Intense but irregular NWIE and Indo-Iranian contacts show Uralic disintegrated in the West

chalcolithic-early-uralic-indo-european

Open access PhD thesis Indo-Iranian borrowings in Uralic: Critical overview of sound substitutions and distribution criterion, by Sampsa Holopainen, University of Helsinki (2019), under the supervision of Forsberg, Saarikivi, and Kallio.

Interesting excerpts (emphasis mine):

The gap between Russian and Western scholarship

Many scholars in the Soviet Union and later the Russian Federation also have researched this topic over the last five decades. Notably the eminent Eugene Helimski dealt with this topic in several articles: his 1992 article (republished in Helimski 2000) on the emergence of Uralic consonantal stems used Indo-Iranian and other Indo-European loans as key evidence, and it was one of the first serious attempts to stratify the loanwords, paying attention to the non-initial syllables as well. Helimski (1997b) discusses Indo-Iranian loanwords more generally, but it is especially notable for the introduction of the “Andronovo Aryan” idea: Helimski argues that some loanwords in Ob-Ugric and Permic are derived from an unattested, third branch of Indo-Iranian. Helimski’s idea has been supported by at least Mikhail Zhivlov in a 2013 article, but otherwise it has not received wide acceptance. Helimski was also known for his criticism (see especially Helimski 2001) of Jorma Koivulehto’s etymological work: although the main targets of Helimski’s criticism were Koivulehto’s writings on Proto-Indo-European and Germanic borrowings (which fitted poorly with Helimski’s ideas of the Nostratic roots of Proto-Uralic and his other theories on Uralic linguistic prehistory), also some of his Indo-Iranian ideas received unnecessarily sharp criticism in Helimski (2001).

Vladimir Napol’skikh is another important Russian scholar who has written on several occasions about Indo-Iranian–Uralic contacts. His 2014 article is notable for its criticism on Helimski’s Andronovo Aryan theory and his arguments in favour of Indo-Aryan loanwords. Napol’skikh also considered some of the traditional Indo-Iranian loanwords to be borrowings from Tocharian (see below) in some of his earlier works, an idea which has been criticized by Kallio (2004) and Widmer (2002) and which Napol’skikh himself has since dropped in later publications (2010, 2014), where many of these alleged Tocharian loans are again considered Indo-Iranian.

Some of the main characteristics of Russian research is that the earliest Indo-European loanwords are usually considered to represent an inheritance from the Nostratic proto-language (Helimski [2001]; Kassian, Zhivlov & Starostin [2015]), an idea which is not widely accepted by scholars of Uralic in the West. Although this often does not concern the Indo-Iranian loanwords at all, or it concerns only a part of them, the works of Jorma Koivulehto, who dealt with both earlier Indo-European and Indo-Iranian loans, receive so much criticism from the Russian scholars that his important ideas are often totally rejected or left unmentioned in Russian research.

This kind of rejection of central etymological research literature can be considered one of the most pressing problems in Uralic loanword studies, and it leaves a regrettable gap between Russian and Western European scholars in this perspective.

11-chalcolithic-late-cultures

11-chalcolithic-late-uralic

Semantics

Among the Indo-Iranian loanwords in Uralic, one can easily mention examples that follow the classification of semantic change as described above. For widening or generalization, vasara ‘hammer’ is a good example: the Indo-Iranian original denotes ‘the weapon of the god Indra’ in Indic and ‘the weapon of the god Mithra’ in Avestan, whereas Finnish ‘hammer’ (and the Mordvin meaning ‘axe’) are more general meanings of tools. Fi huhta is a good example of narrowing: Iranian *tsuxta- means simply ‘burned’, whereas in Finnic huhta means specifically ‘a burned patch used in slash-and-burn agriculture’. Metonomy has taken place in Mordvin, where čuvto denotes simply ‘tree’; this probably developed through the meaning ‘wood burned for agriculture’. Khanty (South) wǟrəs denotes ‘horse’s mane’, but its Iranian original probably had a more general meaning of hair (cf. Avestan varəsa- ‘hair of human and animal, mostly hair of the head’).

An interesting example of degeneration is the etymology of Finnic orja ‘slave’, probably borrowed from the Indo-Iranian ethnonym *(H)ārya- ‘Aryan’ (for the original semantics of this word, see the entry *orja in Chapter 2). A similar development is seen in English slave which is etymologically connected to the ethnonym Slav.

