifs from La Salmedina (Madrid) (photo: Museo Arqueológico Regional de Madrid) and 1b) from Cuesta de la Reina (Ciempozuelos, Madrid) (photo: Real Academia de la Historia); 2) Late Bronze Age jar featuring checkerboard excised motives with white paste from Pórragos (Bolaños, Valladolid) (photo: Museo de Valladolid).

The relevance of emulated pottery decorations

[1] (…) there are grounds for proffering the view that the key creative mechanism responsible for the resemblances between apparently unrelated pottery assemblages was the emulation of standalone and very apparent decorative traits. It may constitute a good case for horizontal cultural transmission predicated upon iconic resemblances between easily imitated formal traits (Knappett 2010). Instead of spontaneous and autonomous innovations, it is far more compelling to regard these decorative features as interlinked and punctuated ‘way stations along the trails of living beings, moving through a world’ (Ingold and Hallam 2007, 8). No creative act can be regarded as really isolated. Instead it ought to be understood as focusing on the nodes in particular fields of associations (Lohnmann 2010, 216).

[2] Pottery ornamentation in the Cogotas I tradition combined and reinterpreted both local atavistic (e.g. Abarquero 2005, 24-26; Rodríguez Marcos 2007, 357-367) and widespread pan-European ornaments (e.g. Blasco 2001, 225, 2003, 67-68; Abarquero 2012, 98-101). From a semiotic perspective such things transcended large spatio-temporal distances; they were closely associated by iconical shared links in a relational or cognitive space, whereby these entities were co-presented and indirectly recalled and perceived despite being distant (Knappett 2010, 85-86). The locally-rooted biases of these creative quotations can be glimpsed from rare sequences of ceramic productions spanning several generations of potters. For instance, at Majaladares (Borja, Zaragoza) strong analogies arise between Ciempozuelos wares featuring unique decorations in this site and Cogotas I wares from the superimposed layers, exhibiting remarkably similar themes (Harrison 2007, 65-82). Likewise, it is noteworthy that the earliest triangular excisions in Cogotas I wares occurred in the eastern Meseta, where imported Duffaits vessels featuring comparable motifs were circulating from several centuries before.(…)

[3] There is scope for advocating that these pottery decorations cannot be envisaged as a form of irrelevant or mundane aesthetic garnish for the sake of art. Bronze Age potters drew upon a highly meaningful array of esoteric sources and, in so doing, the vessels might have echoed designs betokening genealogical, mythical or parallel worlds, in a kind of dialectical negotiation between self and other (Taussig 1993). The very involvement of ancestors and spiritual forces in making and embellishing a pot is supported by ethnographic evidence (e.g. Crown 2007, 679; Lohnmann 2010, 222) and this also seems plausible in the case of Cogotas I ceramics. These real or imagined beings might be regarded as inspiring sources of creations, whose role is often to legitimize and guarantee the accuracy of the involved knowledge (Lohnmann 2010, 222). In the same vein, the smearing of colored inlays on certain pots ought to be properly understood beyond an aesthetic action of embellishment, as our own rationale prompts us to assume. (…)

[4] Furthermore, this pottery tradition needs to be understood as an effective means of socialization and a key resource in the forging of identities. Decorating certain intricate Cogotas I vessels (Figure 2.2, 3b; Figure 2.4, 3) very likely involved an ostentatious difficulty (Robb and Michelaki 2012, 168; Abarquero 2005, 438) and the proficiency displayed in such tasks may have accrued even moral connotations (Hendon 2010, 146-147). Learning to perform some of the pottery decoration discussed here certainly required complex training processes involving both expert potters and mentored apprentices (Crown 2007; Hosfield 2009, 46). Thus, the stab-and-drag technique demanded time-consuming learning as well as careful and thorough execution (Alday 2009, 11-19). Likewise the selection and processing of particular raw materials – mainly bones – to attain the white inlays involved direct observation and hands-on training (Odriozola et al. 2012, 150). (…)

[5] Finally, the role of the Cogotas I pottery decoration was also deeply rooted in the sphere of social interactions through particular communal practices of exhibition and consumption. The celebration of commensality rituals is very often predicated as a key social practice among these communities (e.g. Harrison 1995, 74; Abarquero 2005, 56; Blanco-González 2014, 453). Potters embodied and replicated non-discursive shared tenets on a routine basis, but by means of these social gatherings and the deployment of such festive services ‘their visual materialisation made them part of the habitus of everybody’ (Chapman and Gaydarska 2007, 182). Bronze Age groups in the Meseta have recently been characterized as scarcely integrated, short-lasting and unstable social units, lacking long-term cultural rules and institutions, restricted to one generation lifespan at the most (Blanco-González 2015). (…)

Intruding East Bell Beakers

As we know from Olalde et al. (2018) and Mathieson et al. (2018), East Bell Beakers of R1b-L23 subclades and steppe ancestry brought North-West Indo-European languages to Europe, marked in Iberia by the first intrusive Y-DNA R1b-P312 subclades, as supported also by Martiniano et al. (2017) and Valdiosera et al. (2018). In fact, the Bronze Age Cogotas I culture shows the first R1b-DF27 subclade found to date (R1b-DF27 is prevalent among modern Iberians).

