Ahead of the (Indo-European – Uralic) game: in theory and in numbers

yamnaya-expansion-bell-beaker

There is a good reason for hope, for those who look for a happy ending to the revolution of population genomics that is quickly turning into an involution led by beliefs and personal interests. This blog is apparently one of the the most read sites on Indo-European peoples, if not the most read one, and now on Uralic peoples, too.

I’ve been checking the analytics of our sites, and judging by the numbers of the English blog, Indo-European.eu (without the other languages) is quickly turning into the most visited one from Academia Prisca‘s sites on Indo-European languages, beyond Indo-European.info (and its parent sites in other languages), which host many popular files for download.

If we take into account file downloads (like images or PDFs), and not only what Google Analytics can record, Indo-European.eu has not more users than all other websites of Academia Prisca, but at this pace it will soon reach half the total visits, possibly before the end of 2019.

Overall, we have evolved from some 10,000 users/year in 2006 to ~300,000 active users/year and >1,000,000 page+file views/year in 2018 (impossible to say exactly without spending too much time on this task). Nothing out of the ordinary, I guess, and obviously numbers are not a quality index, but rather a hint at increasing popularity of the subject and of our work.

NOTE. The mean reading time is ~2:40 m, which I guess fits the length of most posts, and most visitors read a mean of ~2+ pages before leaving, with increasing reader fidelity over time.

indo-european-eu-analytics
Number of active users of indo-european.eu, according to Google Analytics since before the start of the new blog. Notice the peaks corresponding to the posts below (except the last one, corresponding to the publication of A Song of Sheep and Horses).

The most read posts of 2018, now that we can compare those from the last quarter, are as follows:

  1. – The series on the Corded Ware-Uralic theory, with a marked increase in readers, especially with the last three posts:
    1. Finno-Permic and the expansion of N-L392/Siberian ancestry,
    2. “Siberian ancestry” and Ugric-Samoyedic expansions, and
    3. Haplogroups R1a and N in Finno-Ugric and Samoyedic
  2. Haplogroup is not language, but R1b-L23 expansion was associated with Proto-Indo-Europeans
  3. The history of the simplistic ‘haplogroup R1a — Indo-European’ association
  4. On the origin of haplogroup R1b-L51 in late Repin / early Yamna settlers
  5. On the origin and spread of haplogroup R1a-Z645 from eastern Europe
  6. The Caucasus a genetic and cultural barrier; Yamna dominated by R1b-M269; Yamna settlers in Hungary cluster with Yamna
  7. Something is very wrong with models based on the so-called ‘Yamnaya admixture’ – and archaeologists are catching up (II)
  8. Olalde et al. and Mathieson et al. (Nature 2018): R1b-L23 dominates Bell Beaker and Yamna, R1a-M417 resurges in East-Central Europe during the Bronze Age
  9. Early Indo-Iranian formed mainly by R1b-Z2103 and R1a-Z93, Corded Ware out of Late PIE-speaking migrations
  10. “Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

NOTE. Of course, the most recent posts are the most visited ones right now, but that’s because of the constant increase in the number of visitors.

I think it is obvious what the greatest interest of readers has been in the past two years. You can see the pattern by looking at the most popular posts of 2017, when the blog took off again:

  1. Germanic–Balto-Slavic and Satem (‘Indo-Slavonic’) dialect revisionism by amateur geneticists, or why R1a lineages *must* have spoken Proto-Indo-European
  2. The renewed ‘Kurgan model’ of Kristian Kristiansen and the Danish school: “The Indo-European Corded Ware Theory”
  3. The new “Indo-European Corded Ware Theory” of David Anthony
  4. Correlation does not mean causation: the damage of the ‘Yamnaya ancestral component’, and the ‘Future American’ hypothesis
  5. The Aryan migration debate, the Out of India models, and the modern “indigenous Indo-Aryan” sectarianism

The most likely reason for the radical increase in this blog’s readership is very simple, then: people want to know what is really happening with the research on ancestral Indo-Europeans and Uralians, and other blogs and forums are not keeping up with that demand, being content with repeating the same ideas again and again (R1a-CWC-IE, R1b-BBC-Vasconic, and N-Comb Ware-Uralic), despite the growing contradictions. As you can imagine, once you have seen the Yamna -> Bell Beaker migration model of North-West Indo-European, with Corded Ware obviously representing Uralic, you can’t unsee it.

The online bullying, personal attacks, and similar childish attempts to silence those who want to talk about this theory elsewhere (while fringe theories like R1a/CHG-OIT, R1b-Vasconic, or the Anatolian/Armenian-CHG hypotheses, to name just a few, are openly discussed) has had, as could be expected, the opposite effect to what was intended. I guess you can say this blog and our projects have profited from the first relevant Streisand effect of population genomics, big time.

If this trend continues this year (and other bloggers’ or forum users’ faith in miracles is not likely to change), I suppose that after the Yamna Hungary samples are published (with the expected results) this blog is going to be the most read in 2020 by a great margin… I can only infer that this tension is also helping raise the interest in (and politicization of) the question, hence probably the overall number of active users and their participation in other blogs and forums is going to increase everywhere in 2019, too, as this debate becomes more and more heated.

So, what I infer from the most popular posts and the numbers is that people want criticism and controversy, and if you want blood you’ve got it. Here it is, my latest addition to the successful series criticizing the “Corded Ware/R1a–Indo-European” pet theories, a post I wrote two-three months ago, slightly updated with the newest comedy, and a sure success for 2019 (already added to the static pages of the menu):

The “Indo-European Corded Ware theory” doesn’t hold water

This is how I feel when I see spikes in visits with more and more returning users linked to my controversial posts 😉

Are you not entertained?! Are you not entertained?! Is this not why you are here?!

ASoSaH Reread (II): Y-DNA haplogroups among Uralians (apart from R1a-M417)

corded-ware-yamna-ancestry

This is mainly a reread of from Book Two: A Game of Clans of the series A Song of Sheep and Horses: chapters iii.5. Early Indo-Europeans and Uralians, iv.3. Early Uralians, v.6. Late Uralians and vi.3. Disintegrating Uralians.

“Sredni Stog”

While the true source of R1a-M417 – the main haplogroup eventually associated with Corded Ware, and thus Uralic speakers – is still not known with precision, due to the lack of R1a-M198 in ancient samples, we already know that the Pontic-Caspian steppes were probably not it.

We have many samples from the north Pontic area since the Mesolithic compared to the Volga-Ural territory, and there is a clear prevalence of I2a-M223 lineages in the forest-steppe area, mixed with R1b-V88 (possibly a back-migration from south-eastern Europe).

R1a-M459 (xR1a-M198) lineages appear from the Mesolithic to the Chalcolithic scattered from the Baltic to the Caucasus, from the Dniester to Samara, in a situation similar to haplogroups Q1a-M25 and R1b-L754, which supports the idea that R1a, Q1a, and R1b expanded with ANE ancestry, possibly in different waves since the Epipalaeolithic, and formed the known ANE:EHG:WHG cline.

y-dna-khvalynsk
Y-DNA samples from Khvalynsk and neighbouring cultures. See full version.

The first confirmed R1a-M417 sample comes from Alexandria, roughly coinciding with the so-called steppe hiatus. Its emergence in the area of the previous “early Sredni Stog” groups (see the mess of the traditional interpretation of the north Pontic groups as “Sredni Stog”) and its later expansion with Corded Ware supports Kristiansen’s interpretation that Corded Ware emerged from the Dnieper-Dniester corridor, although samples from the area up to ca. 4000 BC, including the few Middle Eneolithic samples available, show continuity of hg. I2a-M223 and typical Ukraine Neolithic ancestry.

NOTE. The further subclade R1a-Z93 (Y26) reported for the sample from Alexandria seems too early, given the confidence interval for its formation (ca. 3500-2500 BC); even R1a-Z645 could be too early. Like the attribution of the R1b-L754 from Khvalynsk to R1b-V1636 (after being previously classifed as of Pre-V88 and M73 subclade), it seems reasonable to take these SNP calls with a pinch of salt: especially because Yleaf (designed to look for the furthest subclade possible) does not confirm for them any subclade beyond R1a-M417 and R1b-L754, respectively.

The sudden appearance of “steppe ancestry” in the region, with the high variability shown by Ukraine_Eneolithic samples, suggests that this is due to recent admixture of incoming foreign peoples (of Ukraine Neolithic / Comb Ware ancestry) with Novodanilovka settlers.

The most likely origin of this population, taking into account the most common population movements in the area since the Neolithic, is the infiltration of (mainly) hunter-gatherers from the forest areas. That would confirm the traditional interpretation of the origin of Uralic speakers in the forest zone, although the nature of Pontic-Caspian settlers as hunter-gatherers rather than herders make this identification today fully unnecessary (see here).

EDIT (3 FEB 2019): As for the most common guesstimates for Proto-Uralic, roughly coinciding with the expansion of this late Sredni Stog community (ca. 4000 BC), you can read the recent post by J. Pystynen in Freelance Reconstruction, Probing the roots of Samoyedic.

eneolithic-ukraine-corded-ware
Late Sredni Stog admixture shows variability proper of recent admixture of forest-steppe peoples with steppe-like population. See full version here.

NOTE. Although my initial simplistic interpretation (of early 2017) of Comb Ware peoples – traditionally identified as Uralic speakers – potentially showing steppe ancestry was probably wrong, it seems that peoples from the forest zone – related to Comb Ware or neighbouring groups like Lublyn-Volhynia – reached forest-steppe areas to the south and eventually expanded steppe ancestry into east-central Europe through the Volhynian Upland to the Polish Upland, during the late Trypillian disintegration (see a full account of the complex interactions of the Final Eneolithic).

The most interesting aspect of ascertaining the origin of R1a-M417, given its prevalence among Uralic speakers, is to precisely locate the origin of contacts between Late Proto-Indo-European and Proto-Uralic. Traditionally considered as the consequence of contacts between Middle and Upper Volga regions, the most recent archaeological research and data from ancient DNA samples has made it clear that it is Corded Ware the most likely vector of expansion of Uralic languages, hence these contacts of Indo-Europeans of the Volga-Ural region with Uralians have to be looked for in neighbours of the north Pontic area.

sredni-stog-repin-contacts
Sredni Stog – Repin contacts representing Uralic – Late Indo-European contacts were probably concentrated around the Don River.

My bet – rather obvious today – is that the Don River area is the source of the earliest borrowings of Late Uralic from Late Indo-European (i.e. post-Indo-Anatolian). The borrowing of the Late PIE word for ‘horse’ is particularly interesting in this regard. Later contacts (after the loss of the initial laryngeal) may be attributed to the traditionally depicted Corded Ware – Yamna contact zone in the Dnieper-Dniester area.

NOTE. While the finding of R1a-M417 populations neighbouring R1b-L23 in the Don-Volga interfluve would be great to confirm these contacts, I don’t know if the current pace of more and more published samples will continue. The information we have right now, in my opinion, suffices to support close contacts of neighbouring Indo-Europeans and Uralians in the Pontic-Caspian area during the Late Eneolithic.

Classical Corded Ware

After some complex movements of TRB, late Trypillia and GAC peoples, Corded Ware apparently emerged in central-east Europe, under the influence of different cultures and from a population that probably (at least partially) stemmed from the north Pontic forest-steppe area.

Single Grave and central Corded Ware groups – showing some of the earliest available dates (emerging likely ca. 3000/2900 BC) – are as varied in their haplogroups as it is expected from a sink (which does not in the least resemble the Volga-Ural population):

Interesting is the presence of R1b-L754 in Obłaczkowo, potentially of R1b-V88 subclade, as previously found in two Central European individuals from Blätterhole MN (ca. 3650 and 3200 BC), and in the Iron Gates and north Pontic areas.

Haplogroups I2a and G have also been reported in early samples, all potentially related to the supposed Corded Ware central-east European homeland, likely in southern Poland, a region naturally connected to the north Pontic forest-steppe area and to the expansion of Neolithic groups.

corded-ware-haplogroups
Y-DNA samples from early Corded Ware groups and neighbouring cultures. See full version.