Distribution as a criterion in the dating of loanwords

(…) some of the Indo-Iranian loans seem to have a wide distribution, but upon a closer look it becomes clear that they include phonological irregularities, which can only be explained by assuming that they are parallel loans. The ability to recognize parallel borrowings is extremely important in Uralic loanword studies, and it has been developed with success in the research of Germanic and Baltic loanwords (see Junttila 2015).

Interestingly, K. Häkkinen (1983: 207) argues that although words disappear from languages, the most basic words often remain stable and are maintained for longer periods. Although this is probably true, here the notion of “basicness” is something that is open to different interpretations. Many central concepts in culture and livelihoods are often described with prestige words that are borrowed, and these central words can be very easily replaced. In determining the age of the loanwords one has to always keep in mind that a reflex of a very early cultural borrowing from Indo-Iranian to Proto-Uralic/Proto- West Uralic etc. can easily have been lost in some daughter language, if a later prestige loan for the same concept has been borrowed from some later contact language (such as from some form of Germanic or Baltic into Finnic or from some Turkic language into Udmurt, Mari or Mordvin).

In Uralic linguistics the common loanword layers shared by some intermediary proto-language have often been seen as giving support to the reconstruction of these stages, but K. Häkkinen (100–108) considers this problematic. It should also be noted that the distribution of Indo-Iranian loanwords very rarely matches the assumed taxonomic divisions: there are some loanwords confined to the Finno-Permic, Finno-Volgaic or Ugric languages, but very few loanwords that would be Finno-Permic, Finno-Volgaic or Ugric in the way that the word is found in all the languages that belong to the branch.

Consontants

Laryngeals

There are only very few possible examples of a consonantal substitution of the word-initial laryngeal. It seems probable that the word-initial laryngeal, if it was retained, was not substituted in any way in Uralic. *karšV (> Fi karhu), an uncertain etymology, is the only possible example.

(…) Even if *k was a result of laryngeal hardening, the development would probably be earlier than Proto-Indo-Iranian, meaning that by the time the word was borrowed, the Indo-Iranian word simply had the stop *k that was regularly substituted by Uralic *k.

Evidence for Andronovo Aryan and Indo-Aryan loanwords?

None of the loanwords have to be considered as Andronovo Aryan or Proto-Indo-Aryan based on the criteria that were presented in the Introduction. The Uralic palatal affricate *ć or sibilant *ś can in all cases be explained from Proto-Indo-Iranian *ć, and there is no need to assume that it should reflect Andronovo Aryan *ć or PIA *ś. In the etymological material of this study, no further positive evidence was found for the distinction of PU *ś and *ć as substitutions of the Proto-Indo-Iranian affricates. This means that at least in word-initial position there probably was no difference between *ć and *ś, and even though we do not know what this sound was phonetically, it is safe to assume that Uralic words showing *ś reflect a sound substitution of Indo-Iranian *ć and *Ʒ́.

Regarding the distribution of the etymologies within Indo-Iranian, all the loanwords which cannot be from Iranian because of the lack of attested Iranian cognates have a more or less secure Proto-Indo-Iranian etymology, and nothing prevents us from assuming that these words reflect Proto-Indo-Iranian borrowings. It is also possible that some words with solid Proto-Indo-Iranian etymologies were present in Iranian but were lost before the first Old Iranian texts were composed.

12-bronze-age-early-cultures

12-bronze-age-early-uralic

List of Indo-European and Indo-Iranian Etymologies

Pre-Indo-Iranian

*ertä ‘side’, *kekrä ‘wheel’, *kečrä ‘spindle’, *mekši ‘bee’, (*meti ‘honey’), *ońća ‘part’, (*orpa ‘orphan’), *peijas ‘feast’, *pejmä ‘milk’, Pre-P *pertä ‘wing’, *repä ‘fox’, *rećmä ‘rope’, *sejti ‘bridge’

Proto-Indo-Iranian

*aćtara ‘whip’, *anti/onta, *ora ‘awl’, *orja ‘slave; south’, (*orpa ‘orphan’), *pośi ‘penis’, *śaŋka ‘handle’, Pre-Md *śaγa ‘goat’, *śarwi ‘horn’, *śaδa- ‘to rain’, śara- ‘shit’, *śi̮ta ‘hundred’, Pre-P *śVta ‘hundred’, *śasra ‘thousand’, *śišta ‘wax’, *śoma- ‘sad’, *waćara ‘hammer’, *woraći ‘boar’

Ambiguous early loans (can be either from PII or PI)

*ajša ‘shaft’, *asVra ‘lord’, *iha ‘yearning. passion’, *ihta ‘lust’, *jama ‘twin’, *jawi/jowa (> Mo juv) ‘awn’, *jawi (> PS *jäə̑) ‘flour’, *ji̮ni ‘way, path’, *juma ‘god’, *kana- ‘to dig’, *kara- ‘to dig’, *kata- ‘to graze’, *kertä- ‘to bind’, *ki̮ntaw ‘tree stump’, *kürtńV ‘iron’, PKh *kǟrtV ‘iron’, *kärtä ‘iron’, *martas ‘dead’, *ńātV- ‘to help’, *pakas ‘god’, *para ‘good’, Kh pĕnt ‘way’, PMs *pē̮ńtV ‘brother-in-law’, *pora ‘old’, *poči- ‘to boil’, Pre-P *porta ‘vessel’, *puntaksi ‘bottom’, Pre-Ma *pänti- ‘to bind’, PMa *pärća ‘ear of corn’, *pätäri- ‘to flee’, *saγi- ‘to get, obtain’, *sampas ‘pillar’, *saŋka ‘old’, *sara ‘lake’, *sasara ‘sister’, *säptä ‘seven’, *tajwas ‘sky’, *takra ‘piece of flesh’, *tarna ‘grass’, *tojwV ‘wish’, *toraksi ‘through’, *tora- ‘to fight’, *täjV ‘milk’, *täjinV ‘cow’, *täši, *uška ‘bull’, *wakša- (> PS *wåtå-) ‘to grow’, *wajna- ‘to see’, *wojna- ‘to see’, *wiša ‘venom’, *wi̮rna ‘wool’, *wärkä ‘kidney’, PS *wǝ̑rkǝ̑ ‘wolf’, *wirtV- ‘to hold, raise’, *äŋkärä ‘coal’

List of uncertain Indo-Iranian etymologies

PFi *aiwa (← Germanic ?), Ma *arša ‘mane’, PMs *ǟrV ‘fire’, *aštira ‘barren earth’, POug *ćakV ‘hammer’, *ćara- ‘brown; ? to dawn’, *ćero ‘hill-top’, *ćerti ‘group’, *itä- ‘to appear’, Pre-Fi *karšV ‘bear’, PMs *kīrV ‘iron’, *kota ‘chum’, Pre-Sa *kupa ‘pit’, PFi *kärsä ‘snout’, *maksa- ‘to pay’, PFi *mana-, PUg ? *mańći, Ma marij ‘Mari; man; husband’, *mē̮ja ‘wedding’, *mykkä ‘dumb’, PP *oč ‘corn’, *orpV ‘relative’, PFi *paksu ‘thick’, *peji- ‘to milk’, *pi̮ŋka ‘psychedelic mushroom’ POUg *porV ‘phratry’, Pre-Sa *poti ‘against’, Pre-Fi *šatas ‘germ’, *sentü- ‘to be born’, *šerä- ‘to wake up’, Ms šVšwǝŋ ‘hare’, PUg *śeŋkV ‘nail’, Pre-Sa *soma/sami ‘some’, PP *sur ‘beer’, PFi *süte- ‘to hit’ (< ? *sewči-), Hu szekér ‘wagon’, Kh ʌīkər ‘Narte’ PUg *taja- ‘secret’, Pre-Fi *terni ‘young’, *terwV ‘healthy’, ? *towkV ‘spring’, PWU *utarV ‘udder’ (← Germanic ?; Mari *waδar ← II), *waŋka ‘hook’, Mo E v́eŕges, M vərǵas ‘wolf’

Etymologies that were probably borrowed from another Indo-European source (PIE, PBSl, Germanic, Baltic)

*aisa ‘shaft’ ← Balto-Slavic, PFi *aiwa (← Germanic ?), *apV ‘help’ ← Germanic, *jewä ‘grain’ ← Balto-Slavic, Ma karaš etc. ‘honeycomb’ ← Baltic, (*meti ‘honey’ ← ? PIE,) Fi *ojas ‘shaft’ ← Slavic, *ola ← Baltic, *oŋki ← Germanic, *porćas ← Balto-Slavic, Pre-Sa *porta ‘vessel’ ← Germanic, *salV ‘salt’ (cannot be reconstructed for PU, various later parallel loans), *śi̮lkaw ← Balto-Slavic, *sammu- ← Germanic, *śuka ← Balto-Slavic, Mari *šŭžar ← Baltic/Balto-Slavic or Slavic, *tejniš ‘pregnant animal’ ← Baltic/Balto-Slavic, PWU *utarV ‘udder’ (? ← Germanic)

Early loans into differentiated branches

Proto-West Uralic

Only in Finnic:

*aćnas ‘voracious’, *iha ‘wish’, *ihta ‘lust’, PFi *isV ‘appetite’, *martas ‘dead’, *očra ‘barley’, *peijas ‘feast’, *pejmä ‘milk’, *pe̮rna ‘spleen’, *sampas ‘pillar’, *sooja ‘shelter’, *tajwas ‘sky’, *takra ‘piece of flesh’, *terwV ‘healthy’, *tojwV ‘wish’

All of these words, with the exception of *sooja ‘shelter’, were clearly borrowed into Early Proto-Finnic (Pre-Finnic) at the latest. Formally most of the loans could be from PII or PI.

Only in Saami:

*kata- ‘to graze’, *kertä- ‘to bind’, *pora ‘old’, *wojna- ‘to see’

All of the loans were acquired before the Saami vowel changes. Formally all could be either from Proto-Indo-Iranian or Proto-Iranian.

Only in Finnic and Saami:

*asma ‘voracious’, *jama ‘twin’, *kekrä ‘wheel’, *mača ‘insect’

*asma ‘voracious’, *jama ‘twin’, *kekrä ‘wheel’, *mača ‘insect’ Of these, *mača from Proto-Iranian and *jama is ambiguous. As the -sm- in asma does not point to Proto-Indo-Iranian *ć, this is probably an Iranian loan too. It is possible that these words were borrowed into Proto-West Uralic, as there is no general support for a Finno-Saamic proto-language today. As the cognates within Finnic and Saami are regular, there is no need to assume parallel borrowings. *kekrä has to be from Proto-Indo-Iranian.

NOTE. Based on the discussion of stages of borrowing from Indo-Iranian, and of the distribution of *kekrä among Uralic dialects in particular, Holopainen probably means Pre-Indo-Iranian for this example.

Only in Mordvin and/or Finnic and/or Saami (can point to a borrowing into Proto-West Uralic):

*ji̮ni ‘way’, *kečrä ‘spindle’, *rećmä ‘rope’, *śaŋka, *waćara ‘hammer’, *warsa ‘foal’, *wasa ‘calf’, *woraći ‘pig’

Based on phonological criteria, these loans do not form a chronologically coherent layer, but probably their modern distribution is accidental (their original distribution can have been wider). *kečrä ‘spindle’ and *rećmä ‘rope’ are from Pre-II, *śaŋka, *waćara and *woraći from PII, *warsa and *wasa from later Iranian (Alanic). *ji̮ni is ambiguous. Also the loans confined to Finnic and Saami mentioned above probably were borrowed into Proto-West Uralic, as it is a more convincing taxonomic entity than Proto-Finno-Saamic.

Proto-Mari-Permic

Only in Mordvin, Finnic and/or Saami and Mari

*juma ‘good’

This loan can be either from PII or PI. As it is obvious that these four branches do not form any taxonomical entity (Salminen 2002; J. Häkkinen 2009), it is only logical that there are no other loanwords with a “Finno-Volgaic” distribution.

Only in Mari:

*kVrtnV ‘metal’ (← PII, PI or later), Pre-Ma *pänti- ‘to bind’, PMa *pärća ‘ear of corn’, *si̮rńa ‘gold’ (← Old Iranian)

Only very few early Indo-Iranian loans can be found in Mari and in no other Uralic language. It is unclear what the reason for this is. It is, of course, possible that some uncertain loanwords like marij ‘man; Mari’ turn out to be correct after all, but even that does not make the number of loans in Mari very high. The situation has to be explained either with loss of vocabulary and replacement by later loans (from Turkic, and also perhaps from Permic) or with Mari’s location on the periphery at the time of the later contacts with the Iranian languages. Agyagási (2019: 254–258) argues that the current area where Mari is spoken was formed only relatively late, after the Mongol invasion in the High Middle Ages. If this is indeed correct, and Mari was spoken in more northern areas before that, it can be assumed that Pre-Mari had only sporadic contacts with the Iranian languages after it split off from Proto-Uralic.

Only in Permic (early loans; for later loans confined to Permic)

*a(č)wa ‘stallion’, PP *ju ‘awn’, *kertä ‘house’, *kärtä ‘metal’, *kada- ~ *gada- ‘to steal’, *karka ‘chicken’, *parśa ~ *barśa ‘mane’, *parta ‘knife’, *pertä ‘wing’, *poči- ‘to boil’, *porta ‘vessel’, *dura ‘long’, *domV ‘to tame’, PP *śumi̮s ‘band’, PP *šud‘luck’, *uška ‘bull’, *wi̮rna ‘wool’, *wirä ‘man, husband’, *äŋkärä ‘coal’

The number of loanwords in Permic is relatively high, and many of these can be considered to be Iranian loanwords. Technically many loans are ambiguous, but as some of the words were borrowed late due to historical reasons (‘iron’), and some were borrowed into a Pre-Permic which already had a phonological system that was different from Proto-Uralic (*šud- has d which cannot reflect PU *δ).

It is probable that the Permic languages were in continuous contact with the Indo-Iranian languages from the time they split from Proto-Uralic until the early mediaeval era.

Proto-Ugro-Samoyedic

Only in Khanty and Mansi (regular cases):

POUg *ēräɣ ‘song’, POUg *eträ ‘clear sky’, POug *mɔ̈ŋki ‘forest-spirit’, *ńātV- ‘to help’, *päčäɣ ‘reindeer’

The number of these etymologies is so low that it is very difficult to determine whether these words were borrowed into Proto-Ob-Ugric or some earlier proto-language, such as Proto-Ugric.

Only in Khanty and/or Mansi and/or Hungarian (regular cases):

*säptä ‘seven’ (Khanty + Hungarian regular), *sara ‘lake’

There are so few convincing loanwords with a “Ugric” distribution that they provide very little evidence. Either of these loans could be from Proto-Indo-Iranian or Proto-Iranian, if we assume that *s > *h was a common Iranian sound change. Both loans were acquired

Only in Samoyed:

*jäwi (> PS *jäə̑), PS *pulə̑ ~ *pi̮lə̑ ‘bridge’, *täjki ‘spear’, PS *wǝ̑rkə̑ ‘wolf’, Pre-S *täši (> PS *tät), *wakša- (> PS *wåtå) ‘to grow’

Of these, only *wåtå- has to be a very early loan because of *s > *t. *jäwi (> PS *jäə̑) and PS *wə̑rkə̑ were possibly acquired before the Proto-Samoyed vowel developments, making them probably early loanwords too. Formally all of them could be either from PII or PI. *pulə̑ ~ *pi̮lə̑ could have been borrowed into Proto-Samoyed (with Iranian *u corresponding to Samoyed *u), and because of the *l the word is probably from a relatively late, Middle Iranian language.

The following loanwords have a distribution with a cognate in both Samoyed and some other branch:

*śaδa- ‘to rain’, *tora- ‘to fight’ (also *itä-, which is more uncertain, belongs here)

Pan-Uralic loans

The following loanwords have a distribution with regular cognates with at least one Ugric branch and some other branch, which points to early borrowing. Although formally *kana- and *kara- are ambiguous, they are probably from Proto-Indo-Iranian because of their distribution. The rest of the loans are from Pre-II or PII.

*kana- ‘to dig’, *kara- ‘to dig’, *meti ‘honey’, *mekši ‘bee’, *orpV ‘orphan’, *ora ‘awl’, *peji- ‘to milk’, *pätäri- ‘to flee’, *śara- ‘shit’, *śoma- ‘sad’

The following loanwords are found in at least two non-adjacent branches of Uralic (the ones listed in the above categories are not counted). As there are no widely accepted criteria for a word to be considered “Uralic”, all of these could be considered loanwords into Proto-Uralic, in this case probably from Proto-Indo-Iranian or Pre-Indo-Iranian.

*ajša ‘shaft’, *anti/onta ‘grass’, *ertä ‘side’, *ki̮ntaw ‘tree stump’, *mertä ‘human’, *orja ‘slave’, *para ‘good’, *počaw ‘reindeer’, *puntaksi ‘bottom’, *saγi- ‘to get, obtain’, *repä ‘fox’, *si̮ŋka ‘old’, *sasara ‘sister’, *sejti ‘bridge’, *śišta ‘wax’, *tarna ‘grass’, *toraksi ‘through’, *wiša ‘venom’

12-bronze-age-middle-cultures

12-bronze-age-middle-uralic

Discussion about the distribution and its impact on Uralic taxonomy

(…) there are Proto-Iranian loanwords which were borrowed simultaneously into several early branches of Uralic, making it likely that Uralic had split into several branches by the time of these contacts.

Also the fact that many of the Proto-Indo-Iranian loanwords either show a restricted distribution (such as West Uralic *waćara, *woraći) or irregular correspondences (*asVra, *śasra, *śi̮ta) can point to the conclusion that Proto-Uralic was fragmenting by the time when contacts with Proto-Indo-Iranian took place.

The earlier, Pre-Indo-Iranian loanwords usually show a wider distribution and regular sound correspondences. Although the number of these earliest loans is quite small, based on their distribution and regular correspondences it can be assumed that the Pre-Indo-Iranian stage (after RUKI, *l > *r and the merger of velars and labiovelars but before the merger of non-high vowels) was concurrent with Proto-Uralic, with the changes leading to Proto-Indo-Iranian happening after the dispersal of Proto-Uralic.

The distribution of loanwords reinforces the old idea that Samoyed is a lexical outlier, as only few convincing Indo-Iranian etymologies for Proto-Uralic words (*saδa- ‘to rain’, *tora- ‘to fight’) have a convincing reflex in Samoyed. However, the fact that such etymologies exist means rather that the situation is due to lexical loss in Samoyed, and that the earliest contact occurred before Samoyed split off from Proto-Uralic.

There are very few loanwords that have a Ugric distribution (being found in at least one Ob-Ugric branch and Hungarian), and likewise rather few in Ob-Ugric. The few loans that have a distribution confined to Ugric were borrowed before the change *s > *θ took place. This means that the Ugric distribution does not mean much from the point of view of chronology or taxonomy, as the words were borrowed into a language that was still identical to Proto-Uralic. Even some loans borrowed into Khanty and Mansi have to be so early.

Impacts on dating and the location of the contact zones

Because of the very limited number of convincing etymologies found only in Finnic or Saami, it is probable that there were not (extensive) contacts with Pre-Finnic or Pre-Saami after the split of Proto-West Uralic.

The great number of loanwords of varying ages in Permic inevitably points to the conclusion that the pre-form of the Permic branch had been constantly spoken in an area that was adjacent to the Iranian languages. The different layers of loanwords in Permic clearly point to chronological differences in the donor languages, but it also seems that Permic was in contact with various forms of Iranian and not with different diachronic stages of the same language.

In general, the words that have been borrowed are typical cultural words, and the contacts between Indo-Iranian and Uralic seems to have been a typical contact situation in which a culturally less-advanced language group borrows various cultural terms from a more “advanced” group. The words in various loanword layers related to horse and cattle breeding show obvious cultural influence in the field of domesticated animals, and the borrowing of some names of grains points to agricultural influence from the Indo-Iranians on the speakers of Uralic.

Needless to say, many of the borrowings I listed in A Song of Sheep and Horses suffer from the same ailment attributed to Indo-Europeanists in general:

With slight exaggeration one can agree with the remark by Koivulehto (1999a: 209–210) that the Indo-Europeanists often use outdated sources or are simply uninterested in the topic. The problem is further complicated by the various and often obsolete views expressed in even relatively modern Uralicist works, such as those of Rédei (1986c; 1988) or Katz (2003); (…) Mallory & Adams (2006) adequately refer to the importance of the early loanwords, but they use mostly Rédei’s outdated reconstructions and stratigraphy in support of their theories.

I need to review all related texts with this thesis and the works recently published by Kümmel, as well as the recent book of the Leiden school on Indo-Uralic.

Also, does anyone know the (traditional?) why of the resistance to the Indo-Uralic concept among Uralicists? Maybe it’s a reaction against the Nostraticist and Siberian views of Uralic espoused by the Soviets?