If we take into account that the earliest Iberian Bell Beakers were I2a, R1b-V88, and G2a, just like previous Chalcolithic and Neolithic Iberians, it cannot get clearer how and when the first Indo-European waves reached Iberia, and thus that the Harrison and Heyd (2007) model of East Bell Beaker expansion was right. Not a single reputable geneticist contests the origin of R1b-L23 subclades in Iberia anymore (see e.g. Heyd, or Lazaridis).

While the Spanish archaeological school will be slow to adapt to genetic finds – since there are many scholars who have supported for years other ways of expansion of the different Bell Beaker motifs, and follow mostly the “pots not people” descriptive Archaeology – , many works like these can be just as well reinterpreted in light of what we already know happened in terms of population movements during this period, and this alone gives a whole new interesting perspective to archaeological finds.


On the previous, non-Indo-European stage of the Iberian Paeninsula, there is also a new paper (behind paywall), showing reasons for inter-regional differences, and thus supporting homogeneity before the arrival of Bell Beakers:

Stable isotope ratio analysis of bone collagen as indicator of different dietary habits and environmental conditions in northeastern Iberia during the 4th and 3rd millennium cal B.C., by Villalba-Mouco et al. Archaeol Anthropol Sci (2018).

isotope-collagen-iberia
Scatter plot of human and fauna bone collagen δ13C and δ15N values from Cova de la Guineu and Cueva de Abauntz according to their location inside Iberia

Interesting excerpts:

The Chalcolithic period is traditionally defined by the emergence of copper elements and associated to the beginning of defensive-style architecture (Esquivel and Navas 2007). This last characteristic only seems to appear clearly in the southeast of the Iberian Peninsula, with the denominated Millares Culture (e.g. García Sanjuán 2013; Valera et al. 2014). In the rest of the Iberian Peninsula, the Neolithic-Chalcolithic transition is scarcely defined. In fact, it is possible that this transition does not even strictly exist and rather results from the evolution of villages present in the most advanced phases of the Neolithic (e.g. Blasco et al. 2007). This continuity is also perceptible in most of the sepulchral caves over time, where radiocarbon dates show a continued use from the 4th to the 3rd millennium cal B.C. (Fernández-Crespo 2016; Utrilla et al. 2015; Villalba-Mouco et al. 2017). Moreover, it is possible to find some copper materials normally associated with burial contexts as prestigious grave goods (Blasco and Ríos 2010), but not as evidence of a massive replacement of commonly used tools such as flint blades, bone industry, polished stones or pottery without singular characteristics from a unique period (Pérez-Romero et al. 2017). (…)

cova-guineu-cueva-abauntz
Scatter plot of human and fauna bone collagen δ13C and δ15N values from Cueva de Abauntz (above) and Cova de la Guineu (below).

The human isotope values from both sites portray a quite homogeneous overall diet among humans. This homogeneous pattern of diet based on C3 terrestrial resources seems to be general along the entire Iberian Peninsula during the Late Neolithic and Chalcolithic (e.g. Alt et al. 2016; Díaz-Zorita 2014; Fernández-Crespo et al. 2016; Fontanals-Coll et al. 2015; García-Borja et al. 2013; López-Costas et al. 2015; McClure et al. 2011; Sarasketa-Gartzia et al. 2017; Villalba- Mouco et al. 2017; Salazar-García 2011; Salazar-García et al. 2013b; Salazar-García 2014; Waterman et al. 2016). The reason of this homogeneity could be the consolidated economy based on agriculture and livestock, together with a higher mobility among the different communities and the increase of trade networks, not only in prestigious objects (Schuhmacher and Banerjee 2012) but also in food products. Isotopic analyses in fauna remains could give us more clues about animal trade, as happens in other chronologies (Salazar- García et al. 2017).

In any case, and even if the dietary interpretation does not vary, it is noteworthy to mention that there are significant differences between δ13C human values from Cova de la Guineu and δ13C human values from Cueva de Abauntz (Mann-Whitney test, p = 1.05× 10−12) (Fig. 6). This observed δ13C differences among humans is also present among herbivores (Mann-Whitney test, p = 0.0004), which define the baseline of each ecosystem. This suggests that the observed human difference between sites should not be attributed to diet, but most possibly to the existence of enough environmental differences to be recorded in the collagen δ13C values along the food web. Plants are very sensitive to different environmental factors (altitude, temperature, luminosity or water availability) and their physiological adaptation to its factors can generate a variation in their isotopic values as happens with C3 and C4 adaptations (O’Leary 1981; Ambrose 1991). This spectrum of values has been used to assess several aspects about past environmental conditions when studying the δ13C and δ15N isotopic values of a species with a fixed diet over time (e.g. Stevens et al. 2008; González-Guarda et al. 2017). Moreover, this gradual δ13C and δ15N variation among different environments is very helpful to discriminate altitudinal movements in herbivores with a high precision method based on serial dentine analysis (Tornero et al. 2016b). In our case, results reflect the influence of environment from at least two areas in Iberia (the Western Prepyrenees and the Northeastern coast of Iberia). These differences demand caution when interpreting human diets from different sites that are not contemporary and/or not in a same area, as it is possible that the environmental influence is responsible for changes otherwise attributed to different subsistence patterns and social structures (Fernández-Crespo and Schulting 2017), as has been demonstrated in neighbouring territories (Herrscher and Bras-Goude 2010; Goude and Fontugne 2016).

Related: