R1a-Z280 lineages in Srubna; and first Palaeo-Balkan R1b-Z2103?

herodotus-world-map

Scythian samples from the North Pontic area are far more complex than what could be seen at first glance. From the new Y-SNP calls we have now thanks to the publications at Molgen (see the spreadsheet) and in Anthrogenica threads, I think this is the basis to work with:

NOTE. I understand that writing a paper requires a lot of work, and probably statistical methods are the main interest of authors, editors, and reviewers. But it is difficult to comprehend how any user of open source tools can instantly offer a more complex assessment of the samples’ Y-SNP calls than professionals working on these samples for months. I think that, by now, it should be clear to everyone that Y-DNA is often as important (sometimes even more) than statistical tools to infer certain population movements, since admixture can change within few generations of male-biased migrations, whereas haplogroups can’t…

Srubna

Srubna-Andronovo samples are as homogeneous as they always were, dominated by R1a-Z645 subclades and CWC-related (steppe_MLBA) ancestry.

The appearance of one (possibly two) R-Z280 lineages in this mixed Srubna-Alakul region of the southern Urals and this early (1880-1690 BC, hence rather Pokrovka-Alakul) points to the admixture of R1a-Z93 and R1a-Z280 already in Abashevo, which also explains the wide distribution of both subclades in the forest zones of Central Asia.

If Abashevo is the cornerstone of the Indo-Iranian / Uralic community, as it seems, the genetic admixture would initially be quite similar, undergoing in the steppes a reduction to haplogroup R1a-Z93 (obviously not complete), at the same time as it expanded to the west with Pokrovka and Srubna, and to the east with Petrovka and Andronovo. To the north, similar reductions will probably be seen following the Seima-Turbino phenomenon.

NOTE. Another R1a-Z280 has been found in the recent sample from Bronze Age Poland (see spreadsheet). As it appears right now in ancient and modern DNA, there seems to be a different distribution between subclades:

  • R1a-Z280 (formed ca. 2900 BC, TMRCA ca. 2600 BC) appears mainly distributed today to the east, in the forest and steppe regions, with the most ‘successful’ expansions possibly related to the spread of Abashevo- and Battle Axe-related cultures (Indo-Iranian and Uralic alike).
  • R1a-M458 (formed ca. 2700, TMRCA ca. 2700 BC) appears mainly distributed to the north, from central Europe to the east – but not in the steppe in aDNA, with the most ‘successful’ expansions to the west.

M458 lineages seem thus to have expanded in the steppe in sizeable numbers only after the Iranian expansions (see a map of modern R1a distributions) i.e. possibly with the expansion of Slavs, which supports the model whereby cultures from central-east Europe (like Trzciniec and Lusatian), accompanied mainly by M458 lineages, were responsible for the expansion of Proto-Balto-Slavic (and later Proto-Slavic).

The finding of haplogroup R1a-Z93, among them one Z2123, is no surprise at this point after other similar Srubna samples. As I said, the early Srubna expansion is most likely responsible for the Szólád Bronze Age sample (ca. 2100-1700 BC), and for the Balkans BA sample (ca. 1750-1625 BC) from Merichleri, due to incursions along the central-east European steppe.

cheek-pieces
Map of decorated bone/antler bridle cheek-pieces and whip handle equivalents. They are often local translations that remained faithful to the originals (from data in Piggott, 1965; Kristiansen & Larsson, 2005; David, 2007). Image from Vandkilde (2014).

Cimmerians

Cimmerian samples from the west show signs of continuity with R1a-Z93 lineages. Nevertheless, the sample of haplogroup Q1a-Y558, together with the ‘Pre-Scythian’ sample of haplogroup N (of the Mezőcsát Culture) in Hungary ca. 980-830 BC, as well as their PCA, seem to depict an origin of these Pre-Scythian peoples in populations related to the eastern Central Asian steppes, too.

NOTE. I will write more on different movements (unrelated to Uralic expansions) from Central and East Asia to the west accompanied by Siberian ancestry and haplogroup N with the post of Ugric-Samoyedic expansions.

Scythians

The Scythian of Z2123 lineage ca. 375-203 BC from the Volga (in Mathieson et al. 2015), together with the sample scy193 from Glinoe (probably also R1a-Z2123), without a date, as well as their common Steppe_MLBA cluster, suggest that Scythians, too, were at first probably quite homogeneous as is common among pastoralist nomads, and came thus from the Central Asian steppes.

The reduction in haplogroup variability among East Iranian peoples seems supported by the three new Late Sarmatian samples of haplogroup R1a-Z2124.

Approximate location of Glinoe and Glinoe Sad (with Starosilya to the south, in Ukrainian territory):

This initial expansion of Scythians does not mean that one can dismiss the western samples as non-Scythians, though, because ‘Scythian’ is a cultural attribution, based on materials. Confirming the diversity among western Scythians, a session at the recent ISBA 8:

Genetic continuity in the western Eurasian Steppe broken not due to Scythian dominance, but rather at the transition to the Chernyakhov culture (Ostrogoths), by Järve et al.

The long-held archaeological view sees the Early Iron Age nomadic Scythians expanding west from their Altai region homeland across the Eurasian Steppe until they reached the Ponto-Caspian region north of the Black and Caspian Seas by around 2,900 BP. However, the migration theory has not found support from ancient DNA evidence, and it is still unclear how much of the Scythian dominance in the Eurasian Steppe was due to movements of people and how much reflected cultural diffusion and elite dominance. We present new whole-genome results of 31 ancient Western and Eastern Scythians as well as samples pre- and postdating them that allow us to set the Scythians in a temporal context by comparing the Western Scythians to samples before and after within the Ponto-Caspian region. We detect no significant contribution of the Scythians to the Early Iron Age Ponto-Caspian gene pool, inferring instead a genetic continuity in the western Eurasian Steppe that persisted from at least 4,800–4,400 cal BP to 2,700–2,100 cal BP (based on our radiocarbon dated samples), i.e. from the Yamnaya through the Scythian period.

(…) Our results (…) support the hypothesis that the Scythian dominance was cultural rather than achieved through population replacement.

Detail of the slide with admixture of Scythian groups in Ukraine:

scythians-admixture

The findings of those 31 samples seem to support what Krzewińska et al. (2018) found in a tiny region of Moldavia-south-western Ukraine (Glinoi, Glinoi Sad, and Starosilya).

The question, then, is as follows: if Scythian dominance was “cultural rather than achieved through population replacement”…Where are the R1b-Z2103 from? One possibility, as I said in the previous post, is that they represent pockets of Iranian R1b lineages in the steppes descended from eastern Yamna, given that this haplogroup appears in modern populations from a wide region surrounding the steppes.

The other possibility, which is what some have proposed since the publication of the paper, is that they are related to Thracians, and thus to Palaeo-Balkan populations. About the previously published Thracian individuals in Sikora et al. (2014):

thracian-samples
Geographic origin of ancient samples and ADMIXTURE results. (A) Map of Europe indicating the discovery sites for each of the ancient samples used in this study. (B) Ancestral population clusters inferred using ADMIXTURE on the HGDP dataset, for k = 6 ancestral clusters. The width of the bars of the ancient samples was increased to aid visualization. https://doi.org/10.1371/journal.pgen.1004353.g001

For the Thracian individuals from Bulgaria, no clear pattern emerges. While P192-1 still shows the highest proportion of Sardinian ancestry, K8 more resembles the HG individuals, with a high fraction of Russian ancestry.

Despite their different geographic origins, both the Swedish farmer gok4 and the Thracian P192-1 closely resemble the Iceman in their relationship with Sardinians, making it unlikely that all three individuals were recent migrants from Sardinia. Furthermore, P192-1 is an Iron Age individual from well after the arrival of the first farmers in Southeastern Europe (more than 2,000 years after the Iceman and gok4), perhaps indicating genetic continuity with the early farmers in this region. The only non-HG individual not following this pattern is K8 from Bulgaria. Interestingly, this individual was excavated from an aristocratic inhumation burial containing rich grave goods, indicating a high social standing, as opposed to the other individual, who was found in a pit.

pca-thracians

The following are excerpts from A Companion to Ancient Thrace (2015), by Valeva, Nankov, and Graninger (emphasis mine):

Thracian settlements from the 6th c. BC on:

(…) urban centers were established in northeastern Thrace, whose development was linked to the growth of road and communication networks along with related economic and distributive functions. The early establishment of markets/emporia along the Danube took place toward the middle of the first millennium BCE (Irimia 2006, 250–253; Stoyanov in press). The abundant data for intensive trade discovered at the Getic village in Satu Nou on the right bank of the Danube provides another example of an emporion that developed along the main artery of communication toward the interior of Thrace (Conovici 2000, 75–76).

Undoubtedly the most prominent manifestation of centralization processes and stratification in the settlement system of Thrace arrives with the emergence of political capitals – the leading urban centers of various Thracian political formations.

getic-thracian
Image from Volf at Vol_Vlad LiveJournal.

Their relationships with Scythians and Greeks

The Scythian presence south of the Danube must be balanced with a Thracian presence north of the river. We have observed Getae there in Alexander’s day, settled and raising grain. For Strabo the coastlands from the Danube delta north as far as the river and Greek city of Tyras were the Desert of the Getae (7.3.14), notable for its poverty and tracklessness beyond the great river. He seems to suggest also that it was here that Lysimachus was taken alive by Dromichaetes, king of the Getae, whose famous homily on poverty and imperialism only makes sense on the steppe beyond the river (7.3.8; cf. Diod. 21.12; further on Getic possessions above the Danube, Paus. 1.9 with Delev 2000, 393, who seems rather too skeptical; on poverty, cf. Ballesteros Pastor 2003). This was the kind of discourse more familiarly found among Scythians, proud and blunt in the strength of their poverty. However, as Herodotus makes clear, simple pastoralism was not the whole story as one advanced round into Scythia. For he observes the agriculture practiced north and west of Olbia. These were the lands of the Alizones and the people he calls the Scythian Ploughmen, not least to distinguish them from the Royal Scythians east of Olbia, in whose outlook, he says, these agriculturalist Scythians were their inferiors, their slaves (Hdt. 4.20). The key point here is that, as we began to see with the Getan grain-fields of Alexander’s day, there was scope for Thracian agriculturalists to maintain their lifestyles if they moved north of the Danube, the steppe notwithstanding. It is true that it is movement in the other direction that tends to catch the eye, but there are indications in the literary tradition and, especially, in the archaeological record that there was also significant movement northward from Thrace across the Danube and the Desert of the Getae beyond it.

Greek literary sources were not much concerned with Thracian migration into Scythia, but we should observe the occasional indications of that process in very different texts and contexts. At the level of myth, it is to be remembered that Amazons were regularly considered to be of Thracian ethnicity from Archaic times onward and so are often depicted in Thracian dress in Greek art (Bothmer 1957; cf. Sparkes 1997): while they are most familiar on the south coast of the Black Sea, east of Sinope, they were also located on the north coast, especially east of the Don (the ancient Tanais). Herodotus reports an origin-story of the Sauromatians there, according to which this people had been created by the union of some Scythian warriors with Amazons captured on the south coast and then washed up on the coast of Scythia (4.110). While the story is unhistorical, it is not without importance. First, it reminds us that passage north from the Danube was not the only way that Thracians, Thracian influence, and Thracian culture might find their way into Scythia. There were many more and less circuitous routes, especially by sea, that could bring Thrace into Scythia. Secondly, the myth offered some ideological basis for the Sauromatian settlement in Thrace that Strabo records, for Sauromatians might claim a Thracian origin through their Amazon forebears. Finally, rather as we saw that Heracles could bring together some of the peoples of the region, we should also observe that Ares, whose earthly home was located in Thrace by a strong Greek and Roman tradition, seems also to have been a deity of special significance and special cult among the Scythians. So much was appropriate, especially from a Classical perspective, in associations between these two peoples, whose fame resided especially in their capacity for war.

skythen
Scythians: cultures and findings (ca. 7th-4th/3rd c. BC). Greek colonies marked with concentric circles.

This broad picture of cultural contact, interaction, and osmosis, beyond simple conflict, provides the context for a range of archaeological discoveries, which – if examined separately – may seem to offer no more than a scatter of peculiarities. Here we must acknowledge especially the pioneering work of Melyukova, who has done most to develop thinking on Thracian–Scythian interaction. As she pointed out, we have a good example of Thracian–Scythian osmosis as early as the mid-seventh century bce at Tsarev Brod in northeastern Bulgaria, where a warrior’s burial combines elements of Scythian and Thracian culture (Melyukova 1965). For, while the manner of his burial and many of the grave goods find parallels in Scythia and not Thrace, there are also goods which would be odd in a Scythian burial and more at home in a Thracian one of this period (notably a Hallstatt vessel, an iron knife, and a gold diadem). Also interesting in this regard are several stone figures found in the Dobrudja which resemble very closely figures of this kind (baby) known from Scythia (Melyukova 1965, 37–38). They range in date from perhaps the sixth to the third centuries bce, and presumably were used there – as in Scythia – to mark the burials of leading Scythians deposited in the area. Is this cultural osmosis? We should probably expect osmosis to occur in tandem with the movement of artefacts, so that only good contexts can really answer such questions from case to case. However, the broad pattern is indicated by a range of factors. Particularly notable in this regard is the observable development of a Thraco-Scythian form of what is more familiar as “Scythian animal style,” a term which – it must be understood – already embraces a range of types as we examine the different examples of the style across the great expanse from Siberia to the western Ukraine. As Melyukova observes, Thrace shows both items made in this style among Scythians and, more numerous and more interesting, a Thracian tendency to adapt that style to local tastes, with observable regional distinctions within Thrace itself. Among the Getae and Odrysians the adaptation seems to have been at its height from the later fifth century to the mid-third century (Melyukova 1965, 38; 1979).

The absence of local animal style in Bulgaria before the fifth century bce confirms that we have cultural influences and osmosis at work here, though that is not to say that Scythian tradition somehow dominated its Thracian counterpart, as has been claimed (pace Melyukova 1965, 39; contrast Kitov 1980 and 1984). Of particular interest here is the horse-gear (forehead-covers, cheek-pieces, bridle fittings, and so on) which is found extensively in Romania and Bulgaria as well as in Scythia, both in hoarded deposits and in burials. This exemplifies the development of a regional animal style, not least in silver and bronze, which problematizes the whole issue of the place(s) of its production. Accordingly, the regular designation as “Thracian” of horse-gear from the rich fourth century Scythian burial of Oguz in the Ukraine becomes at least awkward and questionable (further, Fialko 1995). And let us be clear that this is no minor matter, nor even part of a broader debate about the shared development of toreutics among Thracians and Scythians (e.g., Kitov 1980 and 1984). A finely equipped horse of fine quality was a strong statement and striking display of wealth and the power it implied

(…) while Thracian pottery appears at Olbia, Scythian pottery among Thracians is largely confined to the eastern limits of what should probably be regarded as Getic territory, namely the area close to the west of the Dniester, from the sixth century bce. Rather exceptional then is the Scythian pottery noted at Istros, which has been explained as a consequence of the Scythian pursuit of the withdrawing army of Darius and, possibly, a continued Scythian grip on the southern Danube in its aftermath (Melyukova 1965, 34). The archaeology seems to show us, therefore, that the elite Thracians and Scythians were more open to adaptation and acculturation than were their lesser brethren.

palaeo-balkan-languages
Paleo-Balkan languages in Eastern Europe between 5th and 1st century BC. From Wikipedia.

Conclusion

(…) we see distinct peoples and organizations, for example as Sitalces’ forces line up against the Scythians. Much more striking, however, against that general background, are the various ways in which the two peoples and their elites are seen to interact, connect, and share a cultural interface. We see also in Scyles’ story how the Greek cities on the coast of Thrace and Scythia played a significant role in the workings of relationships between the two peoples. It is not simply that these cities straddled the Danube, but also that they could collaborate – witness the honors for Autocles, ca. 300 bce (SEG 49.1051; Ochotnikov 2006) – and were implicated with the interactions of the much greater non-Greek powers around them. At the same time, we have seen the limited reality of familiar distinctions between settled Thracians and nomadic Scythians and the limited role of the Danube too in dividing Thrace and Scythia. The interactions of the two were not simply matters of dynastic politics and the occasional shared taste for artefacts like horse-gear, but were more profoundly rooted in the economic matrix across the region, so that “Scythian” nomadism might flourish in the Dobrudja and “Thracian-style” agriculture and settlement can be traced from Thrace across the Danube as far as Olbia. All of that offers scant justification for the Greek tendency to run together Thracians and Scythians as much the same phenomenon, not least as irrational, ferocious, and rather vulgar barbarians (e.g., Plato, Rep. 435b), because such notions were the result of ignorance and chauvinism. However, Herodotus did not share those faults to any degree, so that we may take his ready movement from Scythians to Thracians to be an indication of the importance of interaction between the two peoples whom he had encountered not only as slaves in the Aegean world, but as powerful forces in their own lands (e.g., Hdt. 4.74, where Thracian usage is suddenly brought into his account of Scythian hemp). Similarly, Thucydides, who quite without need breaks off his disquisition on the Odrysians to remark upon political disunity among the Scythians (Thuc. 2.97, a favorite theme: cf. Hdt. 4.81; Xen., Cyr. 1.1.4). As we have seen throughout this discussion, there were many reasons why Thracians might turn the thoughts of serious writers to Scythians and vice versa.

It seems, following Sikora et al. (2014), that Thracian ‘common’ populations would have more Anatolian Neolithic ancestry compared to more ‘steppe-like’ samples. But there were important differences even between the two nearby samples published from Bulgaria, which may account for the close interaction between Scythians and Thracians we see in Krzewińska et al. (2018), potentially reflected in the differences between the Central, Southern and the South-Central clusters (possibly related to different periods rather than peoples??).

If these R1b-Z2103 were descended from Thracian elites, this would be the first proof of Palaeo-Balkan populations showing mainly R1b-Z2103, as I expect. Their appearance together with haplogroup I2a2a1b1 (also found in Ukraine Neolithic and in the Yamna outlier from Bulgaria) seem to support this regional continuity, and thus a long-lasting cultural and ethnic border roughly around the Danube, similar to the one found in the northern Caucasus.

However, since these samples are some 2,500 years younger than the Yamna expansion to the south, and they are archaeologically Scythians, it is impossible to say. In any case, it would seem that the main expansion of R1a-Z645 lineages to the south of the Danube – and therefore those found among modern Greeks – was mediated by the Slavic expansions centuries later.

krzewinska-scythians-pca
Modified image from Krzewińska et al. (2018), with added Y-DNA haplogroups to each defined Scythian cluster and Sarmatians. Principal component analysis (PCA) plot visualizing 35 Bronze Age and Iron Age individuals presented in this study and in published ancient individuals in relation to modern reference panel from the Human Origins data set. See image with population references.

On the Northern cluster there is a sample of haplogroup R1b-P312 which, given its position on the PCA (apparently even more ‘modern Celtic’-like than the Hallstatt_Bylany sample from Damgaard et al. 2018), it seems that it could be the product of the previous eastward Hallstatt expansion…although potentially also from a recent one?:

Especially important in the archaeology of this interior is the large settlement at Nemirov in the wooded steppe of the western Ukraine, where there has been considerable excavation. This settlement’s origins evidently owe nothing significant to Greek influence, though the early east Greek pottery there (from ca. 650 bce onward: Vakhtina 2007) and what seems to be a Greek graffito hint at its connections with the Greeks of the coast, especially at Olbia, which lay at the estuary of the River Bug on whose middle course the site was located (Braund 2008). The main interest of the site for the present discussion, however, is its demonstrable participation in the broader Hallstatt culture to its west and south (especially Smirnova 2001). Once we consider Nemirov and the forest steppe in connection with Olbia and the other locations across the forest steppe and coastal zone, together with the less obvious movements across the steppe itself, we have a large picture of multiple connectivities in which Thrace bulks large.

scythian-peoples-balkans
Early Iron Age cultures of the Carpathian basin ca. 7-6th century BC, including steppe-related groups. Ďurkovič et al. (2018).

While the above description of clear-cut R1a-Steppe and R1b-Balkans is attractive (and probably more reliable than admixture found in scattered samples of unclear dates), the true ancient genetic picture is more complicated than that:

  • There is nothing in the material culture of the published western Scythians to distinguish the supposed Thracian elites.
  • We have the sample I0575, an Early Sarmatian from the southern Urals (one of the few available) of haplogroup R1b-Z2106, which supports the presence of R1b-Z2103 lineages among Eastern Iranian-speaking peoples.
  • We also have DA30, a Sarmatian of I2b lineage from the central steppes in Kazakhstan (ca. 47 BC – 24 AD).
  • Other Sarmatian samples of haplogroup R remain undefined.
  • There is R1a-Z93 in a late Sarmatian-Hun sample, which complicates the picture of late pastoralist nomads further.

Therefore, the possibility of hidden pockets of Iranian peoples of R1b-Z2103 (maybe also R1b-P312) lineages remains the best explanation, and should not be discarded simply because of the prevalent haplogroups among modern populations, or because of the different clusters found, or else we risk an obvious circular reasoning: “this sample is not (autosomically or in prevalent haplogroups) like those we already had from the steppe, ergo it is not from this or that steppe culture.” Hopefully, the upcoming paper by Järve et al. will help develop a clearer genetic transect of Iranian populations from the steppes.

All in all, the diversity among western Scythians represents probably one of the earliest difficult cases of acculturation to be studied with ancient DNA (obviously not the only one), since Scythians combine unclear archaeological data with limited and conflicting proto-historical accounts (also difficult to contrast with the wide confidence intervals of radiocarbon dates) with different evolving clusters and haplogroups – especially in border regions with strong and continued interactions of cultures and peoples.

With emerging complex cases like these during the Iron Age, I am happy to see that at least earlier expansions show clearer Y-DNA bottlenecks, or else genetics would only add more data to argue about potential cultural diffusion events, instead of solving questions about proto-language expansions once and for all…

Related

Early Iranian steppe nomadic pastoralists also show Y-DNA bottlenecks and R1b-L23

New paper (behind paywall) Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads, by Krzewińska et al. Science (2018) 4(10):eaat4457.

Interesting excerpts (emphasis mine, some links to images and tables deleted for clarity):

Late Bronze Age (LBA) Srubnaya-Alakulskaya individuals carried mtDNA haplogroups associated with Europeans or West Eurasians (17) including H, J1, K1, T2, U2, U4, and U5 (table S3). In contrast, the Iron Age nomads (Cimmerians, Scythians, and Sarmatians) additionally carried mtDNA haplogroups associated with Central Asia and the Far East (A, C, D, and M). The absence of East Asian mitochondrial lineages in the more eastern and older Srubnaya-Alakulskaya population suggests that the appearance of East Asian haplogroups in the steppe populations might be associated with the Iron Age nomads, starting with the Cimmerians.

scythian-cimmerian-sarmatian-y-dna-mtdna

#UPDATE (5 OCT 2018): Some Y-SNP calls have been published in a Molgen thread, with:

  • Srubna samples have possibly two R1a-Z280, three R1a-Z93.
  • Cimmerians may not have R1b: cim357 is reported as R1a.
  • Some Scythians have low coverage to the point where it is difficult to assign even a reliable haplogroup (they report hg I2 for scy301, or E for scy197, probably based on some shared SNPs?), but those which can be reliably assigned seem R1b-Z2103 [hence probably the use of question marks and asterisks in the table, and the assumption of the paper that all Scythians are R1b-L23]:
    • The most recent subclade is found in scy305: R1b-Z2103>Z2106 (Z2106+, Y12538/Z8131+)
    • scy304: R1b-Z2103 (M12149/Y4371/Z8128+).
    • scy009: R1b-P312>U152>L2 (P312+, U152?, L2+)?
  • Sarmatians are apparently all R1a-Z93 (including tem002 and tem003);
  • You can read here the Excel file with (some probably as speculative as the paper’s own) results.

    About the PCA

    1. Srubnaya-Alakulskaya individuals exhibited genetic affinity to northern and northeastern present-day Europeans, and these results were also consistent with outgroup f3 statistics.
    2. The Cimmerian individuals, representing the time period of transition from Bronze to Iron Age, were not homogeneous regarding their genetic similarities to present-day populations according to the PCA. F3 statistics confirmed the heterogeneity of these individuals in comparison with present-day populations
    3. The Scythians reported in this study, from the core Scythian territory in the North Pontic steppe, showed high intragroup diversity. In the PCA, they are positioned as four visually distinct groups compared to the gradient of present-day populations:
      1. A group of three individuals (scy009, scy010, and scy303) showed genetic affinity to north European populations (…).
      2. A group of four individuals (scy192, scy197, scy300, and scy305) showed genetic similarities to southern European populations (…).
      3. A group of three individuals (scy006, scy011, and scy193) located between the genetic variation of Mordovians and populations of the North Caucasus (…). In addition, one Srubnaya-Alakulskaya individual (kzb004), the most recent Cimmerian (cim357), and all Sarmatians fell within this cluster. In contrast to the Scythians, and despite being from opposite ends of the Pontic-Caspian steppe, the five Sarmatians grouped close together in this cluster.
      4. A group of three Scythians (scy301, scy304, and scy311) formed a discrete group between the SC and SE and had genetic affinities to present-day Bulgarian, Greek, Croatian, and Turkish populations (…).
      5. Finally, one individual from a Scythian cultural context (scy332) is positioned outside of the modern West Eurasian genetic variation (Fig. 1C) but shared genetic drift with East Asian populations.
    scythian-cimmerian-pca
    Radiocarbon ages and geographical locations of the ancient samples used in this study. Figure panels presented (Left) Bar plot visualizing approximate timeline of presented and previously published individuals. (Right) Principal component analysis (PCA) plot visualizing 35 Bronze Age and Iron Age individuals presented in this study and in published ancient individuals (table S5) in relation to modern reference panel from the Human Origins data set (41).

    Cimmerians

    The presence of an SA component (as well as finding of metals imported from Tien Shan Mountains in Muradym 8) could therefore reflect a connection to the complex networks of the nomadic transmigration patterns characteristic of seasonal steppe population movements. These movements, although dictated by the needs of the nomads and their animals, shaped the economic and social networks linking the outskirts of the steppe and facilitated the flow of goods between settled, semi-nomadic, and nomadic peoples. In contrast, all Cimmerians carried the Siberian genetic component. Both the PCA and f4 statistics supported their closer affinities to the Bronze Age western Siberian populations (including Karasuk) than to Srubnaya. It is noteworthy that the oldest of the Cimmerians studied here (cim357) carried almost equal proportions of Asian and West Eurasian components, resembling the Pazyryks, Aldy-Bel, and Iron Age individuals from Russia and Kazakhstan (12). The second oldest Cimmerian (cim358) was also the only one with both uniparental markers pointing toward East Asia. The Q1* Y chromosome sublineage of Q-M242 is widespread among Asians and Native Americans and is thought to have originated in the Altai Mountains (24)

    Scythians

    In contrast to the eastern steppe Scythians (Pazyryks and Aldy-Bel) that were closely related to Yamnaya, the western North Pontic Scythians were instead more closely related to individuals from Afanasievo and Andronovo groups. Some of the Scythians of the western Pontic-Caspian steppe lacked the SA and the East Eurasian components altogether and instead were more similar to a Montenegro Iron Age individual (3), possibly indicating assimilation of the earlier local groups by the Scythians.

    Toward the end of the Scythian period (fourth century CE), a possible direct influx from the southern Ural steppe zone took place, as indicated by scy332. However, it is possible that this individual might have originated in a different nomadic group despite being found in a Scythian cultural context.

    scythian-alakul-variation
    Genetic diversity and ancestral components of Srubnaya-Alakulskaya population.(here called “Srubnaya”): (Left) Mean f3 statistics for Srubnaya and other Bronze Age populations. Srubnaya group was color-coded the same as with PCA. (Right) Pairwise mismatch estimates for Bronze Age populations.

    Comments

    I am surprised to find this new R1b-L23-based bottleneck in Eastern Iranian expansions so late, but admittedly – based on data from later times in the Pontic-Caspian steppe near the Caucasus – it was always a possibility. The fact that pockets of R1b-L23 lineages remained somehow ‘hidden’ in early Indo-Iranian communities was clear already since Narasimhan et al. (2018), as I predicted could happen, and is compatible with the limited archaeological data on Sintashta-Potapovka populations outside fortified settlements. I already said that Corded Ware was out of Indo-European migrations then, this further supports it.

    Even with all these data coming just from a north-west Pontic steppe region (west of the Dnieper), these ‘Cimmerians’ – or rather the ‘Proto-Scythian’ nomadic cultures appearing before ca. 800 BC in the Pontic-Caspian steppes – are shown to be probably formed by diverse peoples from Central Asia who brought about the first waves of Siberian ancestry (and Asian lineages) seen in the western steppes. You can read about a Cimmerian-related culture, Anonino, key for the evolution of Finno-Permic peoples.

    Also interesting about the Y-DNA bottleneck seen here is the rejection of the supposed continuous western expansions of R1a-Z645 subclades with steppe tribes since the Bronze Age, and thus a clearest link of the Hungarian Árpád dynasty (of R1a-Z2123 lineage) to either the early Srubna-related expansions or – much more likely – to the actual expansions of Hungarian tribes near the Urals in historic times.

    NOTE. I will add the information of this paper to the upcoming post on Ugric and Samoyedic expansions, and the late introduction of Siberian ancestry to these peoples.

    A few interesting lessons to be learned:

    • Remember the fantasy story about that supposed steppe nomadic pastoralist society sharing different Y-DNA lineages? You know, that Yamna culture expanding with R1b from Khvalynsk-Repin into the whole Pontic-Caspian steppes and beyond, developing R1b-dominated Afanasevo, Bell Beaker, and Poltavka, but suddenly appearing (in the middle of those expansions through the steppes) as a different culture, Corded Ware, to the north (in the east-central European forest zone) and dominated by R1a? Well, it hasn’t happened with any other steppe migration, so…maybe Proto-Indo-Europeans were that kind of especially friendly language-teaching neighbours?
    • Remember that ‘pure-R1a’ Indo-Slavonic society emerged from Sintashta ca. 2100 BC? (or even Graeco-Aryan??) Hmmmm… Another good fantasy story that didn’t happen; just like a central-east European Bronze Age Balto-Slavic R1a continuity didn’t happen, either. So, given that cultures from around Estonia are those showing the closest thing to R1a continuity in Europe until the Iron Age, I assume we have to get ready for the Gulf of Finland Balto-Slavic soon.
    • Remember that ‘pure-R1a’ expansion of Indo-Europeans based on the Tarim Basin samples? This paper means ipso facto an end to the Tarim Basin – Tocharian artificial controversy. The Pre-Tocharian expansion is represented by Afanasevo, and whether or not (Andronovo-related) groups of R1a-Z645 lineages replaced part or eventually all of its population before, during, or after the Tocharian expansion into the Tarim Basin, this does not change the origin of the language split and expansion from Yamna to Central Asia; just like this paper does not change the fact that these steppe groups were Proto-Iranian (Srubna) and Eastern Iranian (Scythian) speakers, regardless of their dominant haplogroup.
    • And, best of all, remember the Copenhagen group’s recent R1a-based “Indo-Germanic” dialect revival vs. the R1b-Tocharo-Italo-Celtic? Yep, they made that proposal, in 2018, based on the obvious Yamna—R1b-L23 association, and the desire to support Kristiansen’s model of Corded Ware – Indo-European expansion. Pepperidge Farm remembers. This new data on Early Iranians means another big NO to that imaginary R1a-based PIE society. But good try to go back to Gimbutas’ times, though.
    olander-classificatoin
    Olander’s (2018) tree of Indo-European languages. Presented at Languages and migrations in pre-historic Europe (7-12 Aug 2018)

    Do you smell that fresher air? It’s the Central and East European post-Communist populist and ethnonationalist bullshit (viz. pure blond R1a-based Pan-Nordicism / pro-Russian Pan-Slavism / Pan-Eurasianism, as well as Pan-Turanism and similar crap from the 19th century) going down the toilet with each new paper.

    #EDIT (5 OCT 2018): It seems I was too quick to rant about the consequences of the paper without taking into account the complexity of the data presented. Not the first time this impulsivity happens, I guess it depends on my mood and on the time I have to write a post on the specific work day…

    While the data on Srubna, Cimmerians, and Sarmatians shows clearer Y-DNA bottlenecks (of R1a-Z645 subclades) with the new data, the Scythian samples remain controversial, because of the many doubts about the haplogroups (although the most certain cases are R1b-Z2103), their actual date, and cultural attribution. However, I doubt they belong to other peoples, given the expansionist trends of steppe nomads before, during, and after Scythians (as shown in statistical analyses), so most likely they are Scythian or ‘Para-Scythian’ nomadic groups that probably came from the east, whether or not they incorporated Balkan populations. This is further supported by the remaining R1b-P312 and R1b-Z2103 populations in and around the modern Eurasian steppe region.

    scythian-peoples-balkans
    Early Iron Age cultures of the Carpathian basin ca. 7-6th century BC, including steppe groups Basarabi and Scythians. Ďurkovič et al. (2018).

    You can find an interesting and detailed take on the data published (in Russian) at Vol-Vlad’s LiveJournal (you can read an automatic translation from Google). I think that post is maybe too detailed in debunking all information associated to the supposed Scythians – to the point where just a single sample seems to be an actual Scythian (?!) -, but is nevertheless interesting to read the potential pitfalls of the study.

    Related

    Corded Ware—Uralic (I): Differences and similarities with Yamna

    indo-european-uralic-migrations-corded-ware

    I was reading The Bronze Age Landscape in the Russian Steppes: The Samara Valley Project (2016), and I was really surprised to find the following excerpt by David W. Anthony:

    The Samara Valley links the central steppes with the western steppes and is a north-south ecotone between the pastoral steppes to the south and the forest-steppe zone to the north [see figure below]. The economic contrast between pastoral steppe subsistence, with its associated social organizations, and forest-zone hunting and fishing economies probably explains the shifting but persistent linguistic border between forest-zone Uralic languages to the north (today largely displaced by Russian) and a sequence of steppe languages to the south, recently Turkic, before that Iranian, and before that probably an eastern dialect of Proto-Indo-European (Anthony 2007). The Samara Valley represents several kinds of borders, linguistic, cultural, and ecological, and it is centrally located in the Eurasian steppes, making it a critical place to examine the development of Eurasian steppe pastoralism.

    uralic-languages-forest-zone-volga
    Language map of the middle Volga-Ural region. After “Geographical Distribution of the Uralic Languages” by Finno-Ugrian Society, Helsinki, 1993.

    Khokhlov (translated by Anthony) further insists on the racial and ethnic divide between both populations, Abashevo to the north, and Poltavka to the south, during the formation of the Abashevo – Sintashta-Potapovka community that gave rise to Proto-Indo-Iranians:

    Among all cranial series in the Volga-Ural region, the Potapovka population represents the clearest example of race mixing and probably ethnic mixing as well. The cultural advancements seen in this period might perhaps have been the result of the mixing of heterogeneous groups. Such a craniometric observation is to some extent consistent with the view of some archaeologists that the Sintashta monuments represent a combination of various cultures (principally Abashevo and Poltavka, but with other influences) and therefore do not correspond to the basic concept of an archaeological culture (Kuzmina 2003:76). Under this option, the Potapovka-Sintashta burial rite may be considered, first, a combination of traits to guarantee the afterlife of a selected part of a heterogeneous population. Second, it reflected a kind of social “caste” rather than a single population. In our view, the decisive element in shaping the ethnic structure of the Potapovka-Sintashta monuments was their extensive mobility over a fairly large geographic area. They obtained knowledge of various cultures from the populations with whom they interacted.

    steppe-lmba-sintashta-potapovka-filatovka
    Late Middle Bronze Age cultures with the Proto-Indo-Iranian Sintashta-Potapovka-Filatovka group (shaded). After Anthony (2007 Figure 15.5), from Anthony (2016).

    Interesting is also this excerpt about the predominant population in the Abashevo – Sintashta-Potapovka admixture (which supports what Chetan said recently, although this does not seemed backed by Y-DNA haplogroups found in the richest burials), coupled with the sign of incoming “Uraloid” peoples from the east, found in both Sintashta and eastern Abashevo:

    The socially dominant anthropological component was Europeoid, possibly the descendants of Yamnaya. The association of craniofacial types with archaeological cultures in this period is difficult, primarily because of the small amount of published anthropological material of the cultures of steppe and forest belt (Balanbash, Vol’sko-Lbishche) and the eastern and southern steppes (Botai-Tersek). The crania associated with late MBA western Abashevo groups in the Don-Volga forest zone were different from eastern Abashevo in the Urals, where the expression of the Old Uraloid craniological complex was increased. Old Uraloid is found also on a single skull of Vol’sko-Lbishche culture (Tamar Utkul VII, Kurgan 4). Potentially related variants, including Mongoloid features, could be found among the Seima-Turbino tribes of the forest-steppe zone, who mixed with Sintashta and Abashevo. In the Sintashta Bulanova cemetery from the western Urals, some individuals were buried with implements of Seima-Turbino type (Khalyapin 2001; Khokhlov 2009; Khokhlov and Kitov 2009). Previously, similarities were noted between some individual skulls from Potapovka I and burials of the much older Botai culture in northern Kazakhstan (Khokhlov 2000a). Botai-Tersek is, in fact, a growing contender for the source of some “eastern” cranial features.

    khvalynsk-yamna-srubna-facial-reconstruction
    Facial reconstructions based on skulls from (a) Khvalynsk II Grave 24, a young adult male; (b) Poludin Grave 6, Yamnaya culture, a mature male (both by A. I. Nechvaloda); and (c) Luzanovsky cemetery, Srubnaya culture (by L. T. Yablonsky). In Khokhlov (2016).

    The wave of peoples associated with “eastern” features can be seen in genetics in the Sintashta outliers from Narasimhan et al. (2018), and it probably will be eventually seen in Abashevo, too. These may be related to the Seima-Turbino international network – but most likely it is directly connected to Sintashta through the starting Andronovo and Seima-Turbino horizons, by admixing of prospective groups and small-scale back-migrations.

    Corded Ware – Yamna similarities?

    So, if peoples of north-eastern Europe have been assumed for a long time to be Uralic speakers, what is happening with the Corded Ware = IE obsession? Is it Gimbutas’ ghost possessing old archaeologists? Probably not.

    It is about certain cultural similarities evident at first sight, which have been traditionally interpreted as a sign of cultural diffusion or migration. Not dissimilar to the many Bell Beaker models available, where each archaeologist is pushing certain differences, mixing what seemed reasonable, what still might seem reasonable, and what certainly isn’t anymore after the latest ancient DNA data.

    kurgan-expansion
    “European dialect” expansion of Proto-Indo-European according to Gimbutas (1963)

    The initial models of Gimbutas, Kristiansen, or Anthony – which are known to many today – were enunciated in the infancy of archaeological studies in the regions, during and just after the fall of the USSR, and before many radiocarbon dates that we have today were published (with radiocarbon dating being still today in need of refinement), so it is only logical that gross mistakes were made.

    We have similar gross mistakes related to the origins of Bell Beakers, and studying them was certainly easier than studying eastern data.

    • Gimbutas believed – based mainly on Kurgan-like burials – that Bell Beaker formed from a combination of Yamna settlers with the Vučedol culture, so she was not that far from the truth.
    • The expansion of Corded Ware from peoples of the North Pontic forest-steppe area, proposed by Gimbutas and later supported also by Kristiansen (1989) as the main Indo-European expansion – , is probably also right about the approximate origins of the culture. Only its ‘Indo-European’ nature is in question, given the differences with Khvalynsk and Yamna evolution.
    • Anthony only claimed that Yamna migrants settled in the Balkans and along the Danube into the Hungarian steppes. He never said that Corded Ware was a Yamna offshoot until after the first genetic papers of 2015 (read about his newest proposal). He initially claimed that only certain neighbouring Corded Ware groups “adopted” Indo-European (through cultural diffusion) because of ‘patron-client’ relationships, and was never preoccupied with the fate of Corded Ware and related cultures in the east European forest zone and Finland.

    So none of them was really that far from the true picture; we might say a lot people are more way off the real picture today than the picture these three researchers helped create in the 1990s and 2000s. Genetics is just putting the last nail in the coffin of Corded Ware as a Yamna offshoot, instead of – as we believed in the 2000s – to Vučedol and Bell Beaker.

    So let’s revise some of these traditional links between Corded Ware and Yamna with today’s data:

    Archaeology

    Even more than genetics – at least until we have an adequate regional and temporary sampling – , archaeological findings lead what we have to know about both cultures.

    It is essential to remember that Corded Ware, starting ca. 3000/2900 BC in east-central Europe, has been proposed to be derived from Early Yamna, which appeared suddenly in the Pontic-Caspian steppes ca. 3300 BC (probably from the late Repin expansion), and expanded to the west ca. 3000.

    Early Yamna is in turn identified as the expanding Late Proto-Indo-European community, which has been confirmed with the recent data on Afanasevo, Bell Beaker, and Sintashta-Potapovka and derived cultures.

    The question at hand, therefore, is if Corded Ware can be considered an offshoot of the Late PIE community, and thus whether the CWC ethnolinguistic community – proven in genetics to be quite homogeneous – spoke a Late PIE dialect, or if – alternatively – it is derived from other neighbouring cultures of the North Pontic region.

    NOTE. The interpretation of an Indo-Slavonic group represented by a previous branching off of the group is untenable with today’s data, since Indo-Slavonic – for those who support it – would itself be a branch of Graeco-Aryan, and Palaeo-Balkan languages expanded most likely with West Yamna (i.e. R1b-L23, mainly R1b-Z2103) to the south.

    The convoluted alternative explanation would be that Corded Ware represents an earlier, Middle PIE branch (somehow carrying R1a??) which influences expanding Late PIE dialects; this has been recently supported by Kortlandt, although this simplistic picture also fails to explain the Uralic problem.

    Kurgans: The Yamna tradition was inherited from late Repin, in turn inherited from Khvalynsk-Novodanilovka proto-Kurgans. As for the CWC tradition, it is unclear if the tumuli were built as a tradition inherited from North and West Pontic cultures (in turn inherited or copied from Khvalynsk-Novodanilovka), such as late Trypillia, late Kvityana, late Dereivka, late Sredni Stog; or if they were built because of the spread of the ‘Transformation of Europe’, set in motion by the Early Yamna expansion ca. 3300-3000 BC (as found in east-central European cultures like Coţofeni, Lizevile, Șoimuș, or the Adriatic Vučedol). My guess is that it inherits an older tradition than Yamna, with an origin in east-central Europe, because of the mound-building distribution in the North Pontic area before the Yamna expansion, but we may never really know.

    pit-graves-central-europe-cwc
    Distribution of Pit-Grave burials west of the Black Sea likely dating to the 2nd half of the IVth millennium BC (triangles: side-crouched burials; filled circles: supine extended burials; open circles: suspected). Frînculeasa, Preda, and Heyd (2015)

    Burial rite: Yamna features (with regional differences) single burials with body on its back, flexed upright knees, poor grave goods, common orientation east-west (heads to the west) inherited from Repin, in turn inherited from Khvalynsk-Novodanilovka. CWC tradition – partially connected to Złota and surrounding east-central European territories (in turn from the Khvalynsk-Novodanilovka expansion) – features single graves, body in fetal position, strict gender differentiation – men on the right, women on the left -, looking to the south, graves with standardized assemblages (objects representing affirmation of battle, hunting, and feasting). The burial rites clearly represent different ideologies.

    pit-grave-burial-schemes
    Left: Pit-Grave burial types expanded with Khvalynsk-Novodanilovka. Right: Pit-Grave burial types associated with the Yamna expansion and influence. Frînculeasa, Preda, and Heyd (2015)

    Corded decoration: Corded ware decoration appears in the Balkans during the 5th millennium, and represents a simple technique whereby a cord is twisted, or wrapped around a stick, and then pressed directly onto the fresh surface of a vessel leaving a characteristic decoration. It appears in many groups of the 5th and 4th millennium BC, but it was Globular Amphorae the culture which popularized the drinking vessels and their corded ornamentation. It appears thus in some regional groups of Yamna, but it becomes the standard pottery only in Corded Ware (especially with the A-horizon), which shows continuity with GAC pottery.

    corded-ware-first-horizon
    Origins of the first Corded Ware horizon (5th millennium BC) after the Khvalynsk-Novodanilovka expansion. Corded Ware (circles) and horse-head scepters (rectangles) and other steppe elements (triangles). Image from Bulatović (2014).

    Economy: Yamna expands from Repin (and Repin from Khvalynsk-Novodanilovka) as a nomadic or semi-nomadic purely pastoralist society (with occasional gathering of wild seeds), which naturally thrives in the grasslands of the Pontic-Caspian, lower Danube and Hungarian steppes. Corded Ware shows agropastoralism (as late Eneolithic forest-steppe and steppe groups of eastern Europe, such as late Trypillian, TRB, and GAC groups), inhabits territories north of the loess line, with heavy reliance of hunter-gathering depending on the specific region.

    Cattle herding: Interestingly, both west Yamna and Corded Ware show more reliance on cattle herding than other pastoralist groups, which – contrasted with the previous Eneolithic herding traditions of the Pontic-Caspian steppe, where sheep-goats predominate – make them look alike. However, the cattle-herding economy of Yamna is essential for its development from late Repin and its expansion through the steppes (over western territories practising more hunter-gathering and sheep-goat herding economy), and it does not reach equally the Volga-Ural region, whose groups keep some of the old subsistence economy (read more about the late Repin expansion). Corded Ware, on the other hand, inherits its economic strategy from east European groups like TRB, GAC, and especially late Trypillian communities, showing a predominance of cattle herding within an agropastoral community in the forest-steppe and forest zones of Volhynia, Podolia, and surrounding forest-steppe and forest regions.

    yamna-scheme
    Scheme of interlinked socio-economic-ideological innovations forming the Yamnaya. Frînculeasa, Preda, and Heyd (2015)

    Horse riding: Horse riding and horse transport is proven in Yamna (and succeeding Bell Beaker and Sintashta), assumed for late Repin (essential for cattle herding in the seas of grasslands that are the steppes, without nearby water sources), quite likely during the Khvalynsk expansion (read more here), and potentially also for Samara, where the predominant horse symbolism of early Khvalynsk starts. Corded Ware – like the north Pontic forest-steppe and forest areas during the Eneolithic – , on the other hand, does not show a strong reliance on horse riding. The high mobility and short-term settlements characteristic of Corded Ware, that are often associated with horse riding by association with Yamna, may or may not be correct, but there is no need for horses to explain their herding economy or their mobility, and the north-eastern European areas – the one which survived after Bell Beaker expansion – did certainly not rely on horses as an essential part of their economy.

    NOTE: I cannot think of more supposed similarities right now. If you have more ideas, please share in the comments and I will add them here.

    Genetic similarities

    EHG: This is the clearest link between both communities. We thought it was related to the expansion of ANE-related ancestry to the west into WHG territory, but now it seems that it will be rather WHG expanding into ANE territory from the Pontic-Caspian region to the east (read more on recent Caucasus Neolithic, on , and on Caucasus HG).

    NOTE. Given how much each paper changes what we know about the Palaeolithic, the origin and expansion of the (always developing) known ancestral components and specific subclades (see below) is not clear at all.

    CHG: This is the key link between both cultures, which will delimit their interaction in terms of time and space. CHG is intermediate between EHG and Iran N (ca. 8000 BC). The ancestry is thus linked to the Caucasus south of the steppe before the emergence of North Pontic (western) and Don-Volga-Ural (eastern) communities during the Mesolithic. The real question is: when we have more samples from the steppe and the Caucasus during the Neolithic, how many CHG groups are we going to find? Will the new specific ancestral components (say CHG1, CHG2, CHG3, etc.) found in Yamna (from Khvalynsk, in the east) and Corded Ware (probably from the North Pontic forest-steppe) be the same? My guess is, most likely not, unless they are mediated by the Khvalynsk-Novodanilovka expansion (read more on CHG in the Caucasus).

    yamnaya-chg-ancestry
    Formation of Yamna and CHG contribution, in Damgaard et al. (Science 2018). A 10-leaf model based on combining the models in Fig. S16 and Fig. S19 and re-estimating the model parameters.

    WHG/EEF: This is the obvious major difference – known today – in the formation of both communities in the steppe, and shows the different contacts that both groups had at least since the Eneolithic, i.e. since the expansion of Repin with its renewed Y-DNA bottleneck, and probably since before the early Khvalynsk expansion (read more on Yamna-Corded Ware differences contrasting with Yamna-Afanasevo, Yamna-Bell Beaker, and Yamna-Sintashta similarities).

    NOTE 1. Some similarities between groups can be seen depending on the sampled region; e.g. Baltic groups show more similarities with southern Pontic-Caspian steppe populations, probably due to exogamy.

    yamna-corded-ware-diff-qpgraph
    Tested qpGraph model in Tambets et al. (2018). The qpGraph model fitting the data for the tested populations. “Colour codes for the terminal nodes: pink—modern populations (‘Population X’ refers to test population) and yellow—ancient populations (aDNA samples and their pools). Nodes coloured other than pink or yellow are hypothetical intermediate populations. We putatively named nodes which we used as admixture sources using the main recipient among known populations. The colours of intermediate nodes on the qpGraph model match those on the admixture proportions panel.”

    NOTE 2. We have this information on the differences in “steppe ancestry” between Yamna and Corded Ware, compared to previous studies, because now we have more samples of neighbouring, roughly contemporaneous Eneolithic groups, to analyse the real admixture processes. This kind of fine scale studies is what is going to show more and more differences between Khvalynsk-Yamna and Sredni Stog-Corded Ware as more data pours in. The evolution of both communities in archaeology and in PCA (see below) is probably witness to those differences yet to be published.

    R1: Even though some people try very hard to think in terms of “R1” vs. (Caucasus) J or G or any other upper clade, this is plainly wrong. It is possible, given what we know now, that Q1a2-M242 expanded ANE ancestry to the west ca. 13000 BC, while R1b-P279 expanded WHG ancestry to the east with the expansion of post-Swiderian cultures, creating EHG as a WHG:ANE cline. The role of R1a-M459 is unknown, but it might be related to any of these migrations, or others (plural) along northern Eurasia (read more on the expansion of R1b-P279, on Palaeolithic Q1a2, and on R1a-M417).

    NOTE. I am inclined to believe in a speculative Mesolithic-Early Neolithic community involving Eurasiatic movements accross North Eurasia, and Indo-Uralic movements in its western part, with the last intense early Uralic-PIE contacts represented by the forming west (Mariupol culture) and east (Don-Volga-Ural cultures, including Samara) communities developing side by side. Before their known Eneolithic expansions, no large-scale Y-DNA bottleneck is going to be seen in the Pontic-Caspian steppe, with different (especially R1a and R1b subclades) mixed among them, as shown in North Pontic Neolithic, Samara HG, and Khvalynsk samples.

    PCA-trypillia-greece-neolithic-outlier-anatolian
    Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here.

    Corded Ware and ‘steppe ancestry’

    If we take a look at the evolution of Corded Ware cultures, the expansion of Bell Beakers – dominated over most previous European cultures from west to east Europe – influenced the development of the whole European Bronze Age, up to Mierzanowice and Trzciniec in the east.

    The only relevant unscathed CWC-derived groups, after the expansion of Sintashta-Potapovka as the Srubna-Andronovo horizon in the Eurasian steppes, were those of the north-eastern European forest zone: between Belarus to the west, Finland to the north, the Urals to the east, and the forest-steppe region to the south. That is, precisely the region supposed to represent Uralic speakers during the Bronze Age.

    This inconsistency of steppe ancestry and its relation with Uralic (and Balto-Slavic) peoples was observed shortly after the publication of the first famous 2015 papers by Paul Heggarty, of the Max-Planck Institute for Evolutionary Anthropology (read more):

    Haak et al. (2015) make much of the high Yamnaya ancestry scores for (only some!) Indo-European languages. What they do not mention is that those same results also include speakers of other languages among those with the highest of all scores for Yamnaya ancestry. Only these are languages of the Uralic family, not Indo-European at all; and their Yamnaya-ancestry signals are far higher than in many branches of Indo-European in (southern) Europe. Estonian ranks very high, while speakers of the very closely related Finnish are curiously not shown, and nor are the Saami. Hungarian is relevant less directly since this language arrived only c. 900 AD, but also high.

    uralic-steppe-ancestry

    These data imply that Uralic-speakers too would have been part of the Yamnaya > Corded Ware movement, which was thus not exclusively Indo-European in any case. And as well as the genetics, the geography, chronology and language contact evidence also all fit with a Yamnaya > Corded Ware movement including Uralic as well as Balto-Slavic.

    Both papers fail to address properly the question of the Uralic languages. And this despite — or because? — the only Uralic speakers they report rank so high among modern populations with Yamnaya ancestry. Their linguistic ancestors also have a good claim to have been involved in the Corded Ware and Yamnaya cultures, and of course the other members of the Uralic family are scattered across European Russia up to the Urals.

    NOTE. Although the author was trying to support the Anatolian hypothesis – proper of glottochronological studies often published from the Max Planck Institute – , the question remains equally valid: “if Proto-Indo-European expands with Corded Ware and steppe ancestry, what is happening with Uralic peoples?”

    For my part, I claimed in my draft that ancestral components were not the only relevant data to take into account, and that Y-DNA haplogroups R1a and R1b (appearing separately in CWC and Yamna-Bell Beaker-Afanasevo), together with their calculated timeframes of formation – and therefore likely expansion – did not fit with the archaeological and linguistic description of the spread of Proto-Indo-European and its dialects.

    In fact, it seemed that only one haplogroup (R1b-M269) was constantly and consistenly associated with the proposed routes of Late PIE dialectal expansions – like Anthony’s second (Afanasevo) and third (Lower Danube, Balkan) waves. What genetics shows fits seamlessly with Mallory’s association of the North-West Indo-European expansion with Bell Beakers (read here how archaeologists were right).

    balanovksy-yamnaya-ancestry
    Map of the much beloved steppe (or “Yamnaya”) ancestry in modern populations, by Balanovsky. Modified from Klejn (2017).

    More precise inconsistencies were observed after the publication of Olalde et al. (2017) and Mathieson et al. (2017), by Volker Heyd in Kossinna’s smile (2017). Letting aside the many details enumerated (you can read a summary in my latest draft), this interesting excerpt is from the conclusion:

    NOTE. An open access ealier draft version of the paper is offered for download by the author.

    Simple solutions to complex problems are never the best choice, even when favoured by politicians and the media. Kossinna also offered a simple solution to a complex prehistoric problem, and failed therein. Prehistoric archaeology has been aware of this for a century, and has responded by becoming more differentiated and nuanced, working anthropologically, scientifically and across disciplines (cf. Müller 2013; Kristiansen 2014), and rejecting monocausal explanations. The two aDNA papers in Nature, powerful and promising as they are for our future understanding, also offer rather straightforward messages, heavily pulled by culture-history and the equation of people with culture. This admittedly is due partly to the restrictions of the medium that conveys them (and despite the often relevant additional detail given as supplementary information, which is unfortunately not always given full consideration).

    While I have no doubt that both papers are essentially right, they do not reflect the complexity of the past. It is here that archaeology and archaeologists contributing to aDNA studies find their role; rather than simply handing over samples and advising on chronology, and instead of letting the geneticists determine the agenda and set the messages, we should teach them about complexity in past human actions and interactions. If accepted, this could be the beginning of a marriage made in heaven, with the blessing smile of Gustaf Kossinna, and no doubt Vere Gordon Childe, were they still alive, in a reconciliation of twentieth- and twenty-first-century approaches. For us as archaeologists, it could also be the starting point for the next level of a new archaeology.

    heyd-yamnaya-expansion
    Main distribution of Yamnaya kurgans in the Pontic-Caspian steppe of modern day Russia, Ukraine, and Kazakhstan, and its western branch in modern south-east European countries of Romania, Bulgaria, Serbia, and Hungary, with numbers of excavated kurgans and graves given. Picture: Volker Heyd (2018).

    The question was made painfully clear with the publication of Olalde et al. (2018) & Mathieson et al. (2018), where the real route of Yamna expansion into Europe was now clearly set through the steppes into the Carpathian basin, later expanded as Bell Beakers.

    This has been further confirmed in more recent papers, such as Narasimhan et al. (2018), Damgaard et al. (2018), or Wang et al. (2018), among others.

    However, the discussion is still dominated by political agendas based on prevalent Y-DNA haplogroups in modern countries and ethnic groups.

    Related

    Modern Sardinians show elevated Neolithic farmer ancestry shared with Basques

    sardinia-europe-relation

    New paper (behind paywall), Genomic history of the Sardinian population, by Chiang et al. Nature Genetics (2018), previously published as a preprint at bioRxiv (2016).

    #EDIT (18 Sep 2018): Link to read paper for free shared by the main author.

    Interesting excerpts (emphasis mine):

    Our analysis of divergence times suggests the population lineage ancestral to modern-day Sardinia was effectively isolated from the mainland European populations ~140–250 generations ago, corresponding to ~4,300–7,000 years ago assuming a generation time of 30 years and a mutation rate of 1.25 × 10−8 per basepair per generation. (…) in terms of relative values, the divergence time between Northern and Southern Europeans is much more recent than either is to Sardinia, signaling the relative isolation of Sardinia from mainland Europe.

    We documented fine-scale variation in the ancient population ancestry proportions across the island. The most remote and interior areas of Sardinia—the Gennargentu massif covering the central and eastern regions, including the present-day province of Ogliastra— are thought to have been the least exposed to contact with outside populations. We found that pre-Neolithic hunter-gatherer and Neolithic farmer ancestries are enriched in this region of isolation. Under the premise that Ogliastra has been more buffered from recent immigration to the island, one interpretation of the result is that the early populations of Sardinia were an admixture of the two ancestries, rather than the pre-Neolithic ancestry arriving via later migrations from the mainland. Such admixture could have occurred principally on the island or on the mainland before the hypothesized Neolithic era influx to the island. Under the alternative premise that Ogliastra is simply a highly isolated region that has differentiated within Sardinia due to genetic drift, the result would be interpreted as genetic drift leading to a structured pattern of pre-Neolithic ancestry across the island, in an overall background of high Neolithic ancestry.

    sardinia-pca
    PCA results of merged Sardinian whole-genome sequences and the HGDP Sardinians. See below for a map of the corresponding regions.

    We found Sardinians show a signal of shared ancestry with the Basque in terms of the outgroup f3 shared-drift statistics. This is consistent with long-held arguments of a connection between the two populations, including claims of Basque-like, non-Indo-European words among Sardinian placenames. More recently, the Basque have been shown to be enriched for Neolithic farmer ancestry and Indo-European languages have been associated with steppe population expansions in the post-Neolithic Bronze Age. These results support a model in which Sardinians and the Basque may both retain a legacy of pre-Indo-European Neolithic ancestry. To be cautious, while it seems unlikely, we cannot exclude that the genetic similarity between the Basque and Sardinians is due to an unsampled pre-Neolithic population that has affinities with the Neolithic representatives analyzed here.

    density-nuraghi-sardinia-genetics
    Left: Geographical map of Sardinia. The provincial boundaries are given as black lines. The provinces are abbreviated as Cag (Cagliari), Cmp (Campidano), Car (Carbonia), Ori (Oristano), Sas (Sassari), Olb (Olbia-tempio), Nuo (Nuoro), and Ogl (Ogliastra). For sampled villages within Ogliastra, the names and abbreviations are indicated in the colored boxes. The color corresponds to the color used in the PCA plot (Fig. 2a). The Gennargentu region referred to in the main text is the mountainous area shown in brown that is centered in western Ogliastra and southeastern Nuoro.
    Right: Density of Nuraghi in Sardinia, from Wikipedia.

    While we can confirm that Sardinians principally have Neolithic ancestry on the autosomes, the high frequency of two Y-chromosome haplogroups (I2a1a1 at ~39% and R1b1a2 at ~18%) that are not typically affiliated with Neolithic ancestry is one challenge to this model. Whether these haplogroups rose in frequency due to extensive genetic drift and/or reflect sex-biased demographic processes has been an open question. Our analysis of X chromosome versus autosome diversity suggests a smaller effective size for males, which can arise due to multiple processes, including polygyny, patrilineal inheritance rules, or transmission of reproductive success. We also find that the genetic ancestry enriched in Sardinia is more prevalent on the X chromosome than the autosome, suggesting that male lineages may more rapidly trace back to the mainland. Considering that the R1b1a2 haplogroup may be associated with post-Neolithic steppe ancestry expansions in Europe, and the recent timeframe when the R1b1a2 lineages expanded in Sardinia, the patterns raise the possibility of recent male-biased steppe ancestry migration to Sardinia, as has been reported among mainland Europeans at large (though see Lazaridis and Reich and Goldberg et al.). Such a recent influx is difficult to square with the overall divergence of Sardinian populations observed here.

    sardinian-admixture
    Mixture proportions of the three-component ancestries among Sardinian populations. Using a method first presented in Haak et al. (Nature 522, 207–211, 2015), we computed unbiased estimates of mixture proportions without a parameterized model of relationships between the test populations and the outgroup populations based on f4 statistics. The three-component ancestries were represented by early Neolithic individuals from the LBK culture (LBK_EN), pre-Neolithic huntergatherers (Loschbour), and Bronze Age steppe pastoralists (Yamnaya). See Supplementary Table 5 for standard error estimates computed using a block jackknife.

    Once again, haplogroup R1b1a2 (M269), and only R1b1a2, related to male-biased, steppe-related Indo-European migrations…just sayin’.

    Interestingly, haplogroup I2a1a1 is actually found among northern Iberians during the Neolithic and Chalcolithic, and is therefore associated with Neolithic ancestry in Iberia, too, and consequently – unless there is a big surprise hidden somewhere – with the ancestry found today among Basques.

    NOTE. In fact, the increase in Neolithic ancestry found in south-west Ireland with expanding Bell Beakers (likely Proto-Beakers), coupled with the finding of I2a subclades in Megalithic cultures of western Europe, would support this replacement after the Cardial and Epi-Cardial expansions, which were initially associated with G2a lineages.

    I am not convinced about a survival of Palaeo-Sardo after the Bell Beaker expansion, though, since there is no clear-cut cultural divide (and posterior continuity) of pre-Beaker archaeological cultures after the arrival of Bell Beakers in the island that could be identified with the survival of Neolithic languages.

    We may have to wait for ancient DNA to show a potential expansion of Neolithic ancestry from the west, maybe associated with the emergence of the Nuragic civilization (potentially linked with contemporaneous Megalithic cultures in Corsica and in the Balearic Islands, and thus with an Iberian rather than a Basque stock), although this is quite speculative at this moment in linguistic, archaeological, and genetic terms.

    Nevertheless, it seems that the association of a Basque-Iberian language with the Neolithic expansion from Anatolia (see Villar’s latest book on the subject) is somehow strengthened by this paper. However, it is unclear when, how, and where expanding G2a subclades were replaced by native I2 lineages.

    Related

    A study of genetic diversity of three isolated populations in Xinjiang using Y-SNP

    indo-european-indo-iranian-migrations

    New open access paper (in Chinese) A study of genetic diversity of three isolated populations in Xinjiang using Y-SNP, by liu et al. Acta Anthropologica Sinitica (2018)

    Abstract:

    The Keriyan, Lopnur and Dolan peoples are isolated populations with sparse numbers living in the western border desert of our country. By sequencing and typing the complete Y-chromosome of 179 individuals in these three isolated populations, all mutations and SNPs in the Y-chromosome and their corresponding haplotypes were obtained. Types and frequencies of each haplotype were analyzed to investigate genetic diversity and genetic structure in the three isolated populations. The results showed that 12 haplogroups were detected in the Keriyan with high frequencies of the J2a1b1 (25.64%), R1a1a1b2a (20.51%), R2a (17.95%) and R1a1a1b2a2 (15.38%) groups. Sixteen haplogroups were noted in the Lopnur with the following frequencies: J2a1 (43.75%), J2a2 (14.06%), R2 (9.38%) and L1c (7.81%). Forty haplogroups were found in the Dolan, noting the following frequencies: R1b1a1a1 (9.21%), R1a1a1b2a1a (7.89%), R1a1a1b2a2b (6.58%) and C3c1 (6.58%). These data show that these three isolated populations have a closer genetic relationship with the Uygur, Mongolian and Sala peoples. In particular, there are no significant differences in haplotype and frequency between the three isolated populations and Uygur (f=0.833, p=0.367). In addition, the genetic haplotypes and frequencies in the three isolated populations showed marked Eurasian mixing illustrating typical characteristics of Central Asian populations.

    population-distribution-map
    Figure 1. The populations distribution map. Left: Uluru. Center: Dali Yabuyi. Right: Kaerqu.

    My knowledge of written Chinese is almost zero, so here are some excerpts with the help of Google Translate:

    The source of 179 blood samples used in the study is shown in Figure 1. The Keriyan blood samples were collected from Dali Yabuyi Township, Yutian County (39 samples). The blood samples of the Lopnur people were collected from Kaerqu Township, Yuli County (64 cases); the blood samples of the Dolan people were collected from the town of Uluru, Awati County (76).

    haplotype-frequency-uighur
    Columns one and two are the Keriyan haplotypes and frequencies, respectively; the third and fourth columns are the Lopnur haplotypes and frequencies; the last four columns are the Daolang haplotypes and frequencies.

    The composition and frequency of the Keriyan people’s haplogroup are closest to those of the Uighurs, and both Principal Component Analysis and Phylogenetic Tree Analysis show that their kinship is recent. We initially infer that the Keriyan are local desert indigenous people. They have a connection with the source of the Uighurs. Chen et al. [42] studied the patriarchal and maternal genetic analysis of the Keriyan people and found that they are not descendants of the Tibetan ethnic group in the West. The Keriyan people are a mixed group of Eastern and Western Europeans, which may originate from the local Vil group. Duan Ranhui [43] and other studies have shown that the nucleotide variability and average nucleotide differences in the Keriyan population are between the reported Eastern and Western populations. The phylogenetic tree also shows that the populations in Central Asia are between the continental lineage of the eastern population and the European lineage of the western population, and the genetic distance between the Keriyan and the Uighurs is the closest, indicating that they have a close relationship.

    y-chromosome-pca

    Regarding the origin of the Lopnur people, Purzhevski judged that it was a mixture of Mongolians and Aryans according to the physical characteristics of the Lopnur people. In 1934, the Sino-Swiss delegation discovered the famous burials of the ancient tombs in the Peacock River. After research, they were the indigenous people before the Loulan period; the researcher Yang Lan, a researcher at the Institute of Cultural Relics of the Chinese Academy of Social Sciences, said that the Lopnur people were descendants of the ancient “Landan survivors”. However, the Loulan people speaking an Indo-European language, and the Lopnur people speaking Uyghur languages contradict this; the historical materials of the Western Regions, “The Geography of the Western Regions” and “The Western Regions of the Ming Dynasty” record the Uighurs who lived in Cao Cao in the late 17th and early 18th centuries. Because of the occupation of the land by the Junggar nobles and their oppression, they fled. Some of them were forced to move to the Lop Nur area. There are many similar archaeological discoveries and historical records. We have no way to determine their accuracy, but they are at different times, and there is a great difference in what is heard in the same region. (…) The genetic characteristics of modern Lopnur people are the result of the long-term ethnic integration of Uyghurs, Mongols, and Europeans. This is also consistent with the similarity of the genetic structure of the Y chromosome of Lopnur in this study with the Uighurs and Mongolians. For example, the frequency of J haplogroup is as high as 59.37%, while J and its downstream sub-haplogroup are mainly distributed in western Europe, West Asia and Central Asia; the frequency of O, R haplogroup is close to that of Mongolians.

    y-chromosome-frequency
    1) KA: Keriya, LB: Rob, DL: Daolang, HTW: Hetian Uygur, HTWZ: and Uygur, TLFW: Turpan Uighur, HZ: Hui, HSKZ: Kazakh, WZBKZ: Wuhuan Others, TJKZ: Tajik, KEKZZ: Kirgiz, TTEZ: Tatar, ELSZ: Russian XBZ: Xibo, MGZ: Mongolian, SLZ: Salar, XJH: Xinjiang Han, GSH: Gansu Han, GDH: Guangdong Han SCH: Sichuan Han. 2) Reference population data source literature 19-22. After the population names in the table have been marked, all the shorthands in the text are referred to in this table. 3) Because the degree of haplotypes of each reference population is different to each sub-group branch, the sub-group branches under the same haplogroup are merged when the population haplogroup data is aggregated, for example: for haplogroup G Some people are divided into G1a and G2a levels, others are assigned to G1, G2, and G3, while some people can only determine G this time. Therefore, each subgroup is merged into a single group G.

    According to Ming History·Western Biography, the Mongolians originated from the Mobei Plateau and later ruled Asia and Eastern Europe. Mongolia was established, and large areas of southern Xinjiang and Central Asia were included. Later, due to the Mongolian king’s struggle for power, it fell into a long-term conflict. People of the land fled to avoid the war, and the uninhabited plain of the lower reaches of the Yarkant River naturally became a good place to live. People from all over the world gathered together and called themselves “Dura” and changed to “Dang Lang”. The long-term local Uyghur exchanges that entered the southern Mongolian monks and “Dura” were gradually assimilated [44]. According to the report, locals wore Mongolian clothes, especially women who still maintained a Mongolian face [45]. In 1976, the robes and waistbands found in the ancient time of the Daolang people in Awati County were very similar to those of the ancients. Dalang Muqam is an important part of Daolang culture. It is also a part of the Uyghur Twelve Muqam, and it retains the ancient Western culture, but it also contains a larger Mongolian culture and relics. The above historical records show that the Daolang people should appear in the Chagatai Khanate and be formed by the integration of Mongolian and Uighur ethnic groups. Through our research, we also found that the paternal haplotype of the Daolang people is contained in both Uygur and Mongolian, and the main haplogroups are the same, whereas the frequencies are different (see Table 3). The principal component analysis and the NJ analysis are also the same. It is very close to the Uyghur and the Mongolian people, which establishes new evidence for the “mixed theory” in molecular genetics.

    main-haplogroup-uighur
    Genetic relationship between the three isolated populations: the Uygur and the Mongolian is the closest, and the main haplogroup can more intuitively compare the source composition of the genetic structure of each population. Haplogroups C, D, and O are mainly distributed in Asia as the East Asian characteristic haplogroup; haplogroups G, J, and R are mainly distributed in continental Europe, and the high frequency distribution is in Europe and Central Asia.

    If the nomenclature follows a recent ISOGG standard, it appears that:

    The presence of exclusively R1a-Z93 subclades and the lack of R1b-M269 samples is compatible with the expansion of R1a-Z93 into the area with Proto-Tocharians, at the turn of the 3rd-2nd millennium BC, as suggested by the Xiaohe samples, supposedly R1a(xZ93).

    Now that it is obvious from ancient DNA (as it was clear from linguistics) that Pre-Tocharians separated earlier than other Late PIE peoples, with the expansion of late Khvalynsk/Repin into the Altai, at the end of the 4th millennium, these prevalent R1a (probably Z93) samples may be showing a replacement of Pre-Tocharian Y-DNA with the Andronovo expansion already by 2000 BC.

    Lacking proper assessment of ancient DNA from Proto-Tocharians, this potential early Y-DNA replacement is still speculative*. However, if that is the case, I wonder what the Copenhagen group will say when supporting this, but rejecting at the same time the more obvious Y-DNA replacement in East Yamna / Poltavka in the mid-3rd millennium with incoming Corded Ware-related peoples. I guess the invention of an Indo-Tocharian group may be near…

    *NOTE. The presence of R1b-M269 among Proto-Tocharians, as well as the presence of R1b-M269 among Tarim Basin peoples in modern and ancient times is not yet fully discarded. The prevalence of R1a-Z93 may also be the sign of a more recent replacement by Iranian peoples, before the Mongolian and Turkic expansions that probably brought R1b(xM269).

    Also, the presence of R1b (xM269) samples in east Asia strengthens the hypothesis of a back-migration of R1b-P297 subclades, from Northern Europe to the east, into the Lake Baikal area, during the Early Mesolithic, as found in the Botai samples and later also in Turkic populations – which are the most likely source of these subclades (and probably also of Q1a2 and N1c) in the region.

    Related

    Early Medieval Alemannic graveyard shows diverse cultural and genetic makeup

    alemannic-niederstotzingen

    Open access Ancient genome-wide analyses infer kinship structure in an Early Medieval Alemannic graveyard, by O’Sullivan et al., Science (2018) 4(9):eaao1262

    Interesting excerpts:

    Introduction

    The Alemanni were a confederation of Germanic tribes that inhabited the eastern Upper Rhine basin and surrounding region (Fig. 1) (1). Roman ethnographers mentioned the Alemanni, but historical records from the 3rd to the 6th century CE contain no regular description of these tribes (2). The upheaval that occurred during the European Migration Period (Völkerwanderung) partly explains the interchangeability of nomenclature with the contemporaneous Suebi people of the same region and periods of geographic discontinuity in the historical record (3). This diverse nomenclature reflects centuries of interactions between Romans and other Germanic groups such as the Franks, Burgundians, Thuringians, Saxons, and Bavarians. With the defeat of the Alemanni by Clovis I of the Franks in 497 CE, Alamannia became a subsumed Duchy of the Merovingian Kingdom. This event solidified the naming of the inhabitants of this region as Alemanni (3). From the 5th to the 8th century CE, integration between the Franks and the Alemanni was reflected by changed burial practices, with households (familia) buried in richly furnished graves (Adelsgrablege) (4). The splendor of these Adelsgräber served to demonstrate the kinship structure, wealth, and status of the familia and also the power of the Franks (Personenverbandstaaten, a system of power based on personal relations rather than fixed territory). Because inclusion in familia during the Merovingian period was not necessarily based on inheritance or provenance, debate continues on the symbolism of these burial rites (5).

    The 7th century CE Alemannic burial site at Niederstotzingen in southern Germany, used circa 580 to 630 CE, represents the best-preserved example of such an Alemannic Adelsgrablege. (…)

    alemannic-haplogroup

    Strontium and oxygen isotope data from the enamel showed that most individuals are local rather than migrants (Table 1, table S2, and fig. S2), except for individuals 10 and 3B. (…)

    Analysis of uniparental markers

    mtDNA haplogroups were successfully assigned to all 13 individuals (Table 1). Notably, there are three groups of individuals that share, among the assigned positions, identical haplotypes: individuals 4, 9, and 12B in haplogroup X2b4; individuals 1 and 3A in haplogroup K1a; and individuals 2 and 5 in haplogroup K1a1b2a1a.

    Most individuals belong to the R1b haplogroup (individuals 1, 3A, 3C, 6, 9, 12A, 12B, and 12C), which has the highest frequency (>70%) in modern western European populations (20). Five individuals (1, 3A, 9, 12B, and 12C) share the same marker (Z319) defining haplogroup R1b1a2a1a1c2b2b1a1 [=ISOGG R1b1a1a2a1a1c2b2b1a1a] (…) individuals 1, 3A, and 6 have R1b lineage and marker Z347 (R1b1a2a1a1c2b2b) [=ISOGG R1b1a1a2a1a1c2b2b], which belongs to the same male ancestral lineage as marker Z319 [i.e. all R1b-U106]. Individual 3B instead carries NRY haplogroup G2a2b1, which is rare in modern north, west, and east European populations (<5%), only reaching common abundance in the Caucasus (>70%), southern Europe, and the Near East (10 to 15%)

    Genome-wide capture

    alemannic-pca
    PCA plot of Niederstotzingen individuals, modern west Eurasians, and selected ancient Europeans. Genome-wide ancient data were projected against modern west Eurasian populations. Colors on PCA indicate more general Eurasian geographic boundaries than countries: dark green, Caucasus; bright green, eastern Europe; yellow, Sardinia and Canary Islands; bright blue, Jewish diaspora; bright purple, western and central Europe; red, southern Europe; dark brown, west Asia; light purple, Spain; dark purple, Russia; pale green, Middle East; orange, North Africa. The transparent circles serve to highlight the genetic overlap between regions of interest.

    Genomically, the individuals buried at Niederstotzingen can be split into two groups: Niederstotzingen North (1, 3A, 6, 9, 12B, and 12C), who have genomic signals that most resemble modern northern and eastern European populations, and Niederstotzingen South (3B and 3C), who most resemble modern-day Mediterraneans, albeit with recent common ancestry to other Europeans. Niederstotzingen North is composed of those buried with identifiable artifacts: Lombards (individual 6), Franks (individual 9), and Byzantines (individuals 3A and 12B), all of whom have strontium and oxygen isotope signals that support local provenance (fig. S2) (8). Just two individuals, 3B (Niederstotzingen South) and 10 (no sufficient autosomal data, with R1 Y-haplogroup), have nonlocal strontium isotope signals. The δ18O values suggest that individuals 10 and 3B may have originated from a higher-altitude region, possibly the Swiss-German Alpine foothills (8). Combined with the genome affinity of individual 3B to southern Europeans, these data provide direct evidence for incoming mobility at the site and for contact that went beyond exchange of grave goods (4). Familia had holdings across the Merovingian Kingdom and traveled long distances to maintain them; these holdings could have extended from northern Italy to the North Sea. Nobles displayed and accrued power by recruiting outside individuals into the household as part of their traveling retinue. Extravagant burial rites of these familia are symbolic evidence of the Frankish power systems based on people Personenverbandstaaten imposed from the 5th until the 8th century CE (4). The assignment of grave goods and the burial pattern do not follow any apparent pattern with respect to genetic origin or provenance, suggesting that relatedness and fellowship were held in equal regard at this burial.

    Kinship

    Both kinship estimates show first-degree relatedness for pairs 1/3A, 1/6, 1/9, 3A/9, and 9/12B and second-degree relatedness for 1/12B, 3A/6, 3A/12B, and 6/9. Except for 12C, all of the Niederstotzingen North individuals are detectably and closely related. The Niederstotzingen South individuals are not detectably related to each other or any other members of the cohort. (…)

    We demonstrated that five of the individuals (1, 3A, 6, 9, and 12B) were kin to at least second degree (Fig. 3 and tables S15 and S16); four of these were buried with distinguishable grave goods (discussed above and in fig. S1). These data show that at Niederstotzingen, at least in death, diverse cultural affiliations could be appropriated even within the same family across just two generations. This finding is somewhat similar to the burial of the Frankish King Childeric in the 5th century CE with a combination of Frankish and Byzantine grave goods that symbolized both his provenance and military service to the Romans (4). The burial of three unrelated individuals (3B, 3C, and 12C) in multiple graves beside the rest of the cohort would imply that this Alemannic group buried their dead based on a combination of familial ties and fellowship. One explanation could be that they were adopted as children from another region to be trained as warriors, which was a common practice at the time; these children were raised with equal regard in the familia (2, 4).

    alemannic-family
    Reconstruction of first- and second-degree relatedness among all related individuals. Bold black lines and blue lines indicate first- and second-degree relatedness, respectively. Dark blue squares are identified males with age-at-death estimates years old (y.o.), mtDNA haplotypes, and NRY haplogroups. Red circles represent unidentified females that passed maternal haplotypes to their offspring. The light square represents one male infant that shares its maternal haplotype with individuals 12B and 9. N.D., not determined.

    Conclusion

    The 7th century CE burial in Niederstotzingen represents the best-preserved example of an Alemannic Adelsgrablege. The observation that burial of the remains was close to a Roman crossroads, orientated in a considered way, and associated with rich grave goods points to a noble gravesite of an Alemannic familia with external cultural influences. The high percentage of males in the burial site suggests that this site was intended for a ranked warrior group, meaning that the individuals are not representative of the population existing in 7th century CE Alemannia. The kinship estimates show that kinship structure was organized around the familia, which is defined by close association of related and unrelated individuals united for a common purpose. The apparent kinship structure is consistent with the hypothesized Personenverbandstaaten, which was a system by which Merovingian nobles enforced rule in the Duchies of Alemannia, Thuringia, Burgundy, and elsewhere. Beyond the origin of the grave goods, we show isotopic and genetic evidence for contact with communities external to the region and evidence for shared ancestry between northern and southern Europeans. This finding invites debate on the Alemannic power system that may have been highly influenced by mobility and personal relations.

    Texts and images distributed under the terms of the Creative Commons Attribution-NonCommercial license.

    Related

    Viking Age town shows higher genetic diversity than Neolithic and Bronze Age

    sigtuna-vikings

    Open access Genomic and Strontium Isotope Variation Reveal Immigration Patterns in a Viking Age Town, by Krzewińska et al., Current Biology (2018).

    Interesting excerpts (emphasis mine, some references deleted for clarity):

    The town of Sigtuna in eastern central Sweden was one of the pioneer urban hubs in the vast and complex communicative network of the Viking world. The town that is thought to have been royally founded was planned and organized as a formal administrative center and was an important focal point for the establishment of Christianity [19]. The material culture in Sigtuna indicates that the town had intense international contacts and hosted several cemeteries with a Christian character. Some of them may have been used by kin-based groups or by people sharing the same sociocultural background. In order to explore the character and magnitude of mobility and migration in a late Viking Age town, we generated and analyzed genomic (n = 23) and strontium isotope (n = 31) data from individuals excavated in Sigtuna.

    y-dna-vikings

    The mitochondrial genomes were sequenced at 1.5× to 367× coverage. Most of the individuals were assigned to haplogroups commonly found in current-day Europeans, such as H, J, and U [14, 26, 27]. All of these haplotypes are present in Scandinavia today.

    The Y chromosome haplogroups were assigned in seven males. The Y haplogroups include I1a, I2a, N1a, G2a, and R1b. Two identified lineages (I2a and N1a) have not been found in modern-day Sweden or Norway [28, 29]. Haplogroups I and N are associated with eastern and central Europe, as well as Finno-Ugric groups [30]. Interestingly, I2a was previously identified in a middle Neolithic Swedish hunter-gatherer dating to ca. 3,000 years BCE [31].

    In Sigtuna, the genetic diversity in the late Viking Age was greater than the genetic diversity in late Neolithic and Bronze Age cultures (Unetice and Yamnaya as examples) and modern East Asians; it was on par with Roman soldiers in England but lower than in modern-day European groups (GBR and FIN; Figure 2B). Within the town, the group excavated at church 1 has somewhat greater diversity than that at cemetery 1. Interestingly, the diversity at church 1 is nearly as high as that observed in Roman soldiers in England, which is remarkable, since the latter was considered to be an exceptionally heterogeneous group in contemporary Europe [39].

    pca-vikings
    A PCA plot visualising all 23 individuals from Sigtuna used in ancient DNA analyses (m – males, f – females).

    Different sex-related mobility patterns for Sigtuna inhabitants have been suggested based on material culture, especially ceramics. Building on design and clay analyses, some female potters in Sigtuna are thought to have grown up in Novgorod in Rus’ [40]. Moreover, historical sources mention female mobility in connection to marriage, especially among the elite from Rus’ and West Slavonic regions [41, 42]. Male mobility is also known from historical sources, often in connection to clergymen moving to the town [43].

    Interestingly, we found a number of individuals from Sigtuna to be genetically similar to the modern-day human variation of eastern Europeans, and most harbor close genetic affinities to Lithuanians (Figure 2A). The strontium isotope ratios in 28 adult individuals with assigned biological sex and strontium values obtained from teeth (23 M1 and five M2) show that 70% of the females and 44% of the males from Sigtuna were non-locals (STAR Methods). The difference in migrant ratios between females and male mobility patterns was not statistically significant (Fisher’s exact test, p = 0.254 for 28 individuals and p = 0.376 for 16 individuals). Hence, no evidence of a sex-specific mobility pattern was found.

    (…) As these social groups are not mirrored by our genetic or strontium data, this suggests that the inclusion in them was not based on kinship. Therefore, it appears as if socio-cultural factors, not biological bonds, governed where people were interred (i.e., the choice of cemetery).

    diversity-yamna
    Average pairwise genetic diversity measured in complete Sigtuna, St. Gertrud (church 1) and cemetery 1 (the Nunnan block) compared to both ancient and modern populations ranked by time period (Yamnaya, Unetice, and GBR-Roman, Roman Age individuals from Great Britain; GBR-AS, Anglo-Saxon individuals from Great Britain; GBR-IA, Iron Age individuals from Great Britain; JPT-Modern, presentday Japanese from Tokyo; FIN-Modern, present-day Finnish; GBR-Modern, present-day British; GIHModern, present-day Gujarati Indian from Houston, Texas). Error bars show ±2 SEs.

    Interesting from this paper is the higher genetic (especially Y-DNA) diversity found in more recent periods (see e.g. here) compared to Neolithic and Bronze Age cultures, which is probably the reason behind some obviously wrong interpretations, e.g. regarding links between Yamna and Corded Ware populations.

    The sample 84001, a “first-generation short-distance migrant” of haplogroup N1c-L392 (N1a in the new nomenclature) brings yet more proof of how:

    • Admixture changes completely within a certain number of generations. In this case, the N1c-L392 sample clusters within the genetic variation of modern Norwegians, near to the Skane Iron Age sample, and not with its eastern origin (likely many generations before).
    • This haplogroup appeared quite late in Fennoscandia but still managed to integrate and expand into different ethnolinguistic groups; in this case, this individual was probably a Viking of Nordic language, given its genetic admixture and its non-local (but neighbouring Scandinavian) strontium values.

    Related

    Common pitfalls in human genomics and bioinformatics: ADMIXTURE, PCA, and the ‘Yamnaya’ ancestral component

    invasion-from-the-steppe-yamnaya

    Good timing for the publication of two interesting papers, that a lot of people should read very carefully:

    ADMIXTURE

    Open access A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots, by Daniel J. Lawson, Lucy van Dorp & Daniel Falush, Nature Communications (2018).

    Interesting excerpts (emphasis mine):

    Experienced researchers, particularly those interested in population structure and historical inference, typically present STRUCTURE results alongside other methods that make different modelling assumptions. These include TreeMix, ADMIXTUREGRAPH, fineSTRUCTURE, GLOBETROTTER, f3 and D statistics, amongst many others. These models can be used both to probe whether assumptions of the model are likely to hold and to validate specific features of the results. Each also comes with its own pitfalls and difficulties of interpretation. It is not obvious that any single approach represents a direct replacement as a data summary tool. Here we build more directly on the results of STRUCTURE/ADMIXTURE by developing a new approach, badMIXTURE, to examine which features of the data are poorly fit by the model. Rather than intending to replace more specific or sophisticated analyses, we hope to encourage their use by making the limitations of the initial analysis clearer.

    The default interpretation protocol

    Most researchers are cautious but literal in their interpretation of STRUCTURE and ADMIXTURE results, as caricatured in Fig. 1, as it is difficult to interpret the results at all without making several of these assumptions. Here we use simulated and real data to illustrate how following this protocol can lead to inference of false histories, and how badMIXTURE can be used to examine model fit and avoid common pitfalls.

    admixture-protocol
    A protocol for interpreting admixture estimates, based on the assumption that the model underlying the inference is correct. If these assumptions are not validated, there is substantial danger of over-interpretation. The “Core protocol” describes the assumptions that are made by the admixture model itself (Protocol 1, 3, 4), and inference for estimating K (Protocol 2). The “Algorithm input” protocol describes choices that can further bias results, while the “Interpretation” protocol describes assumptions that can be made in interpreting the output that are not directly supported by model inference

    Discussion

    STRUCTURE and ADMIXTURE are popular because they give the user a broad-brush view of variation in genetic data, while allowing the possibility of zooming down on details about specific individuals or labelled groups. Unfortunately it is rarely the case that sampled data follows a simple history comprising a differentiation phase followed by a mixture phase, as assumed in an ADMIXTURE model and highlighted by case study 1. Naïve inferences based on this model (the Protocol of Fig. 1) can be misleading if sampling strategy or the inferred value of the number of populations K is inappropriate, or if recent bottlenecks or unobserved ancient structure appear in the data. It is therefore useful when interpreting the results obtained from real data to think of STRUCTURE and ADMIXTURE as algorithms that parsimoniously explain variation between individuals rather than as parametric models of divergence and admixture.

    For example, if admixture events or genetic drift affect all members of the sample equally, then there is no variation between individuals for the model to explain. Non-African humans have a few percent Neanderthal ancestry, but this is invisible to STRUCTURE or ADMIXTURE since it does not result in differences in ancestry profiles between individuals. The same reasoning helps to explain why for most data sets—even in species such as humans where mixing is commonplace—each of the K populations is inferred by STRUCTURE/ADMIXTURE to have non-admixed representatives in the sample. If every individual in a group is in fact admixed, then (with some exceptions) the model simply shifts the allele frequencies of the inferred ancestral population to reflect the fraction of admixture that is shared by all individuals.

    Several methods have been developed to estimate K, but for real data, the assumption that there is a true value is always incorrect; the question rather being whether the model is a good enough approximation to be practically useful. First, there may be close relatives in the sample which violates model assumptions. Second, there might be “isolation by distance”, meaning that there are no discrete populations at all. Third, population structure may be hierarchical, with subtle subdivisions nested within diverged groups. This kind of structure can be hard for the algorithms to detect and can lead to underestimation of K. Fourth, population structure may be fluid between historical epochs, with multiple events and structures leaving signals in the data. Many users examine the results of multiple K simultaneously but this makes interpretation more complex, especially because it makes it easier for users to find support for preconceptions about the data somewhere in the results.

    In practice, the best that can be expected is that the algorithms choose the smallest number of ancestral populations that can explain the most salient variation in the data. Unless the demographic history of the sample is particularly simple, the value of K inferred according to any statistically sensible criterion is likely to be smaller than the number of distinct drift events that have practically impacted the sample. The algorithm uses variation in admixture proportions between individuals to approximately mimic the effect of more than K distinct drift events without estimating ancestral populations corresponding to each one. In other words, an admixture model is almost always “wrong” (Assumption 2 of the Core protocol, Fig. 1) and should not be interpreted without examining whether this lack of fit matters for a given question.

    admixture-pitfalls
    Three scenarios that give indistinguishable ADMIXTURE results. a Simplified schematic of each simulation scenario. b Inferred ADMIXTURE plots at K= 11. c CHROMOPAINTER inferred painting palettes.

    Because STRUCTURE/ADMIXTURE accounts for the most salient variation, results are greatly affected by sample size in common with other methods. Specifically, groups that contain fewer samples or have undergone little population-specific drift of their own are likely to be fit as mixes of multiple drifted groups, rather than assigned to their own ancestral population. Indeed, if an ancient sample is put into a data set of modern individuals, the ancient sample is typically represented as an admixture of the modern populations (e.g., ref. 28,29), which can happen even if the individual sample is older than the split date of the modern populations and thus cannot be admixed.

    This paper was already available as a preprint in bioRxiv (first published in 2016) and it is incredible that it needed to wait all this time to be published. I found it weird how reviewers focused on the “tone” of the paper. I think it is great to see files from the peer review process published, but we need to know who these reviewers were, to understand their whiny remarks… A lot of geneticists out there need to develop a thick skin, or else we are going to see more and more delays based on a perceived incorrect tone towards the field, which seems a rather subjective reason to force researchers to correct a paper.

    PCA of SNP data

    Open access Effective principal components analysis of SNP data, by Gauch, Qian, Piepho, Zhou, & Chen, bioRxiv (2018).

    Interesting excerpts:

    A potential hindrance to our advice to upgrade from PCA graphs to PCA biplots is that the SNPs are often so numerous that they would obscure the Items if both were graphed together. One way to reduce clutter, which is used in several figures in this article, is to present a biplot in two side-by-side panels, one for Items and one for SNPs. Another stratagem is to focus on a manageable subset of SNPs of particular interest and show only them in a biplot in order to avoid obscuring the Items. A later section on causal exploration by current methods mentions several procedures for identifying particularly relevant SNPs.

    One of several data transformations is ordinarily applied to SNP data prior to PCA computations, such as centering by SNPs. These transformations make a huge difference in the appearance of PCA graphs or biplots. A SNPs-by-Items data matrix constitutes a two-way factorial design, so analysis of variance (ANOVA) recognizes three sources of variation: SNP main effects, Item main effects, and SNP-by-Item (S×I) interaction effects. Double-Centered PCA (DC-PCA) removes both main effects in order to focus on the remaining S×I interaction effects. The resulting PCs are called interaction principal components (IPCs), and are denoted by IPC1, IPC2, and so on. By way of preview, a later section on PCA variants argues that DC-PCA is best for SNP data. Surprisingly, our literature survey did not encounter even a single analysis identified as DC-PCA.

    The axes in PCA graphs or biplots are often scaled to obtain a convenient shape, but actually the axes should have the same scale for many reasons emphasized recently by Malik and Piepho [3]. However, our literature survey found a correct ratio of 1 in only 10% of the articles, a slightly faulty ratio of the larger scale over the shorter scale within 1.1 in 12%, and a substantially faulty ratio above 2 in 16% with the worst cases being ratios of 31 and 44. Especially when the scale along one PCA axis is stretched by a factor of 2 or more relative to the other axis, the relationships among various points or clusters of points are distorted and easily misinterpreted. Also, 7% of the articles failed to show the scale on one or both PCA axes, which leaves readers with an impressionistic graph that cannot be reproduced without effort. The contemporary literature on PCA of SNP data mostly violates the prohibition against stretching axes.

    pca-how-to
    DC-PCA biplot for oat data. The gradient in the CA-arranged matrix in Fig 13 is shown here for both lines and SNPs by the color scheme red, pink, black, light green, dark green.

    The percentage of variation captured by each PC is often included in the axis labels of PCA graphs or biplots. In general this information is worth including, but there are two qualifications. First, these percentages need to be interpreted relative to the size of the data matrix because large datasets can capture a small percentage and yet still be effective. For example, for a large dataset with over 107,000 SNPs for over 6,000 persons, the first two components capture only 0.3693% and 0.117% of the variation, and yet the PCA graph shows clear structure (Fig 1A in [4]). Contrariwise, a PCA graph could capture a large percentage of the total variation, even 50% or more, but that would not guarantee that it will show evident structure in the data. Second, the interpretation of these percentages depends on exactly how the PCA analysis was conducted, as explained in a later section on PCA variants. Readers cannot meaningfully interpret the percentages of variation captured by PCA axes when authors fail to communicate which variant of PCA was used.

    Conclusion

    Five simple recommendations for effective PCA analysis of SNP data emerge from this investigation.

    1. Use the SNP coding 1 for the rare or minor allele and 0 for the common or major allele.
    2. Use DC-PCA; for any other PCA variant, examine its augmented ANOVA table.
    3. Report which SNP coding and PCA variant were selected, as required by contemporary standards in science for transparency and reproducibility, so that readers can interpret PCA results properly and reproduce PCA analyses reliably.
    4. Produce PCA biplots of both Items and SNPs, rather than merely PCA graphs of only Items, in order to display the joint structure of Items and SNPs and thereby to facilitate causal explanations. Be aware of the arch distortion when interpreting PCA graphs or biplots.
    5. Produce PCA biplots and graphs that have the same scale on every axis.

    I read the referenced paper Biplots: Do Not Stretch Them!, by Malik and Piepho (2018), and even though it is not directly applicable to the most commonly available PCA graphs out there, it is a good reminder of the distorting effects of stretching. So for example quite recently in Krause-Kyora et al. (2018), where you can see Corded Ware and BBC samples from Central Europe clustering with samples from Yamna:

    NOTE. This is related to a vertical distorsion (i.e. horizontal stretching), but possibly also to the addition of some distant outlier sample/s.

    pca-cwc-yamna-bbc
    Principal Component Analysis (PCA) of the human Karsdorf and Sorsum samples together with previously published ancient populations projected on 27 modern day West Eurasian populations (not shown) based on a set of 1.23 million SNPs (Mathieson et al., 2015). https://doi.org/10.7554/eLife.36666.006

    The so-called ‘Yamnaya’ ancestry

    Every time I read papers like these, I remember commenters who kept swearing that genetics was the ultimate science that would solve anthropological problems, where unscientific archaeology and linguistics could not. Well, it seems that, like radiocarbon analysis, these promising developing methods need still a lot of refinement to achieve something meaningful, and that they mean nothing without traditional linguistics and archaeology… But we already knew that.

    Also, if this is happening in most peer-reviewed publications, made by professional geneticists, in journals of high impact factor, you can only wonder how many more errors and misinterpretations can be found in the obscure market of so many amateur geneticists out there. Because amateur geneticist is a commonly used misnomer for people who are not geneticists (since they don’t have the most basic education in genetics), and some of them are not even ‘amateurs’ (because they are selling the outputs of bioinformatic tools)… It’s like calling healers ‘amateur doctors’.

    NOTE. While everyone involved in population genetics is interested in knowing the truth, and we all have our confirmation (and other kinds of) biases, for those who get paid to tell people what they want to hear, and who have sold lots of wrong interpretations already, the incentives of ‘being right’ – and thus getting involved in crooked and paranoid behaviour regarding different interpretations – are as strong as the money they can win or loose by promoting themselves and selling more ‘product’.

    As a reminder of how badly these wrong interpretations of genetic results – and the influence of the so-called ‘amateurs’ – can reflect on research groups, yet another turn of the screw by the Copenhagen group, in the oral presentations at Languages and migrations in pre-historic Europe (7-12 Aug 2018), organized by the Copenhagen University. The common theme seems to be that Bell Beaker and thus R1b-L23 subclades do represent a direct expansion from Yamna now, as opposed to being derived from Corded Ware migrants, as they supported before.

    NOTE. Yes, the “Yamna → Corded Ware → Únětice / Bell Beaker” migration model is still commonplace in the Copenhagen workgroup. Yes, in 2018. Guus Kroonen had already admitted they were wrong, and it was already changed in the graphic representation accompanying a recent interview to Willerslev. However, since there is still no official retraction by anyone, it seems that each member has to reject the previous model in their own way, and at their own pace. I don’t think we can expect anyone at this point to accept responsibility for their wrong statements.

    So their lead archaeologist, Kristian Kristiansen, in The Indo-Europeanization of Europé (sic):

    kristiansen-migrations
    Kristiansen’s (2018) map of Indo-European migrations

    I love the newly invented arrows of migration from Yamna to the north to distinguish among dialects attributed by them to CWC groups, and the intensive use of materials from Heyd’s publications in the presentation, which means they understand he was right – except for the fact that they are used to support a completely different theory, radically opposed to those defended in Heyd’s model

    Now added to the Copenhagen’s unending proposals of language expansions, some pearls from the oral presentation:

    • Corded Ware north of the Carpathians of R1a lineages developed Germanic;
    • R1b borugh [?] Italo-Celtic;
    • the increase in steppe ancestry on north European Bell Beakers mean that they “were a continuation of the Yamnaya/Corded Ware expansion”;
    • Corded Ware groups [] stopped their expansion and took over the Bell Beaker package before migrating to England” [yep, it literally says that];
    • Italo-Celtic expanded to the UK and Iberia with Bell Beakers [I guess that included Lusitanian in Iberia, but not Messapian in Italy; or the opposite; or nothing like that, who knows];
    • 2nd millennium BC Bronze Age Atlantic trade systems expanded Proto-Celtic [yep, trade systems expanded the language]
    • 1st millennium BC expanded Gaulish with La Tène, including a “Gaulish version of Celtic to Ireland/UK” [hmmm, dat British Gaulish indeed].

    You know, because, why the hell not? A logical, stable, consequential, no-nonsense approach to Indo-European migrations, as always.

    Also, compare still more invented arrows of migrations, from Mikkel Nørtoft’s Introducing the Homeland Timeline Map, going against Kristiansen’s multiple arrows, and even against the own recent fantasy map series in showing Bell Beakers stem from Yamna instead of CWC (or not, you never truly know what arrows actually mean):

    corded-ware-migrations
    Nørtoft’s (2018) maps of Indo-European migrations.

    I really, really loved that perennial arrow of migration from Volosovo, ca. 4000-800 BC (3000+ years, no less!), representing Uralic?, like that, without specifics – which is like saying, “somebody from the eastern forest zone, somehow, at some time, expanded something that was not Indo-European to Finland, and we couldn’t care less, except for the fact that they were certainly not R1a“.

    This and Kristiansen’s arrows are the most comical invented migration routes of 2018; and that is saying something, given the dozens of similar maps that people publish in forums and blogs each week.

    NOTE. You can read a more reasonable account of how haplogroup R1b-L51 and how R1-Z645 subclades expanded, and which dialects most likely expanded with them.

    We don’t know where these scholars of the Danish workgroup stand at this moment, or if they ever had (or intended to have) a common position – beyond their persistent ideas of Yamnaya™ ancestral component = Indo-European and R1a must be Indo-European – , because each new publication changes some essential aspects without expressly stating so, and makes thus everything still messier.

    It’s hard to accept that this is a series of presentations made by professional linguists, archaeologists, and geneticists, as stated by the official website, and still harder to imagine that they collaborate within the same professional workgroup, which includes experienced geneticists and academics.

    I propose the following video to close future presentations introducing innovative ideas like those above, to help the audience find the appropriate mood:

    Related