The true bottlenecks under haplogroup R1a-Z645 seem to have happened only during the migration of Corded Ware to the east: to the north into the Battle Axe culture, mainly under R1a-Z282, and to the south into Middle Dnieper – Fatyanovo-Balanovo – Abashevo, probably eventually under R1a-Z93.

This separation is in line with their reported TMRCA, and supports the split of Finno-Permic from an eastern Uralic group (Ugric and Samoyedic), although still in contact through the Russian forest zone to allow for the spread of Indo-Iranian loans.

This bottleneck also supports in archaeology the expansion of a sort of unifying “Corded Ware A-horizon” spreading with people (disputed by Furholt), the disintegrating Uralians, and thus a source of further loanwords shared by all surviving Uralic languages.

Confirming this ‘concentrated’ Uralic expansion to the east is the presence of R1a-M417 (xR1a-Z645) lineages among early and late Single Grave groups in the west – which essentially disappeared after the Bell Beaker expansion – , as well as the presence of these subclades in modern Central and Western Europeans. Central European groups became thus integrated in post-Bell Beaker European EBA cultures, and their Uralic dialect likely disappeared without a trace.

NOTE. The fate of R1b-L51 lineages – linked to North-West Indo-Europeans undergoing a bottleneck in the Yamna Hungary -> Bell Beaker migration to the west – is thus similar to haplogroup R1a-Z645 – linked to the expansion of Late Uralians to the east – , hence proving the traditional interpretation of the language expansions as male-driven migrations. These are two of the most interesting genetic data we have to date to confirm previous language expansions and dialectal classifications.

It will be also interesting to see if known GAC and Corded Ware I2a-Y6098 subclades formed eventually part of the ancient Uralic groups in the east, apart from lineages which will no doubt appear among asbestos ware groups and probably hunter-gatherers from north-eastern Europe (see the recent study by Tambets et al. 2018).

Corded Ware ancestry marked the expansion of Uralians

Sadly, some brilliant minds decided in 2015 that the so-called “Yamnaya ancestry” (now more appropriately called “steppe ancestry”) should be associated to ‘Indo-Europeans’. This is causing the development of various new pet theories on the go, as more and more data contradicts this interpretation.

There is a clear long-lasting cultural, populational, and natural barrier between Yamna and Corded Ware: they are derived from different ancestral populations, which show clearly different ancestry and ancestry evolution (although they did converge to some extent), as well as different Y-DNA bottlenecks; they show different cultures, including those of preceding and succeeding groups, and evolved in different ecological niches. The only true steppe pastoralists who managed to dominate over grasslands extending from the Upper Danube to the Altai were Yamna peoples and their cultural successors.

corded-ware-yamna-pca
Corded Ware admixture proper of expanding late Sredni Stog-like populations from the forest-steppe. See full version here.

NOTE. You can also read two recent posts by FrankN in the blog aDNA era, with detailed information on the Pontic-Caspian cultures and the formation of “steppe ancestry” during the Palaeolithic, Mesolithic and Neolithic: How did CHG get into Steppe_EMBA? Part 1: LGM to Early Holocene and How did CHG get into Steppe_EMBA? Part 2: The Pottery Neolithic. Unlike your typical amateur blogger on genetics using few statistical comparisons coupled with ‘archaeolinguoracial mumbo jumbo’ to reach unscientific conclusions, these are obviously carefully redacted texts which deserve to be read.

I will not enter into the discussion of “steppe ancestry” and the mythical “Siberian ancestry” for this post, though. I will just repost the opinion of Volker Heyd – an archaeologist specialized in Yamna Hungary and Bell Beakers who is working with actual geneticists – on the early conclusions based on “steppe ancestry”:

[A]rchaeologist Volker Heyd at the University of Bristol, UK, disagreed, not with the conclusion that people moved west from the steppe, but with how their genetic signatures were conflated with complex cultural expressions. Corded Ware and Yamnaya burials are more different than they are similar, and there is evidence of cultural exchange, at least, between the Russian steppe and regions west that predate Yamnaya culture, he says. None of these facts negates the conclusions of the genetics papers, but they underscore the insufficiency of the articles in addressing the questions that archaeologists are interested in, he argued. “While I have no doubt they are basically right, it is the complexity of the past that is not reflected,” Heyd wrote, before issuing a call to arms. “Instead of letting geneticists determine the agenda and set the message, we should teach them about complexity in past human actions.

Related

ASoSaH Reread (I): Y-DNA haplogroups among Indo-Europeans (apart from R1b-L23)

eneolithic-early-admixture-steppe-ancestry

Given my reduced free time in these months, I have decided to keep updating the text on Indo-European and Uralic migrations and/or this blog, simultaneously or alternatively, to make the most out of the time I can dedicate to this. I will add the different ‘A Song of Sheep and Horses (ASoSaH) reread’ posts to the original post announcing the books. I would be especially interested in comments and corrections to the book chapters rather than the posts, but any comments are welcome (including in the forum, where comments are more likely to stick).

This is mainly a reread of iv.2. Indo-Anatolians and vi.1. Disintegrating Indo-Europeans.

Indo-Anatolians and Late Indo-Europeans

I have often written about R1b-L23 as the majority haplogroup among Late Proto-Indo-Europeans (see my predictions for 2018 and my summary of 2018), but always expected other haplogroups to pop up somewhere along the way, in Khvalynsk, in Repin, in Yamna, and in Bell Beakers (see e.g. the post on common fallacies of R1a/IE-fans).

Luckily enough – for those of us who want precise answers to our previous infinite models of Indo-European language expansions (viz. GAC-associated expansion, IE-speaking Old Europe, Anatolian homeland, Iran homeland, Maykop as Proto-Anatolian, Palaeolithic Continuity Theory, Celtic in the Atlantic façade, etc.) – the situation has been more clear-cut than expected: it turns out that, especially during population expansions, acute Y-chromosome bottlenecks were very common in the past, at least until the Iron Age.

Khvalynsk and Repin-Yamna expansions were no different, and that seems quite natural in hindsight, given the strong familial ties and aversion to foreigners proper of the Late Proto-Indo-European society and culture – probably not really that different from other contemporary societies, like the neighbouring Late Proto-Uralic or Trypillian ones.

y-dna-khvalynsk
Y-DNA samples from Khvalynsk and neighbouring cultures. See full version here.

Y-DNA haplogroups

During the expansion of early Khvalynsk, the most likely Indo-Anatolian culture, the society of the Don-Volga area was probably made up of different lineages including R1b-V1636, R1b-M269, R1a-YP1272, Q1a-M25, and I2a-L699 (and possibly some R1b-V88?), a variability possibly greater than that of the contemporary north Pontic area, probably a sign of this region being a sink of different east and west migrations from steppe and forest areas.

During its expansion, the Khvalynsk society saw its haplogroup variability reduced, as evidenced by the succeeding expansive Repin culture:

Afanasevo, representing Pre-Tocharian (the earliest Late PIE dialect to branch off), expanded with R1b-L23 – especially R1b-Z2103 – lineages, while early Yamna expanded with R1b-L23 and I2a-L699 lineages, which suggests that these are the main haplogroups that survived the Y-DNA bottleneck undergone during the Khvalynsk expansion, and especially later during the late Repin expansion. Nevertheless, other old haplogroups might still pop up during the Repin and early Yamna period, such as the R1b-V1636 sample from Yamna in the Northern Caucasus.

It is still unclear if R1b-L23 sister clade R1b-PF7562 (formed ca. 4400 BC, TMRCA ca. 3400 BC), prevalent among modern Albanians, expanded with Yamna migrants, or if it was part of an earlier expansion of R1b-M269 into the Balkans, and represent thus Indo-Anatolian speakers who later hitchhiked the expansion of the Late PIE language from the north or west Pontic area. The early TMRCA seems to suggest an association with Repin (and therefore Yamna), rather than later movements in the Balkans.

chalcolithic-early-y-dna
Y-DNA samples from Yamnaya and neighbouring cultures. See full version here.

‘Yamnaya’ or ‘steppe’ ancestry?

After the early years when population genetics relied mainly on modern Y-DNA haplogroups, geneticists and amateurs have been recently playing around with testing “ancestry percentages”, based on newly developed free statistical tools, which offer obviously just one among many types of data to achieve a proper interpretation of the past.

Today we have quite a lot Y-DNA haplogroups reported for ancient samples of more recent prehistoric periods, and they seem to offer (at least since the 2015 papers, but more evidently since the 2018 papers on Bell Beakers and Europeans, Corded Ware, or Fennoscandia among others) the most straightforward interpretation of all results published in population genomics research.

NOTE. The finding of a specific type of ancestry in one isolated 40,000-year-old sample from Tianyuan can offer very interesting information on potential population movements to the region. However, the identification of ethnolinguistic communities and their migrations among neighbouring groups in Neolithic or Bronze Age groups is evidently not that simple.

PCA-caucasus-steppe-all
Yamnaya (Indo-European peoples) and their evolution in the steppes, together with North Pontic (eventually Uralic) peoples.Notice how little Indo-European ancestry changes from Khvalynsk (Indo-Anatolian) to Yamna Hungary (North-West Indo-Europeans) Image modified from Wang et al. (2018). See more on the evolution of “steppe ancestry”.

It is becoming more and more clear with each paper that the true “Yamnaya ancestry” – not the originally described one – was in fact associated with Indo-Europeans (see more on the very Yamnaya-like Yamna Hungary and early East Bell Beaker R1b samples, all of quite similar ancestry and PCA cluster before their further admixture with EEF- and CWC-like groups).

The so-called “steppe ancestry”, on the other hand, reflects the contribution of a Northern Caucasus-related ancestry to expanding Khvalynsk settlers, who spread through the steppes more than a thousand years before the expansion of Late Proto-Indo-Europeans with late Repin, and can thus be found among different groups related to the Pontic-Caspian steppes (see more on the emergence and evolution of “steppe ancestry”).

In fact, after the Yamna/Indo-European and Corded Ware/Uralic expansions, it is more likely to find “steppe ancestry” to the north and east in territories traditionally associated with Uralic languages, whereas to the south and west – i.e. in territories traditionally associated with Indo-European languages – it is more likely to find “EEF ancestry” with diminished “steppe ancestry”, among peoples patrilineally descended from Yamna settlers.

Y-DNA haplogroups, the only uniparental markers (see exceptions in mtDNA inheritance) – unlike ancestry percentages based on the comparison of a few samples and flawed study designs – do not admix, do not change, and therefore they do not lend themselves to infinite pet theories (see e.g. what David Reich has to say about R1b-P312 in Iberia directly derived from Yamna migrants in spite of their predominant EEF ancestry): their cultural continuity can only be challenged with carefully threaded linguistic, archaeological, and genetic data.

Related

A very “Yamnaya-like” East Bell Beaker from France, probably R1b-L151

bell-beaker-expansion

Interesting report by Bernard Sécher on Anthrogenica, about the Ph.D. thesis of Samantha Brunel from Institut Jacques Monod, Paris, Paléogénomique des dynamiques des populations humaines sur le territoire Français entre 7000 et 2000 (2018).

NOTE. You can visit Bernard Sécher’s blog on genetic genealogy.

A summary from user Jool, who was there, translated into English by Sécher (slight changes to translation, and emphasis mine):

They have a good hundred samples from the North, Alsace and the Mediterranean coast, from the Mesolithic to the Iron Age.

There is no major surprise compared to the rest of Europe. On the PCA plot, the Mesolithic are with the WHG, the early Neolithics with the first farmers close to the Anatolians. Then there is a small resurgence of hunter-gatherers that moves the Middle Neolithics a little closer to the WHGs.

From the Bronze Age, they have 5 samples with autosomal DNA, all in Bell Beaker archaeological context, which are very spread on the PCA. A sample very high, close to the Yamnaya, a little above the Corded Ware, two samples right in the Central European Bell Beakers, a fairly low just above the Neolithic package, and one last full in the package. The most salient point was that the Y chromosomes of their 12 Bronze Age samples (all Bell Beakers) are all R1b, whereas there was no R1b in the Neolithic samples.

Finally they have samples of the Iron Age that are collected on the PCA plot close to the Bronze Age samples. They could not determine if there is continuity with the Bronze Age, or a partial replacement by a genetically close population.

PCA-caucasus-yamna
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are interesting samples; In red, likely position of late Yamna Hungary / early East Bell Beakers An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here. To understand the drawn potential Caucasus Mesolithic cluster, see above the PCA from Lazaridis et al. (2018).

The sample with likely high “steppe ancestry“, clustering closely to Yamna (more than Corded Ware samples) is then probably an early East Bell Beaker individual, probably from Alsace, or maybe close to the Rhine Delta in the north, rather than from the south, since we already have samples from southern France from Olalde et al. (2018) with high Neolithic ancestry, and samples from the Rhine with elevated steppe ancestry, but not that much.

This specific sample, if confirmed as one of those reported as R1b (then likely R1b-L151), as it seems from the wording of the summary, is key because it would finally link Yamna to East Bell Beaker through Yamna Hungary, all of them very “Yamnaya-like”, and therefore R1b-L151 (hence also R1b-L51) directly to the steppe, and not only to the Carpathian Basin (that is, until we have samples from late Repin or West Yamna…)

NOTE. The only alternative explanation for such elevated steppe ancestry would be an admixture between a ‘less Yamnaya-like’ East Bell Beaker + a Central European Corded Ware sample like the Esperstedt outlier + drift, but I don’t think that alternative is the best explanation of its position in the PCA closer to Yamna in any of the infinite parallel universes, so… Also, the sample from Esperstedt is clearly a late outlier likely influenced by Yamna vanguard settlers from Hungary, not the other way round…

Unexpectedly, then, fully Yamnaya-like individuals are found not only in Yamna Hungary ca. 3000-2500 BC, but also among expanding East Bell Beakers later than 2500 BC. This leaves us with unexplained, not-at-all-Yamnaya-like early Corded Ware samples from ca. 2900 BC on. An explanation based on admixture with locals seems unlikely, seeing how Corded Ware peoples continue a north Pontic cluster, being thus different from Yamna and their ancestors since the Neolithic; and how they remained that way for a long time, up to Sintashta, Srubna, Andronovo, and even later samples… A different, non-Indo-European community it is, then.

olalde_pca2
Image modified from Olalde et al. (2018). PCA of 999 Eurasian individuals. Marked is the Espersted Outlier with the approximate position of Yamna Hungary, probably the source of its admixture. Different Bell Beaker clines have been drawn, to represent approximate source of expansions from Central European sources into the different regions. In red, likely zone of Yamna Hungary and reported early East Bell Beaker individual from France.

Let’s wait and see the Ph.D. thesis, when it’s published, and keep observing in the meantime the absurd reactions of denial, anger, bargaining, and depression (stages of grief) among BBC/R1b=Vasconic and CWC/R1a=Indo-European fans, as if they had lost something (?). Maybe one of these reactions is actually the key to changing reality and going back to the 2000s, who knows…

Featured image: initial expansion of the East Bell Beaker Group, by Volker Heyd (2013).

Related

Genetic landscape and past admixture of modern Slovenians

slovenes-snp

Open access Genetic Landscape of Slovenians: Past Admixture and Natural Selection Pattern, by Maisano Delser et al. Front. Genet. (2018).

Interesting excerpts (emphasis mine):

Samples

Overall, 96 samples ranging from Slovenian littoral to Lower Styria were genotyped for 713,599 markers using the OmniExpress 24-V1 BeadChips (Figure 1), genetic data were obtained from Esko et al. (2013). After removing related individuals, 92 samples were left. The Slovenian dataset has been subsequently merged with the Human Origin dataset (Lazaridis et al., 2016) for a total of 2163 individuals.

Y chromosome

First, Y chromosome genetic diversity was assessed. A total of 52 Y chromosomes were analyzed for 195 SNPs. The majority of individuals (25, 48.1%) belong to the haplogroup R1a1a1a (R-M417) while the second major haplogroup is represented by R1b (R-M343) including 15 individuals (28.8%). Twelve samples are assigned to haplogroup I (I M170): five and two samples belong to haplogroup I2a (I L460) and I1 (I M253), respectively, while the remaining five samples did not have enough information to be further assigned.

pca-slovenes
PCA of Slovenian samples with European populations (Slovenian_HO_EU dataset). For details regarding the populations included, see Supplementary Table 1.

PCA

Considering the unbalanced sample size of the Slovenian population compared to the other populations included in the dataset, a subset of 20 Slovenian individuals randomly sampled was used.

All Slovenian samples group together with Hungarians, Czechs, and some Croatians (“Central-Eastern European” cluster) as also suggested by the PCA. All Basque individuals with few French and Spanish cluster together (“Basque” cluster) while a “Northern-European” cluster is made of the majority of French, English, Icelanders, Norwegians, and Orcadians. Five populations contributed to the “Eastern-European” cluster including Belarusians, Estonians, Lithuanians, Mordovians, and Russians. Western and South Europe is split into two cluster: the first (“Western European” cluster) includes all Spanish individuals, few French, and some Italians (North Italy) while the second (“Southern-European” cluster) groups Sicilians, Greeks, some Croatians, Romanians, and some Italians (North Italy).

Admixture Pattern and Migration

admixture-slovenians
Modified image, from the paper (Central-East Europeans marked). Unsupervised admixture analysis of Slovenians. Results for K = 5 are showed as it represents the lowest cross-validation error. Slovenian samples show an admixture pattern similar to the neighboring populations such as Croatians and Hungarians. The major ancestral components are: the blue one which is shared with Lithuanians and Russians, followed by the dark green one that is mostly present in Greek samples and the light blue which characterizes Orcadians and English. For population acronyms see Supplementary Table 1.

All Slovenian individuals share common pattern of genetic ancestry, as revealed by ADMIXTURE analysis. The three major ancestry components are the North East and North West European ones (light blue and dark blue, respectively, Figure 3), followed by a South European one (dark green, Figure 3). Contribution from the Sardinians and Basque are present in negligible amount. The admixture pattern of Slovenians mimics the one suggested by the neighboring Eastern European populations, but it is different from the pattern suggested by North Italian populations even though they are geographically close.

Using ALDER, the most significant admixture event was obtained with Russians and Sardinians as source populations and it happened 135 ± 9.31 generations ago (Z-score = 11.54). (…) When tested for multiple admixture events (MALDER), we obtained evidence for one admixture event 165.391 ± 17.1918 generations ago corresponding to ∼2620 BCE (CI: 3101–2139) considering a generation time of 28 years (Figure 4), with Kalmyk and Sardinians as sources.

We then modeled the Slovenian population as target of admixture of ancient individuals from Haak et al. (2015) while computing the f3(Ancient 1, Ancient 2, Slovenian) statistic. The most significant signal was obtained with Yamnaya and HungaryGamba_EN (Z-score = -10.66), followed by MA1 with LBK_EN (Z-score -9.7) and Yamnaya with Stuttgart (Z-score = -8.6) used as possible source populations (Supplementary Figure 5).

We found a significant signal of admixture by using both pairs as ancient sources. Specifically, for the pair Yamnaya and Hungary_EN the admixture event is dated at 134.38 ± 23.69 generations ago (Z-score = 5.26, p-value of 1.5e-07) while for Yamnaya and LBK_EN at 153.65 ± 22.19 generations ago (Z-score = 6.92, p-value 4.4e-12). Outgroup f3 with Yamnaya put Slovenian population close to Hungarians, Czechs, and English, indicating a similar shared drift between these population with the Steppe populations (Supplementary Figure 6).

admixture-events-slovenes
Admixture events identified with ALDER and MALDER. The gray dots represent significant admixture events detected with ALDER using Slovenians as target, the solid line represents the single admixture event detected using MALDER, dashed lines represent the confidence interval. Only the significant results after multiple testing correction are plotted. For ALDER results see Supplementary Table 5.

Not that any of this would come as a surprise, but:

  • R1a-M458 and some R1a-Z280 (xR1a-Z92) lineages (found among Slovenes) were associated with the Slavic expansion, likely with the Prague-Korchak culture, originally stemming probably from peoples of the Lusatian culture. Other R1a-Z280 lineages remained associated with Uralic peoples, and some became Slavicized only recently.
  • PCA keeps supporting the common cluster of certain West, South, and East Slavs in a “Central-Eastern European” cluster, distinct from the “North-Eastern European” cluster formed by modern Finno-Ugrians, as well as ancient Finno-Ugrians of north-eastern Europe who were only recently Slavicized.
  • Admixture supports the same ancient ‘western’ (a core West+South+East Slavic) cluster, and the admixture event with Yamna + Hungary_EN is logically a proxy for Yamna Hungary being at the core of ancestral Central-East population movements related to Bell Beakers in the mid- to late 3rd millennium.

The theory that East Slavs are at the core of the Slavic expansion makes no sense, in terms of archaeology (see Florin Curta’s dismissal of those recent eastern ‘Slavic’ finds, his commentary on 19th century Pan-Slavic crap, or his book on Slavic migrations), in terms of ancient DNA (the earliest Slavs sampled cluster with modern West Slavs, distant from the steppe cluster, unlike Finno-Ugrians), or in terms of modern DNA.

I don’t know where exactly this impulse for the theory of Russia being the cradle of Slavs comes from today (although there are some obvious political trends to revive 19th c. ideas), but it was always clear for everyone, including Russians, that East Slavs had migrated to the east and north and assimilated indigenous Finno-Ugrians, apart from Turkic-, Iranian-, and Caucasian-speaking peoples to the east. Genetics is only confirming what was clear from other disciplines long ago.

Related

“Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

dzudzuana_pca-large

Wang et al. (2018) is obviously a game changer in many aspects. I have already written about the upcoming Yamna Hungary samples, about the new Steppe_Eneolithic and Caucasus Eneolithic keystones, and about the upcoming Greece Neolithic samples with steppe ancestry.

An interesting aspect of the paper, hidden among so many relevant details, is a clearer picture of how the so-called Yamnaya or steppe ancestry evolved from Samara hunter-gatherers to Yamna nomadic pastoralists, and how this ancestry appeared among Proto-Corded Ware populations.

anatolia-neolithic-steppe-eneolithic
Image modified from Wang et al. (2018). Marked are in orange: equivalent Steppe_Maykop ADMIXTURE; in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups.”

Please note: arrows of “ancestry movement” in the following PCAs do not necessarily represent physical population movements, or even ethnolinguistic change. To avoid misinterpretations, I have depicted arrows with Y-DNA haplogroup migrations to represent the most likely true ethnolinguistic movements. Admixture graphics shown are from Wang et al. (2018), and also (the K12) from Mathieson et al. (2018).

1. Samara to Early Khvalynsk

The so-called steppe ancestry was born during the Khvalynsk expansion through the steppes, probably through exogamy of expanding elite clans (eventually all R1b-M269 lineages) originally of Samara_HG ancestry. The nearest group to the ANE-like ghost population with which Samara hunter-gatherers admixed is represented by the Steppe_Eneolithic / Steppe_Maykop cluster (from the Northern Caucasus Piedmont).

Steppe_Eneolithic samples, of R1b1 lineages, are probably expanded Khvalynsk peoples, showing thus a proximate ancestry of an Early Eneolithic ghost population of the Northern Caucasus. Steppe_Maykop samples represent a later replacement of this Steppe_Eneolithic population – and/or a similar population with further contribution of ANE-like ancestry – in the area some 1,000 years later.

PCA-caucasus-steppe-samara

This is what Steppe_Maykop looks like, different from Steppe_Eneolithic:

steppe-maykop-admixture

NOTE. This admixture shows how different Steppe_Maykop is from Steppe_Eneolithic, but in the different supervised ADMIXTURE graphics below Maykop_Eneolithic is roughly equivalent to Eneolithic_Steppe (see orange arrow in ADMIXTURE graphic above). This is useful for a simplified analysis, but actual differences between Khvalynsk, Sredni Stog, Afanasevo, Yamna and Corded Ware are probably underestimated in the analyses below, and will become clearer in the future when more ancestral hunter-gatherer populations are added to the analysis.

2. Early Khvalynsk expansion

We have direct data of Khvalynsk-Novodanilovka-like populations thanks to Khvalynsk and Steppe_Eneolithic samples (although I’ve used the latter above to represent the ghost Caucasus population with which Samara_HG admixed).

We also have indirect data. First, there is the PCA with outliers:

PCA-khvalynsk-steppe

Second, we have data from north Pontic Ukraine_Eneolithic samples (see next section).

Third, there is the continuity of late Repin / Afanasevo with Steppe_Eneolithic (see below).

3. Proto-Corded Ware expansion

It is unclear if R1a-M459 subclades were continuously in the steppe and resurged after the Khvalynsk expansion, or (the most likely option) they came from the forested region of the Upper Dnieper area, possibly from previous expansions there with hunter-gatherer pottery.

Supporting the latter is the millennia-long continuity of R1b-V88 and I2a2 subclades in the north Pontic Mesolithic, Neolithic, and Early Eneolithic Sredni Stog culture, until ca. 4500 BC (and even later, during the second half).

Only at the end of the Early Eneolithic with the disappearance of Novodanilovka (and beginning of the steppe ‘hiatus’ of Rassamakin) is R1a to be found in Ukraine again (after disappearing from the record some 2,000 years earlier), related to complex population movements in the north Pontic area.

NOTE. In the PCA, a tentative position of Novodanilovka closer to Anatolia_Neolithic / Dzudzuana ancestry is selected, based on the apparent cline formed by Ukraine_Eneolithic samples, and on the position and ancestry of Sredni Stog, Yamna, and Corded Ware later. A good alternative would be to place Novodanilovka still closer to the Balkan outliers (i.e. Suvorovo), and a source closer to EHG as the ancestry driven by the migration of R1a-M417.

PCA-sredni-stog-steppe

The first sample with steppe ancestry appears only after 4250 BC in the forest-steppe, centuries after the samples with steppe ancestry from the Northern Caucasus and the Balkans, which points to exogamy of expanding R1a-M417 lineages with the remnants of the Novodanilovka population.

steppe-ancestry-admixture-sredni-stog

4. Repin / Early Yamna expansion

We don’t have direct data on early Repin settlers. But we do have a very close representative: Afanasevo, a population we know comes directly from the Repin/late Khvalynsk expansion ca. 3500/3300 BC (just before the emergence of Early Yamna), and which shows fully Steppe_Eneolithic-like ancestry.

afanasevo-admixture

Compared to this eastern Repin expansion that gave Afanasevo, the late Repin expansion to the west ca. 3300 BC that gave rise to the Yamna culture was one of colonization, evidenced by the admixture with north Pontic (Sredni Stog-like) populations, no doubt through exogamy:

PCA-repin-yamna

This admixture is also found (in lesser proportion) in east Yamna groups, which supports the high mobility and exogamy practices among western and eastern Yamna clans, not only with locals:

yamnaya-admixture

5. Corded Ware

Corded Ware represents a quite homogeneous expansion of a late Sredni Stog population, compatible with the traditional location of Proto-Corded Ware peoples in the steppe-forest/forest zone of the Dnieper-Dniester region.

PCA-latvia-ln-steppe

We don’t have a comparison with Ukraine_Eneolithic or Corded Ware samples in Wang et al. (2018), but we do have proximate sources for Abashevo, when compared to the Poltavka population (with which it admixed in the Volga-Ural steppes): Sintashta, Potapovka, Srubna (with further Abashevo contribution), and Andronovo:

sintashta-poltavka-andronovo-admixture

The two CWC outliers from the Baltic show what I thought was an admixture with Yamna. However, given the previous mixture of Eneolithic_Steppe in north Pontic steppe-forest populations, this elevated “steppe ancestry” found in Baltic_LN (similar to west Yamna) seems rather an admixture of Baltic sub-Neolithic peoples with a north Pontic Eneolithic_Steppe-like population. Late Repin settlers also admixed with a similar population during its colonization of the north Pontic area, hence the Baltic_LN – west Yamna similarities.

NOTE. A direct admixture with west Yamna populations through exogamy by the ancestors of this Baltic population cannot be ruled out yet (without direct access to more samples), though, because of the contacts of Corded Ware with west Yamna settlers in the forest-steppe regions.

steppe-ancestry-admixture-latvia

A similar case is found in the Yamna outlier from Mednikarovo south of the Danube. It would be absurd to think that Yamna from the Balkans comes from Corded Ware (or vice versa), just because the former is closer in the PCA to the latter than other Yamna samples. The same error is also found e.g. in the Corded Ware → Bell Beaker theory, because of their proximity in the PCA and their shared “steppe ancestry”. All those theories have been proven already wrong.

NOTE. A similar fallacy is found in potential Sintashta→Mycenaean connections, where we should distinguish statistically that result from an East/West Yamna + Balkans_BA admixture. In fact, genetic links of Mycenaeans with west Yamna settlers prove this (there are some related analyses in Anthrogenica, but the site is down at this moment). To try to relate these two populations (separated more than 1,000 years before Sintashta) is like comparing ancient populations to modern ones, without the intermediate samples to trace the real anthropological trail of what is found…Pure numbers and wishful thinking.

Conclusion

Yamna and Corded Ware show a similar “steppe ancestry” due to convergence. I have said so many times (see e.g. here). This was clear long ago, just by looking at the Y-chromosome bottlenecks that differentiate them – and Tomenable noticed this difference in ADMIXTURE from the supplementary materials in Mathieson et al. (2017), well before Wang et al. (2018).

This different stock stems from (1) completely different ancestral populations + (2) different, long-lasting Y-chromosome bottlenecks. Their similarities come from the two neighbouring cultures admixing with similar populations.

If all this does not mean anything, and each lab was going to support some pre-selected archaeological theories from the 1960s or the 1980s, coupled with outdated linguistic models no matter what – Anthony’s model + Ringe’s glottochronological tree of the early 2000s in the Reich Lab; and worse, Kristiansen’s CWC-IE + Germano-Slavonic models of the 1940s in the Copenhagen group – , I have to repeat my question again:

What’s (so much published) ancient DNA useful for, exactly?

Related

Dzudzuana, Sidelkino, and the Caucasus contribution to the Pontic-Caspian steppe

hunter-gatherer-pottery

It has been known for a long time that the Caucasus must have hosted many (at least partially) isolated populations, probably helped by geographical boundaries, setting it apart from open Eurasian areas.

David Reich writes in his book the following about India:

The genetic data told a clear story. Around a third of Indian groups experienced population bottlenecks as strong or stronger than the ones that occurred among Finns or Ashkenazi Jews. We later confirmed this finding in an even larger dataset that we collected working with Thangaraj: genetic data from more than 250 jati groups spread throughout India (…)

Rather than an invention of colonialism as Dirks suggested, long-term endogamy as embodied in India today in the institution of caste has been overwhelmingly important for millennia. (…)

The Han Chinese are truly a large population. They have been mixing freely for thousands of years. In contrast, there are few if any Indian groups that are demographically very large, and the degree of genetic differentiation among Indian jati groups living side by side in the same village is typically two to three times higher than the genetic differentiation between northern and southern Europeans. The truth is that India is composed of a large number of small populations.

There is little doubt now, based on findings spanning thousands of years, that the Mesolithic and Neolithic Caucasus hosted various very small populations, even if the ancestral components may be reduced to the few known to date (such as ANE, EHG, AME*, ENA, CHG, and other “deep” ancestral components).

NOTE. I will call the ancestral component of Dzudzuana/Anatolian hunter-gatherers Ancient Middle Easterner (AME), to give a clear idea of its likely extension during the Late Upper Palaeolithic, and to avoid using the more simplistic Dzudzuana, unless it is useful to mention these specific local samples.

dzudzuana-pca
Image modified from Lazaridis et al. (2018), including Caucasus, Don-Volga-Ural, and North Pontic Mesolithic-Neolithic populations. “Ancient West Eurasian population structure. (a) Geographical distribution of key ancient West Eurasian populations. (b) Temporal distribution of key ancient West Eurasian populations (approximate date in ky BP). (c) PCA of key ancient West Eurasians, including additional populations (shown with grey shells), in the space of outgroup f4-statistics (Methods).”

Genetic labs have a strong fixation with ancestry. I guess the use of complex statistical methods gives professionals and laymen alike the feeling of dealing with “Science”, as opposed to academic fields where you have to interpret data. I think language reveals a lot about the way people think, and the fact that ancestral components are called ‘lineages’ – while not wrong per se – is a clear symptom of the lack of interest in the true lineages: Y-DNA haplogroups.

Y-DNA bottlenecks

It has become quite clear that male-biased migrations are often the ones which can be confidently followed for actual population movements and ethnolinguistic identification, at least until the Iron Age. The frequently used Palaeolithic clusters offer a clear example of why ancestry does not represent what some people believe: They merely give a basic idea of sizeable population replacements by distant peoples.

Both concepts are important: sizeable and distant peoples. For example, during the Upper Palaeolithic in Europe there was a sizeable population replacement of the Aurignacian Goyet cluster by the Gravettian Vestonice cluster (probably from populations of far eastern Russia) coupled with the arrival of haplogroup I, although during the thousands of years that this material culture lasted, the previously expanded C1a2 lineages did not disappear, and there were probably different resurgence and admixture events.

Haplogroup I certainly expanded with the Gravettian culture to Iberia, where the Goyet ancestry did not change much – probably because of male-driven migrations -, to the extent that during the Magdalenian expansions haplogroup I expanded with an ancestry closer to Goyet, in what is called a ‘resurge’ of the Goyet cluster – even though there is a clear replacement of male lines.

The Villabruna (WHG) cluster is another good example. It probably spread with haplogroup R1b-L754, which – based on the extra ‘East Asian’ affinity of some samples and on modern samples from the Middle East – came probably from the east through a southern route, and not too long before the expansion of WHG likely from around the Black Sea, although this is still unclear. The finding of haplogroup I in samples of mostly WHG ancestry could confuse people that do not care about timing, sub-structured populations, and gene flow.

palaeolithic-expansions-reich
Image from David Reich’s Who We Are and How We Got Here. Having migrated out of Africa and the Near East, modern human pioneer populations spread throughout Eurasia (1). By at least thirty-nine thousand years ago, one group founded a lineage of European hunter-gatherers that persisted largely uninterrupted for more than twenty thousand years (2). Eventually, groups derived from an eastern branch of this founding population of European huntergatherers spread west (3), displaced previous groups, and were eventually themselves pushed out of northern Europe by the spread of glacial ice, shown at its maximum extent (top right). As the glaciers receded, western Europe was repeopled from the southwest (4) by a population that had managed to persist for tens of thousands of years and was related to an approximately thirty-five-thousand-year old individual from far western Europe. A later human migration, following the first strong warming period, had an even larger impact, with a spread from the southeast (5) that not only transformed the population of western Europe but also homogenized the populations of Europe and the Near East. At a single site—Goyet Caves in Belgium—ancient DNA from individuals spread over twenty thousand years reflects these transformations, with representatives from the Aurignacian, Gravettian, and Magdalenian periods.

NOTE. If you don’t understand why ‘clusters’ that span thousands of years don’t really matter for the many Palaeolithic population expansions that certainly happened among hunter-gatherers in Europe, just take a look at what happened with Bell Beakers expanding from Yamna into western Europe within 500 years.

If we don’t thread carefully when talking about population migrations, these terms are bound to confuse people. Just as the fixation on “steppe ancestry” – which marks the arrival in Chalcolithic Europe of peoples from the Pontic-Caspian region – has confused a lot of researchers to this day.

When I began to write about the Indo-European demic diffusion model, my concern was to find a single spot where a North-West Indo-European proto-language could have expanded from ca. 2000 BC (our most common guesstimate). Based on the 2015 papers, and in spite of their conclusions, I thought it had become clear that Corded Ware was not it, and it was rather Bell Beakers. I assumed that Uralic was spoken to the north (as was the traditional belief), and thus Corded Ware expanded from the forest zone, hence steppe ancestry would also be found there with other R1a lineages.

With the publication of Mathieson et al. (2017) and Olalde et al. (2017), I changed my mind, seeing how “steppe ancestry” did in fact appear quite late, hence it was likely to be the result of very specific population movements, probably directly from the Caucasus. Later, Mathieson published in a revision the sample from Alexandria of hg R1a-M417 (probably R1a-Z645, possibly Z93+), which further supported the idea that the migration of Corded Ware peoples started near the North Pontic forest-steppe (as I included in a the next revision).

The question remains the same I repeated recently, though: where do the extra Caucasus components (i.e. beyond EHG) of Eneolithic Ukraine/Corded Ware and Khvalynsk/Yamna come from?

Steppe ancestry: “EHG” + “CHG”?

About EHG ancestry

From Lazaridis et al. (2018):

Considering 2-way mixtures, we can model Karelia_HG as deriving 34 ± 2.8% of its ancestry from a Villabruna-related source, with the remainder mainly from ANE represented by the AfontovaGora3 (AG3) sample from Lake Baikal ~17kya.

AG3 was likely of haplogroup Q1a (as reported by YFull, see Genetiker), and probably the ANE ancestry found in Eastern Europe accompanied a Palaeolithic migration of Q1a2-M25 (formed ca. 22600 BC, TMRCA ca. 14300 BC).

NOTE. You can read more about the expansion of Q lineages during the Palaeolithic.

Combined with what we know about the Eneolithic Steppe and Caucasus populations – it is likely that ANE ancestry remained the most important component of some of the small ghost populations of the Caucasus until their emergence with the Lola culture.

pca-caucasus-dzudzuana
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here. To understand the drawn potential Caucasus Mesolithic cluster, see above the PCA from Lazaridis et al. (2018).

The first sample we have now attributed to the EHG cluster is Sidelkino, from the Samara region (ca. 9300 BC), mtDNA U5a2. In Damgaard et al. (Science 2018), Yamnaya could be modelled as a CHG population related to Kotias Klde (54%) and the remaining from ANE population related to Sidelkino (>46%), with the following split events:

  1. A split event, where the CHG component of Yamnaya splits from KK1. The model inferred this time at 27 kya (though we note the larger models in Sections S2.12.4 and S2.12.5 inferred a more recent split time).
  2. A split event, where the ANE component of Yamnaya splits from Sidelkino. This was inferred at about about 11 kya.
  3. A split event, where the ANE component of Yamnaya splits from Botai. We inferred this to occur 17 kya. Note that this is above the Sidelkino split time, so our model infers Yamnaya to be more closely related to the EHG Sidelkino, as expected.
  4. An ancestral split event between the CHG and ANE ancestral populations. This was inferred to occur around 40 kya.

Other samples classified as of the EHG cluster:

  • Popovo2 (ca. 6250 BC) of hg J1, mtDNA U4d – Po2 and Po4 from the same site (ca. 6550 BC) show continuity of mtDNA.
  • Karelia_HG, from Juzhnii Oleni Ostrov (ca. 6300 BC): I0211/UzOO40 (ca. 6300 BC) of hg J1(xJ1a), mtDNA U4a; and I0061/UzOO74 of hg R1a1(xR1a1a), mtDNA C1
  • UzOO77 and UzOO76 from Juzhnii Oleni Ostrov (ca. 5250 BC) of mtDNA R1b.
  • Samara_HG from Lebyanzhinka (ca. 5600 BC) of hg R1b1a, mtDNA U5a1d.

From the analysis of Lazaridis et al. (2018), we have some details about their admixture:

dzudzuana-admixture-sidelkino
Image modified from Lazaridis et al. (2018). Modeling present-day and ancient West-Eurasians. Mixture proportions computed with qpAdm (Supplementary Information section 4). The proportion of ‘Mbuti’ ancestry represents the total of ‘Deep’ ancestry from lineages that split prior to the split of Ust’Ishim, Tianyuan, and West Eurasians and can include both ‘Basal Eurasian’ and other (e.g., Sub-Saharan African) ancestry. (Left) ‘Conservative’ estimates. Each population 367 cannot be modeled with fewer admixture events than shown. (Right) ‘Speculative’ estimates. The highest number of sources (≤5) with admixture estimates within [0,1] are shown for each population. Some of the admixture proportions are not significantly different from 0 (Supplementary Information section 4).

About Anatolia_Neolithic ancestry

About the enigmatic Anatolia_Neolithic-related ancestry found in Pontic-Caspian steppe samples, this is what Wang et al. (2018) had to say:

We focused on model of mixture of proximal sources such as CHG and Anatolian Chalcolithic for all six groups of the Caucasus cluster (Eneolithic Caucasus, Maykop and Late Makyop, Maykop-Novosvobodnaya, Kura-Araxes, and Dolmen LBA), with admixture proportions on a genetic cline of 40-72% Anatolian Chalcolithic related and 28-60% CHG related (Supplementary Table 7). When we explored Romania_EN and Greece_Neolithic individuals as alternative southeast European sources (30-46% and 36-49%), the CHG proportions increased to 54-70% and 51-64%, respectively. We hypothesize that alternative models, replacing the Anatolian Chalcolithic individual with yet unsampled populations from eastern Anatolia, South Caucasus or northern Mesopotamia, would probably also provide a fit to the data from some of the tested Caucasus groups.

Also:

The first appearance of ‘Near Eastern farmer related ancestry’ in the steppe zone is evident in Steppe Maykop outliers. However, PCA results also suggest that Yamnaya and later groups of the West Eurasian steppe carry some farmer related ancestry as they are slightly shifted towards ‘European Neolithic groups’ in PC2 (Fig. 2D) compared to Eneolithic steppe. This is not the case for the preceding Eneolithic steppe individuals. The tilting cline is also confirmed by admixture f3-statistics, which provide statistically negative values for AG3 as one source and any Anatolian Neolithic related group as a second source

yamnaya-caucasus-dzudzuana
Modified image from Wang et al. (2018). In blue, Yamna-related populations. In red, Corded Ware-related populations, and two elevated Anatolia_Neolithic values in Yamna. Notice how only GAC-related admixture increases the Anatolian_N-related ancestry in the Yamna outlier from Ozero, and the late Yamna sample from Hungary, related to the homogeneous Yamna population. “Supplementary Table 14. P values of rank=3 and admixture proportions in modelling Steppe ancestry populations as a four-way admixture of distal sources EHG, CHG, Anatolian_Neolithic and WHG using 14 outgroups.Left populations: Steppe cluster, EHG, CHG, WHG, Anatolian_Neolithic. Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.”

Detailed exploration via D-statistics in the form of D(EHG, steppe group; X, Mbuti) and D(Samara_Eneolithic, steppe group; X, Mbuti) show significantly negative D values for most of the steppe groups when X is a member of the Caucasus cluster or one of the Levant/Anatolia farmer-related groups (Supplementary Figs. 5 and 6). In addition, we used f- and D-statistics to explore the shared ancestry with Anatolian Neolithic as well as the reciprocal relationship between Anatolian- and Iranian farmer-related ancestry for all groups of our two main clusters and relevant adjacent regions (Supplementary Fig. 4). Here, we observe an increase in farmer-related ancestry (both Anatolian and Iranian) in our Steppe cluster, ranging from Eneolithic steppe to later groups. In Middle/Late Bronze Age groups especially to the north and east we observe a further increase of Anatolian farmer related ancestry consistent with previous studies of the Poltavka, Andronovo, Srubnaya and Sintashta groups and reflecting a different process not especially related to events in the Caucasus.

(…) Surprisingly, we found that a minimum of four streams of ancestry is needed to explain all eleven steppe ancestry groups tested, including previously published ones (Fig. 2; Supplementary Table 12). Importantly, our results show a subtle contribution of both Anatolian farmer-related ancestry and WHG-related ancestry (Fig.4; Supplementary Tables 13 and 14), which was likely contributed through Middle and Late Neolithic farming groups from adjacent regions in the West. The discovery of a quite old AME ancestry has rendered this probably unnecessary, because this admixture from an Anatolian-like ghost population could be driven even by small populations from the Caucasus.

yamna-caucasus-cwc-anatolia-neolithic
Image modified from Wang et al. (2018). Marked are: in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus 1128 cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups (see also Supplementary Tables 10, 14 and 20).”

NOTE. For a detailed account of the possibilities regarding this differential admixture in the North Pontic area in contrast to the Don-Volga-Ural region, you can read the posts Sredni Stog, Proto-Corded Ware, and their “steppe admixture”, and Corded Ware culture origins: The Final Frontier.

While it is not yet fully clear, the increased Anatolian_Neolithic-like ancestry in Ukraine_Eneolithic samples (see below) makes it unlikely that all such ancestry in Corded Ware groups comes from a GAC-related contribution. It is likely that at least part of it represents contributions from populations of the Caucasus, based on the mostly westward population movements in the steppe from ca. 4600 BC on, including the Suvorovo-Novodanilovka expansion, and especially the Kuban-Maykop expansion during the final Eneolithic into the North Pontic area.

NOTE. Since CHG-like groups from the Caucasus may have combinations of AME and ANE ancestry similar to Yamna (which may thus appear as ‘steppe ancestry’ in the North Pontic area), it is impossible to interpret with precision the following ADMIXTURE graphic:

ukraine-whg-ehg-steppe
Modified image from Mathieson et al. (2018). Supervised ADMIXTURE analysis, modelling each ancient individual (one per row) as a mixture of population clusters constrained to contain northwestern-Anatolian Neolithic (grey), Yamnaya from Samara (yellow), EHG (pink) and WHG (green) populations. Dates in parentheses indicate approximate range of individuals in each population.

North-Eastern Technocomplex

The East Asian contribution to samples from the WHG samples (like Loschbour or La Braña), as specified in Fu et al. (2016), does not seem to be related to Baikal_EN, and appears possibly (in the ADMIXTURE analysis) integrated into he Villabruna component. I guess this implies that the shared alleles with East Asians are quite early, and potentially due to the expansion of R1b-L754 from the East.

It would be interesting to know the specific material culture Sidelkino belonged to – i.e. if it was related to the expansion of the North-Eastern Technocomplex – , and its Y-DNA. The Post-Swiderian expansion into eastern Europe, probably associated with the expansion of R1b-P297 lineages (including R1b-M73, found later in Botai and in Baltic HG) is supposed to have begun during the 11th millennium BC, but migrations to the Urals and beyond are probably concentrated in the 9th millennium, so this sample is possibly slightly early for R1b.

NOTE. User Rozenfeld at Anthrogenica posted this, which I think is interesting (in case anyone wants to try a Y-SNP call):

there is something strange with Sidelkino EHG: first, its archaeological context is not described in the supplementary. Second, its sex is not listed in the supplementary tables. Third, after looking for info about this sample, I found that: “Сиделькино-3. Для снятия вопроса о половой принадлежности индивида была проведена генетическая экспертиза, выявившая принадлежность останков мужчине.”(translation: Sidelkino-3. To resolve the question about sex of the remains, the genetic analysis was conducted, which showed that remains belonged to male), source: http://static.iea.ras.ru/books/7487_Traditsii.pdf

So either they haven’t mentioned his Y-DNA in the paper for some reason, or there are more than one Sidelkino sample and the male one has not yet been published. The coverage of the Sidelkino sample from the paper is 2.9, more than enough to tell Y-DNA haplogroup.

zaliznyak-post-swiderian
The map of spreading of Post-Swiderian and Post-Krasnosillian sites in Mesolithic of Eastern Europe in the 8th millennia BC. From Zaliznyak (see here).

My speculative guess right now about specific population movements in far eastern Europe, based on the few data we have:

  • The expansion of the North-Eastern Technocomplex first around the 9th millennium BC, most likely expanded R1b-P279 ca. 11300 BC, judging by its TMRCA, with both R1b-M73 (TMRCA 5300) and R1b-M269 (TMRCA 4400 BC) info (with extra El Mirón ancestry) back, and thus Eurasiatic.
  • The expansion of haplogroup J1 to the north may have happened before or after the R1b-P279 expansion. Judging by the increase in AG3-related ancestry near Karelia compared to Baltic_HG, it is possible that it expanded just after R1b-P279 (hence possibly J1-Y6304? TMRCA 9700 BC). Its long-lasting presence in the Caucasus is supported by the Satsurblia (ca. 11300 BC) and the Dolmen BA (ca. 1300 BC) samples.
  • The expansion of R1a-M17 ca. 6600 BC is still likely to have happened from the east, based on the R1a-M17 samples found in Baikalic cultures slightly later (ca. 5300 BC). The presence of elevated Baikal_EN ancestry in Karelia HG and in Samara HG, and the finding of R1a-M417 samples in the Forest Zone after the Mesolithic suggests a connection with the expansion of Hunter-Gatherer pottery, from the Elshanka culture in the Samara region northward into the Forset Zone and westward into the North Pontic area.
  • The expansion of R1b-M73 ca. 5300 BC is likely to be associated with the emergence of a group east of the Urals (related to the later Botai culture, and potentially Pre-Yukaghir). Its presence in a Narva sample from Donkalnis (ca. 5200 BC) suggest either an early split and spread of both R1b-P297 lineages (M73 and M269) through Eastern Europe, or maybe a back-migration with hunter-gatherer pottery.
  • R1b-M269 spread successfully ca. 4400 BC (and R1b-L23 ca. 4100 BC, both based on TMRCA), and this successful expansion is probably to be associated with the Khvalynsk-Novodanilovka expansion. We already know that Samara_HG ca. 5600 was R1b1a, so it is likely that R1b-M269 appeared (or ‘resurged’) in the Volga-Ural region shortly after the expansion of R1a-M17, whose expansion through the region may be inferred by the additional AG3 and Baikal_EN ancestry. Interesting from Samara_HG compared to the previous Sidelkino sample is the introduction of more El Mirón-related ancestry, typical of WHG populations (and thus proper of Baltic groups).

NOTE. The TMRCA dates are obviously gross approximations, because a) the actual rate of mutation is unknown and b) TMRCA estimates are based on the convergence of lineages that survived. The potential finding of R1a-Z645 (possibly Z93+) in Ukraine Eneolithic (ca. 4000 BC), and the potential finding of R1b-L23 in Khvalynsk ca. 4250 BC complicates things further, in terms of dates and origins of any subclade.

The question thus remains as it was long ago: did R1b-M269 lineages expand (‘return’) from the east, near the Urals, or directly from the north? Were they already near Samara at the same time as the expansion of hunter-gatherer pottery, and were not much affected by it? Or did they ‘resurge’ from populations admixed with Caucasus-related ancestry after the expansion of R1a-M17 with this pottery (since there are different stepped expansions from the Samara region)? We could even ask, did R1a-M17 really expand from the east, i.e. are the dates on Baikalic subclades from Moussa et al. (2016) reliable? Or did R1a-M17 expand from some pockets in the Pontic-Caspian steppe, taking over the expansion of HG pottery at some point?

hunger-gatherer-pottery
Early Neolithic cultures in eastern and central Europe: 1–Yelshanian; 2–North Caspian; 3–Rakushechnyj Yar; 4–Surskian; 5–Dnieper-Donetsian; 6– Bug-Dniesterian; 7–Upper Volga; 8–Narvian; 9–Linear Pottery. White arrows: expansion of early farming; black arrows: spread of pottery-making traditions. From Dolukhanov et al. (2009).

Maglemose-related migrations

The most interesting aspect from the new paper (regarding Indo-Uralic migrations) is that Ancestral Middle Easterner ancestry will probably be a better proxy for the Anatolia_Neolithic component found in Ukraine Mesolithic to Eneolithic, and possibly also for some of the “more CHG-like” component found among Pontic-Caspian steppe populations, all likely derived from different admixture events with groups from the Caucasus.

NOTE. Even the supposed gene flow of Neolithic Iranian ancestry into the Caucasus can be put into question, since that means possibly a Dzudzuana-like population with greater “deep ancestry” proportion than the one found in CHG, which may still be found within the Caucasus.

If it was not clear already that following ‘steppe ancestry’ wherever it appears is a rather lame way of following Indo-European migrations, every single sample from the Caucasus and their admixture with Pontic-Caspian steppe populations will probably show that “steppe ancestry” is in fact formed by a variety of steppe-related ancestral components, impossible to follow coherently with a single population. Exactly what is happening already with the Siberian ancestry.

If the paper on the Dzudzuana samples has shown something, is that the expansion of an ANE-like population shook the entire Caucasus area up to the Zagros Mountains, creating this ANE – AME cline that are CHG and Iran_N, with further contributions of “deep ancestries” (probably from the south) complicating the picture further.

If this happens with few known samples, and we know of an ANE-like ghost population in the Caucasus (appearing later in the Lola culture), we can already guess that the often repeated “CHG component” found in Ukraine_Eneolithic and Khvalynsk will not be the same (except the part mediated by the Novodanilovka expansion).

This ANE-like expansion happened probably in the Late Upper Palaeolithic, and reached Northern Europe probably after the expansion of the Villabruna cluster (ca. 12000 BC), judging by the advance of AG3-like and ENA-like ancestry in later WHG samples.

The population movements during the Mesolithic and Early Neolithic in the North Pontic area are quite complicated: the extra AME ancestry is probably connected to the admixture with populations from the Caucasus, while the close similarity of Ukraine populations with Scandinavian ones (with an increase in Villabruna ancestry from Mesolithic to Neolithic samples), probably reveal population movements related to the expansion of Maglemose-related groups.

maglemose-mesolithic
Etno-cultural situation in Central and Eastern Europe in the Late Mesolithic — Early Neolithic (VI—V Mill. BC) (after Конча 2004: 201, карта 1; made after ideas by L. L. Zaliznyak). Legend: 1 — Maglemose circle in the VII Mill. BC (after Gr. Clark); 2—7 — Mesolithic cultures of the Post-Maglemose tradition, VI Mill. BC (after S. Kozłowsky, L. L. Zaliznyak): 2 — de Leyen-Wartena; 3 — Oldesloe — Godenaa; 4 — Chojnice — Peńki; 5 — Janisłavice; 6 — finds of Janisłavice artefacts outside of the main area; 7 — Donets culture; 8 — directions of the settling of Janisłavice people (after S. Kozłowsky and L. L. Zaliznyak); 9 — the south border of Mesolithic and Early Neolithic cultures of post-Swidrian and post-Arensburgian traditions; 10 — northern border of settlement of the Balkan-Danubian farmers; 11 — Bug- Dniester culture; 12 — Neolithic cultures emerged on the ethno-cultural basis of post-Maglemose: Э — Ertebölle-Ellerbeck, Н — Neman, Д — Dnieper-Donets, М — Mariupol (western variants). From Klein (2017).

These Maglemose-related groups were probably migrants from the north-west, originally from the Northern European Plains, who occupied the previous Swiderian territory, and then expanded into the North Pontic area. The overwhelming presence of I2a (likely all I2a2a1b1b) lineages in Ukraine Neolithic supports this migration.

The likely picture of Mesolithic-Neolithic migrations in the North Pontic area right now is then:

  1. Expansion of R1a-M459 from the east ca. 12000 BC – probably coupled with AG3 and also some Baikal_EN ancestry. First sample is I1819 from Vasilievka (ca. 8700 BC), another is from Dereivka ca. 6900 BC.
  2. Expansion of R1b-V88 from the Balkans in the west ca. 9700 BC, based on its TMRCA and also the Balkan hunter-gatherer population overwhemingly of this haplogroup from the 10th millennium until the Neolithic. First sample is I1734 from Vasilievka (ca. 7252 BC), which suggests that it replaced the male population there, based on their similar EHG-like adxmixture (and lack of sizeable WHG increase), and shared mtDNA U5b2, U5a2.
  3. Expansion of I2a-Y5606 probably ca. 6800 based on its TMRCA with Janislawice culture. Supporting this is the increase in WHG contribution to Neolithic samples, including the spread of U4 subclades compared to the previous period.
  4. Expansion of R1a-M17 starting probably ca. 6600 BC in the east (see above).

NOTE. The first sample of haplogroup I appears in the Mesolithic: I1763 (ca. 8100 BC) of haplogroup I2a1, probably related to an older Upper Palaeolithic expansion.

janislawice
Distribution of archeological cultures in the North Pontic Region during the Mesolithic (7th – 6th millennium BCE). Dotted, dashed and solid lines with corresponding arrows indicate alternative models of the spread of the Grebenyky culture groups. (After Bryuako IV., Samojlova TL., Eds, Drevnie kul’tury Severo-­‐Zapadnogo Prichernomor’ya, Odessa: SMIL, 2013.) Nikitin – Ivanova 2017.

Conclusion

It is becoming more and more clear with each new paper that – unless the number of very ancient samples increases – the use of Y-chromosome haplogroups remains one of the most important tools for academics; this is especially so in the steppes, in light of the diversity found in populations from the Caucasus. A clear example comes from the Yamna – Corded Ware similarities:

After the publication of the 2015 papers, it was likely that Yamna expanded with haplogroup R1b-L23, but it has only become crystal clear that Yamna expanded through the steppes into Bell Beakers, now that we have data about the strict genetic homogeneity of the whole Yamna population from west to east (including Afanasevo), in contrast with contemporary Corded Ware peoples which expanded from a different forest-steppe population.

The presence of haplogroups Q and R1a-M459 (xM17) in Khvalynsk along with a R1b1a sample, which some interpreted as being akin to modern ‘mixed’ populations in the past, is likely to point instead to a period of Khvalynsk-Novodanilovka expansion with R1b-M269, where different small populations from the steppe were being integrated into the common Khvalynsk stock, but where differences are seen in material culture surrounding their burials, as supported by the finding of R1b1 in the Kuban area already in the first half of the 5th millennium. The case would be similar to the early ‘mixed’ Icelandic population.

Only after the emergence of the Samara culture (in the second half of the 6th millennium BC), with a sample of haplogroup R1b1a, starts then the obvious connection with Early Proto-Indo-Europeans; and only after the appearance of late Sredni Stog and haplogroup R1a-M417 (ca. 4000 BC) is its connection with Uralic also clear. In previous population movements, I think more haplogroups were involved in migrations of small groups, and only some communities among them were eventually successful, expanding to be dominant, creating ever growing cultures during their expansions.

Indeed, if you think in terms of Uralic and Indo-European just as converging languages, and forget their potential genetic connection, then the genetic + linguistic picture becomes simplified, and the upper frontier of the 6th millennium BC with a division North Pontic (Mariupol) vs. Volga-Ural (Samara) is enough. However, tracing their movements backwards – with cultural expansions from west to east (with the expansion of farming), and earlier east to west (with hunter-gatherer pottery), and still earlier west to east (with the north-eastern technocomplex), offers an interesting way to prove their potential connection to macrofamilies, at least in terms of population movements.

corded-ware-uralic-qpgraph
Modified image from Tambets et al. (2018) Proportions of ancestral components in studied European and Siberian populations and the tested qpGraph model. a The qpGraph model fitting the data for the tested populations. Colour codes for the terminal nodes: pink—modern populations (‘Population X’ refers to test population) and yellow—ancient populations (aDNA samples and their pools). Nodes coloured other than pink or yellow are hypothetical intermediate populations. We putatively named nodes which we used as admixture sources using the main recipient among known populations. The colours of intermediate nodes on the qpGraph model match those on the admixture proportions panel. The NeolL (Neolithic Levant) ancestry selected in this qpGraph is likely to correspond (at least in part) to a specific Dzudzuana-like component present in the CHG-like population that admixed in the North Pontic area.

I am quite convinced right now that it would be possible to connect the expansion of R1b-L754 subclades with a speculative Nostratic (given the R1b-V88 connection with Afroasiatic, and the obvious connection of R1b-L297 with Eurasiatic). Paradoxically, the connection of an Indo-Uralic community in the steppes (after the separation of Yukaghir) with any lineage expansion (R1a-M17, R1b-M269, or even Q, I or J1) seems somehow blurrier than one year ago, possibly just because there are too many open possibilities.

David Reich says about the admixture with Neanderthals, which he helped discover:

At the conclusion of the Neanderthal genome project, I am still amazed by the surprises we encountered. Having found the first evidence of interbreeding between Neanderthals and modern humans, I continue to have nightmares that the finding is some kind of mistake. But the data are sternly consistent: the evidence for Neanderthal interbreeding turns out to be everywhere. As we continue to do genetic work, we keep encountering more and more patterns that reflect the extraordinary impact this interbreeding has had on the genomes of people living today.

I think this is a shared feeling among many of us who have made proposals about anything, to fear that we have made a gross, evident mistake, and constantly look for flaws. However, it seems to me that geneticists are more preoccupied with being wrong in their developed statistical methods, in the theoretical models they are creating, and not so much about errors in the true ancient ethnolinguistic picture human population genetics is (at least in theory) concerned about. Their publications are, after all, constantly associating genetic finds with cultures and (whenever possible) languages, so this aspect of their research should not be taken lightly.

Seeing how David Anthony or Razib Khan (among many others) have changed their previously preferred migration models as new data was published, and they continue to be respected in their own fields, I guess we can be confident that professionals with integrity are going to accept whatever new picture appears. While I don’t think that genetic finds can change what we can reconstruct with comparative grammar, I am also ready to revise guesstimates and routes of expansion of certain dialects if R1a-Z645 is shown to have accompanied Late Proto-Indo-Europeans during their expansion with Yamna, and later integrated somehow with Corded Ware.

However, taking into account the obsession of some with an ancestral, uninterrupted R1a—Indo-European association, and the lack of actual political repercussion of Neanderthal admixture, I think the most common nightmare that all genetic researchers should be worried about is to keep inflating this “Yamnaya ancestry”-based hornet’s nest, which has been constantly stirred up for the past two years, by rejecting it – or, rather, specifying it into its true complex nature.

This succession of corrections and redefinitions, coupled with the distinct Y-DNA bottleneck of each steppe population, will eventually lead to a completely different ethnolinguistic picture of the Pontic-Caspian region during the Eneolithic, which is likely to eventually piss off not only reasonable academics stubbornly attached to the CWC-IE idea, but also a part of those interested in daydreaming about their patrilineal ancestors.

Sometimes it’s better to just rip off the band-aid once and for all…

Featured image from The oldest pottery in hunter-gatherer communitiesand models of Neolithisation of Eastern Europe (2015), by Andrey Mazurkevich and Ekaterina Dolbunova.

Related

Interesting is today’s post in Ancient DNA Era: Is Male-driven Genetic Replacement always meaning Language-shift?

R1a-Z280 lineages in Srubna; and first Palaeo-Balkan R1b-Z2103?

herodotus-world-map

Scythian samples from the North Pontic area are far more complex than what could be seen at first glance. From the new Y-SNP calls we have now thanks to the publications at Molgen (see the spreadsheet) and in Anthrogenica threads, I think this is the basis to work with:

NOTE. I understand that writing a paper requires a lot of work, and probably statistical methods are the main interest of authors, editors, and reviewers. But it is difficult to comprehend how any user of open source tools can instantly offer a more complex assessment of the samples’ Y-SNP calls than professionals working on these samples for months. I think that, by now, it should be clear to everyone that Y-DNA is often as important (sometimes even more) than statistical tools to infer certain population movements, since admixture can change within few generations of male-biased migrations, whereas haplogroups can’t…

Srubna

Srubna-Andronovo samples are as homogeneous as they always were, dominated by R1a-Z645 subclades and CWC-related (steppe_MLBA) ancestry.

The appearance of one (possibly two) R-Z280 lineages in this mixed Srubna-Alakul region of the southern Urals and this early (1880-1690 BC, hence rather Pokrovka-Alakul) points to the admixture of R1a-Z93 and R1a-Z280 already in Abashevo, which also explains the wide distribution of both subclades in the forest zones of Central Asia.

If Abashevo is the cornerstone of the Indo-Iranian / Uralic community, as it seems, the genetic admixture would initially be quite similar, undergoing in the steppes a reduction to haplogroup R1a-Z93 (obviously not complete), at the same time as it expanded to the west with Pokrovka and Srubna, and to the east with Petrovka and Andronovo. To the north, similar reductions will probably be seen following the Seima-Turbino phenomenon.

NOTE. Another R1a-Z280 has been found in the recent sample from Bronze Age Poland (see spreadsheet). As it appears right now in ancient and modern DNA, there seems to be a different distribution between subclades:

  • R1a-Z280 (formed ca. 2900 BC, TMRCA ca. 2600 BC) appears mainly distributed today to the east, in the forest and steppe regions, with the most ‘successful’ expansions possibly related to the spread of Abashevo- and Battle Axe-related cultures (Indo-Iranian and Uralic alike).
  • R1a-M458 (formed ca. 2700, TMRCA ca. 2700 BC) appears mainly distributed to the north, from central Europe to the east – but not in the steppe in aDNA, with the most ‘successful’ expansions to the west.

M458 lineages seem thus to have expanded in the steppe in sizeable numbers only after the Iranian expansions (see a map of modern R1a distributions) i.e. possibly with the expansion of Slavs, which supports the model whereby cultures from central-east Europe (like Trzciniec and Lusatian), accompanied mainly by M458 lineages, were responsible for the expansion of Proto-Balto-Slavic (and later Proto-Slavic).

The finding of haplogroup R1a-Z93, among them one Z2123, is no surprise at this point after other similar Srubna samples. As I said, the early Srubna expansion is most likely responsible for the Szólád Bronze Age sample (ca. 2100-1700 BC), and for the Balkans BA sample (ca. 1750-1625 BC) from Merichleri, due to incursions along the central-east European steppe.

cheek-pieces
Map of decorated bone/antler bridle cheek-pieces and whip handle equivalents. They are often local translations that remained faithful to the originals (from data in Piggott, 1965; Kristiansen & Larsson, 2005; David, 2007). Image from Vandkilde (2014).

Cimmerians

Cimmerian samples from the west show signs of continuity with R1a-Z93 lineages. Nevertheless, the sample of haplogroup Q1a-Y558, together with the ‘Pre-Scythian’ sample of haplogroup N (of the Mezőcsát Culture) in Hungary ca. 980-830 BC, as well as their PCA, seem to depict an origin of these Pre-Scythian peoples in populations related to the eastern Central Asian steppes, too.

NOTE. I will write more on different movements (unrelated to Uralic expansions) from Central and East Asia to the west accompanied by Siberian ancestry and haplogroup N with the post of Ugric-Samoyedic expansions.

Scythians

The Scythian of Z2123 lineage ca. 375-203 BC from the Volga (in Mathieson et al. 2015), together with the sample scy193 from Glinoe (probably also R1a-Z2123), without a date, as well as their common Steppe_MLBA cluster, suggest that Scythians, too, were at first probably quite homogeneous as is common among pastoralist nomads, and came thus from the Central Asian steppes.

The reduction in haplogroup variability among East Iranian peoples seems supported by the three new Late Sarmatian samples of haplogroup R1a-Z2124.

Approximate location of Glinoe and Glinoe Sad (with Starosilya to the south, in Ukrainian territory):

This initial expansion of Scythians does not mean that one can dismiss the western samples as non-Scythians, though, because ‘Scythian’ is a cultural attribution, based on materials. Confirming the diversity among western Scythians, a session at the recent ISBA 8:

Genetic continuity in the western Eurasian Steppe broken not due to Scythian dominance, but rather at the transition to the Chernyakhov culture (Ostrogoths), by Järve et al.

The long-held archaeological view sees the Early Iron Age nomadic Scythians expanding west from their Altai region homeland across the Eurasian Steppe until they reached the Ponto-Caspian region north of the Black and Caspian Seas by around 2,900 BP. However, the migration theory has not found support from ancient DNA evidence, and it is still unclear how much of the Scythian dominance in the Eurasian Steppe was due to movements of people and how much reflected cultural diffusion and elite dominance. We present new whole-genome results of 31 ancient Western and Eastern Scythians as well as samples pre- and postdating them that allow us to set the Scythians in a temporal context by comparing the Western Scythians to samples before and after within the Ponto-Caspian region. We detect no significant contribution of the Scythians to the Early Iron Age Ponto-Caspian gene pool, inferring instead a genetic continuity in the western Eurasian Steppe that persisted from at least 4,800–4,400 cal BP to 2,700–2,100 cal BP (based on our radiocarbon dated samples), i.e. from the Yamnaya through the Scythian period.

(…) Our results (…) support the hypothesis that the Scythian dominance was cultural rather than achieved through population replacement.

Detail of the slide with admixture of Scythian groups in Ukraine:

scythians-admixture

The findings of those 31 samples seem to support what Krzewińska et al. (2018) found in a tiny region of Moldavia-south-western Ukraine (Glinoi, Glinoi Sad, and Starosilya).

The question, then, is as follows: if Scythian dominance was “cultural rather than achieved through population replacement”…Where are the R1b-Z2103 from? One possibility, as I said in the previous post, is that they represent pockets of Iranian R1b lineages in the steppes descended from eastern Yamna, given that this haplogroup appears in modern populations from a wide region surrounding the steppes.

The other possibility, which is what some have proposed since the publication of the paper, is that they are related to Thracians, and thus to Palaeo-Balkan populations. About the previously published Thracian individuals in Sikora et al. (2014):

thracian-samples
Geographic origin of ancient samples and ADMIXTURE results. (A) Map of Europe indicating the discovery sites for each of the ancient samples used in this study. (B) Ancestral population clusters inferred using ADMIXTURE on the HGDP dataset, for k = 6 ancestral clusters. The width of the bars of the ancient samples was increased to aid visualization. https://doi.org/10.1371/journal.pgen.1004353.g001

For the Thracian individuals from Bulgaria, no clear pattern emerges. While P192-1 still shows the highest proportion of Sardinian ancestry, K8 more resembles the HG individuals, with a high fraction of Russian ancestry.

Despite their different geographic origins, both the Swedish farmer gok4 and the Thracian P192-1 closely resemble the Iceman in their relationship with Sardinians, making it unlikely that all three individuals were recent migrants from Sardinia. Furthermore, P192-1 is an Iron Age individual from well after the arrival of the first farmers in Southeastern Europe (more than 2,000 years after the Iceman and gok4), perhaps indicating genetic continuity with the early farmers in this region. The only non-HG individual not following this pattern is K8 from Bulgaria. Interestingly, this individual was excavated from an aristocratic inhumation burial containing rich grave goods, indicating a high social standing, as opposed to the other individual, who was found in a pit.

pca-thracians

The following are excerpts from A Companion to Ancient Thrace (2015), by Valeva, Nankov, and Graninger (emphasis mine):

Thracian settlements from the 6th c. BC on:

(…) urban centers were established in northeastern Thrace, whose development was linked to the growth of road and communication networks along with related economic and distributive functions. The early establishment of markets/emporia along the Danube took place toward the middle of the first millennium BCE (Irimia 2006, 250–253; Stoyanov in press). The abundant data for intensive trade discovered at the Getic village in Satu Nou on the right bank of the Danube provides another example of an emporion that developed along the main artery of communication toward the interior of Thrace (Conovici 2000, 75–76).

Undoubtedly the most prominent manifestation of centralization processes and stratification in the settlement system of Thrace arrives with the emergence of political capitals – the leading urban centers of various Thracian political formations.

getic-thracian
Image from Volf at Vol_Vlad LiveJournal.

Their relationships with Scythians and Greeks

The Scythian presence south of the Danube must be balanced with a Thracian presence north of the river. We have observed Getae there in Alexander’s day, settled and raising grain. For Strabo the coastlands from the Danube delta north as far as the river and Greek city of Tyras were the Desert of the Getae (7.3.14), notable for its poverty and tracklessness beyond the great river. He seems to suggest also that it was here that Lysimachus was taken alive by Dromichaetes, king of the Getae, whose famous homily on poverty and imperialism only makes sense on the steppe beyond the river (7.3.8; cf. Diod. 21.12; further on Getic possessions above the Danube, Paus. 1.9 with Delev 2000, 393, who seems rather too skeptical; on poverty, cf. Ballesteros Pastor 2003). This was the kind of discourse more familiarly found among Scythians, proud and blunt in the strength of their poverty. However, as Herodotus makes clear, simple pastoralism was not the whole story as one advanced round into Scythia. For he observes the agriculture practiced north and west of Olbia. These were the lands of the Alizones and the people he calls the Scythian Ploughmen, not least to distinguish them from the Royal Scythians east of Olbia, in whose outlook, he says, these agriculturalist Scythians were their inferiors, their slaves (Hdt. 4.20). The key point here is that, as we began to see with the Getan grain-fields of Alexander’s day, there was scope for Thracian agriculturalists to maintain their lifestyles if they moved north of the Danube, the steppe notwithstanding. It is true that it is movement in the other direction that tends to catch the eye, but there are indications in the literary tradition and, especially, in the archaeological record that there was also significant movement northward from Thrace across the Danube and the Desert of the Getae beyond it.

Greek literary sources were not much concerned with Thracian migration into Scythia, but we should observe the occasional indications of that process in very different texts and contexts. At the level of myth, it is to be remembered that Amazons were regularly considered to be of Thracian ethnicity from Archaic times onward and so are often depicted in Thracian dress in Greek art (Bothmer 1957; cf. Sparkes 1997): while they are most familiar on the south coast of the Black Sea, east of Sinope, they were also located on the north coast, especially east of the Don (the ancient Tanais). Herodotus reports an origin-story of the Sauromatians there, according to which this people had been created by the union of some Scythian warriors with Amazons captured on the south coast and then washed up on the coast of Scythia (4.110). While the story is unhistorical, it is not without importance. First, it reminds us that passage north from the Danube was not the only way that Thracians, Thracian influence, and Thracian culture might find their way into Scythia. There were many more and less circuitous routes, especially by sea, that could bring Thrace into Scythia. Secondly, the myth offered some ideological basis for the Sauromatian settlement in Thrace that Strabo records, for Sauromatians might claim a Thracian origin through their Amazon forebears. Finally, rather as we saw that Heracles could bring together some of the peoples of the region, we should also observe that Ares, whose earthly home was located in Thrace by a strong Greek and Roman tradition, seems also to have been a deity of special significance and special cult among the Scythians. So much was appropriate, especially from a Classical perspective, in associations between these two peoples, whose fame resided especially in their capacity for war.

skythen
Scythians: cultures and findings (ca. 7th-4th/3rd c. BC). Greek colonies marked with concentric circles.

This broad picture of cultural contact, interaction, and osmosis, beyond simple conflict, provides the context for a range of archaeological discoveries, which – if examined separately – may seem to offer no more than a scatter of peculiarities. Here we must acknowledge especially the pioneering work of Melyukova, who has done most to develop thinking on Thracian–Scythian interaction. As she pointed out, we have a good example of Thracian–Scythian osmosis as early as the mid-seventh century bce at Tsarev Brod in northeastern Bulgaria, where a warrior’s burial combines elements of Scythian and Thracian culture (Melyukova 1965). For, while the manner of his burial and many of the grave goods find parallels in Scythia and not Thrace, there are also goods which would be odd in a Scythian burial and more at home in a Thracian one of this period (notably a Hallstatt vessel, an iron knife, and a gold diadem). Also interesting in this regard are several stone figures found in the Dobrudja which resemble very closely figures of this kind (baby) known from Scythia (Melyukova 1965, 37–38). They range in date from perhaps the sixth to the third centuries bce, and presumably were used there – as in Scythia – to mark the burials of leading Scythians deposited in the area. Is this cultural osmosis? We should probably expect osmosis to occur in tandem with the movement of artefacts, so that only good contexts can really answer such questions from case to case. However, the broad pattern is indicated by a range of factors. Particularly notable in this regard is the observable development of a Thraco-Scythian form of what is more familiar as “Scythian animal style,” a term which – it must be understood – already embraces a range of types as we examine the different examples of the style across the great expanse from Siberia to the western Ukraine. As Melyukova observes, Thrace shows both items made in this style among Scythians and, more numerous and more interesting, a Thracian tendency to adapt that style to local tastes, with observable regional distinctions within Thrace itself. Among the Getae and Odrysians the adaptation seems to have been at its height from the later fifth century to the mid-third century (Melyukova 1965, 38; 1979).

The absence of local animal style in Bulgaria before the fifth century bce confirms that we have cultural influences and osmosis at work here, though that is not to say that Scythian tradition somehow dominated its Thracian counterpart, as has been claimed (pace Melyukova 1965, 39; contrast Kitov 1980 and 1984). Of particular interest here is the horse-gear (forehead-covers, cheek-pieces, bridle fittings, and so on) which is found extensively in Romania and Bulgaria as well as in Scythia, both in hoarded deposits and in burials. This exemplifies the development of a regional animal style, not least in silver and bronze, which problematizes the whole issue of the place(s) of its production. Accordingly, the regular designation as “Thracian” of horse-gear from the rich fourth century Scythian burial of Oguz in the Ukraine becomes at least awkward and questionable (further, Fialko 1995). And let us be clear that this is no minor matter, nor even part of a broader debate about the shared development of toreutics among Thracians and Scythians (e.g., Kitov 1980 and 1984). A finely equipped horse of fine quality was a strong statement and striking display of wealth and the power it implied

(…) while Thracian pottery appears at Olbia, Scythian pottery among Thracians is largely confined to the eastern limits of what should probably be regarded as Getic territory, namely the area close to the west of the Dniester, from the sixth century bce. Rather exceptional then is the Scythian pottery noted at Istros, which has been explained as a consequence of the Scythian pursuit of the withdrawing army of Darius and, possibly, a continued Scythian grip on the southern Danube in its aftermath (Melyukova 1965, 34). The archaeology seems to show us, therefore, that the elite Thracians and Scythians were more open to adaptation and acculturation than were their lesser brethren.

palaeo-balkan-languages
Paleo-Balkan languages in Eastern Europe between 5th and 1st century BC. From Wikipedia.

Conclusion

(…) we see distinct peoples and organizations, for example as Sitalces’ forces line up against the Scythians. Much more striking, however, against that general background, are the various ways in which the two peoples and their elites are seen to interact, connect, and share a cultural interface. We see also in Scyles’ story how the Greek cities on the coast of Thrace and Scythia played a significant role in the workings of relationships between the two peoples. It is not simply that these cities straddled the Danube, but also that they could collaborate – witness the honors for Autocles, ca. 300 bce (SEG 49.1051; Ochotnikov 2006) – and were implicated with the interactions of the much greater non-Greek powers around them. At the same time, we have seen the limited reality of familiar distinctions between settled Thracians and nomadic Scythians and the limited role of the Danube too in dividing Thrace and Scythia. The interactions of the two were not simply matters of dynastic politics and the occasional shared taste for artefacts like horse-gear, but were more profoundly rooted in the economic matrix across the region, so that “Scythian” nomadism might flourish in the Dobrudja and “Thracian-style” agriculture and settlement can be traced from Thrace across the Danube as far as Olbia. All of that offers scant justification for the Greek tendency to run together Thracians and Scythians as much the same phenomenon, not least as irrational, ferocious, and rather vulgar barbarians (e.g., Plato, Rep. 435b), because such notions were the result of ignorance and chauvinism. However, Herodotus did not share those faults to any degree, so that we may take his ready movement from Scythians to Thracians to be an indication of the importance of interaction between the two peoples whom he had encountered not only as slaves in the Aegean world, but as powerful forces in their own lands (e.g., Hdt. 4.74, where Thracian usage is suddenly brought into his account of Scythian hemp). Similarly, Thucydides, who quite without need breaks off his disquisition on the Odrysians to remark upon political disunity among the Scythians (Thuc. 2.97, a favorite theme: cf. Hdt. 4.81; Xen., Cyr. 1.1.4). As we have seen throughout this discussion, there were many reasons why Thracians might turn the thoughts of serious writers to Scythians and vice versa.

It seems, following Sikora et al. (2014), that Thracian ‘common’ populations would have more Anatolian Neolithic ancestry compared to more ‘steppe-like’ samples. But there were important differences even between the two nearby samples published from Bulgaria, which may account for the close interaction between Scythians and Thracians we see in Krzewińska et al. (2018), potentially reflected in the differences between the Central, Southern and the South-Central clusters (possibly related to different periods rather than peoples??).

If these R1b-Z2103 were descended from Thracian elites, this would be the first proof of Palaeo-Balkan populations showing mainly R1b-Z2103, as I expect. Their appearance together with haplogroup I2a2a1b1 (also found in Ukraine Neolithic and in the Yamna outlier from Bulgaria) seem to support this regional continuity, and thus a long-lasting cultural and ethnic border roughly around the Danube, similar to the one found in the northern Caucasus.

However, since these samples are some 2,500 years younger than the Yamna expansion to the south, and they are archaeologically Scythians, it is impossible to say. In any case, it would seem that the main expansion of R1a-Z645 lineages to the south of the Danube – and therefore those found among modern Greeks – was mediated by the Slavic expansions centuries later.

krzewinska-scythians-pca
Modified image from Krzewińska et al. (2018), with added Y-DNA haplogroups to each defined Scythian cluster and Sarmatians. Principal component analysis (PCA) plot visualizing 35 Bronze Age and Iron Age individuals presented in this study and in published ancient individuals in relation to modern reference panel from the Human Origins data set. See image with population references.

On the Northern cluster there is a sample of haplogroup R1b-P312 which, given its position on the PCA (apparently even more ‘modern Celtic’-like than the Hallstatt_Bylany sample from Damgaard et al. 2018), it seems that it could be the product of the previous eastward Hallstatt expansion…although potentially also from a recent one?:

Especially important in the archaeology of this interior is the large settlement at Nemirov in the wooded steppe of the western Ukraine, where there has been considerable excavation. This settlement’s origins evidently owe nothing significant to Greek influence, though the early east Greek pottery there (from ca. 650 bce onward: Vakhtina 2007) and what seems to be a Greek graffito hint at its connections with the Greeks of the coast, especially at Olbia, which lay at the estuary of the River Bug on whose middle course the site was located (Braund 2008). The main interest of the site for the present discussion, however, is its demonstrable participation in the broader Hallstatt culture to its west and south (especially Smirnova 2001). Once we consider Nemirov and the forest steppe in connection with Olbia and the other locations across the forest steppe and coastal zone, together with the less obvious movements across the steppe itself, we have a large picture of multiple connectivities in which Thrace bulks large.

scythian-peoples-balkans
Early Iron Age cultures of the Carpathian basin ca. 7-6th century BC, including steppe-related groups. Ďurkovič et al. (2018).

While the above description of clear-cut R1a-Steppe and R1b-Balkans is attractive (and probably more reliable than admixture found in scattered samples of unclear dates), the true ancient genetic picture is more complicated than that:

  • There is nothing in the material culture of the published western Scythians to distinguish the supposed Thracian elites.
  • We have the sample I0575, an Early Sarmatian from the southern Urals (one of the few available) of haplogroup R1b-Z2106, which supports the presence of R1b-Z2103 lineages among Eastern Iranian-speaking peoples.
  • We also have DA30, a Sarmatian of I2b lineage from the central steppes in Kazakhstan (ca. 47 BC – 24 AD).
  • Other Sarmatian samples of haplogroup R remain undefined.
  • There is R1a-Z93 in a late Sarmatian-Hun sample, which complicates the picture of late pastoralist nomads further.

Therefore, the possibility of hidden pockets of Iranian peoples of R1b-Z2103 (maybe also R1b-P312) lineages remains the best explanation, and should not be discarded simply because of the prevalent haplogroups among modern populations, or because of the different clusters found, or else we risk an obvious circular reasoning: “this sample is not (autosomically or in prevalent haplogroups) like those we already had from the steppe, ergo it is not from this or that steppe culture.” Hopefully, the upcoming paper by Järve et al. will help develop a clearer genetic transect of Iranian populations from the steppes.

All in all, the diversity among western Scythians represents probably one of the earliest difficult cases of acculturation to be studied with ancient DNA (obviously not the only one), since Scythians combine unclear archaeological data with limited and conflicting proto-historical accounts (also difficult to contrast with the wide confidence intervals of radiocarbon dates) with different evolving clusters and haplogroups – especially in border regions with strong and continued interactions of cultures and peoples.

With emerging complex cases like these during the Iron Age, I am happy to see that at least earlier expansions show clearer Y-DNA bottlenecks, or else genetics would only add more data to argue about potential cultural diffusion events, instead of solving questions about proto-language expansions once and for all…

Related