Related

Genetic continuity among Uralic-speaking cultures in north-eastern Europe

east-europe-bronze-age

The recent study of Estonian Late Bronze Age/Iron Age samples has shown, as expected, large genetic continuity of Corded Ware populations in the East Baltic area, where West Uralic is known to have been spoken since at least the Early Bronze Age.

The most interesting news was that, unexpectedly for many, the impact of “Siberian ancestry” (whatever that actually means) was small, slow, and gradual, with slight increases found up to the Middle Ages, compatible with multiple contact events in north-eastern Europe. Haplogroup N became prevalent among Finnic populations only through late bottlenecks, as research of modern populations have long suggested, and as ancient DNA research hinted since at least 2015.

I risked to correlate the arrival of chiefs from the south-west with the infiltration of N1c-VL29 subclades during the transition to the Iron Age, coupled with that minimal “Siberian” ancestry (see e.g. here and here). Now we know that the penetration of this non-CW ancestry started, as predicted, in the Iron Age; that it was highly variable in the few samples where it appeared, with ca. 1-4%, while most Iron Age individuals show 0%; and that it was not especially linked to individuals of N1c-Vl29 lineages.

It is also basically confirmed, based on the (ancient and Modern Swedish) N1c-L550 subclades found among Iron Age Estonians, that N1c-VL29 lineages and the so-called “Siberian” ancestry will be found simultaneously around the Baltic coastal areas, and that different lineages must have suffered later founder effects among Finns, which suggests that these alliances through exogamy brought exactly as much language change in Sweden, Lithuania, or Poland, as they did in the East Baltic region…

On the other hand, the paper has also shown a potential movement of Corded Ware-derived peoples, if the change from LBA to IA samples is meaningful; in fact, even more Corded Ware-like than Baltic and Estonian BA populations. The exact origin of that movement is difficult to pinpoint, and it may not be related to the arrival of Akozino warrior-traders from the south-east, since theirs seems to be a minor impact proper of elites in a chiefdom system around the Baltic.

fortified-settlements-lba-ia
Distribution of fortified settlements (filled circles) and other hilltop sites (empty circles) of the Late Bronze Age and Pre-Roman Iron Ages in the East Baltic region. Tentative area of most intensive contacts between Baltic and Balto-Finnic communities marked with a dashed line. Image modified from (Lang 2016).

Also suggesting a potential movement is the ‘southern’ shift observed in the West and East Baltic areas, likely showing the arrival of Proto-East Baltic speakers (such as the Trzciniec outlier), as we have already discussed in this blog. The unexpected increase in Corded Ware-like ancestry in the Eastern Baltic, coupled with the expected large continuity of hg. R1a-Z283 in the homeland of Balto-Finnic expansions, gives even more support to the known complex system of exogamy along the Baltic coasts, and offers another potential reason for the rise of Baltic-speaking territories in the West Baltic: elite domination.

It is nevertheless important to understand that, even among the most “genetic continuous” regions like Estonia, not a single population in Europe is heir of some ancestral, immutable people. Not in terms of haplogroups, and not in terms of admixture. Balto-Finnic speakers, however continuous they might seem (e.g. in Southern Estonians) aren’t an exception.

After all, this blog was (re)born to fight the currently prevalent sheer stupidity surrounding the simplistic “R1a/steppe ancestry=Indo-European” association, so I wouldn’t like to see it replaced with some other stupid continuity or purity ideas within 10 to 20 years…

Late Uralic stems from East Corded Ware groups

With the currently available tools – linguistics, archaeology, and now genetics -, I don’t think there is any argument to date to question the direct connection of the Late Proto-Uralic expansion with all Eastern Corded Ware groups (i.e. Battle Axe, Fatyanovo-Balanovo, and Abashevo), and thus at least with the unifying A-horizon of Corded Ware and the bottlenecks under R1a-Z645.

NOTE. The only out-group among Corded Ware cultures is the Single Grave culture. It appears to be an early Corded Ware offshoot, reflected in their non-unitary cultural traits (distinct from later unifying waves), in their varied patrilineal clans, and in the short-lasting cultural effect in northern Europe before their complete demise under pressure of expanding Yamna/Bell Beaker peoples from the Danube. The culture’s minimal (if any) effects on succeeding peoples might be seen mostly in the (mainly phonetic) Uralic substrate found in Balto-Slavic – although this may also stem from a more eastern influence, close to the Baltic – and in the contacts of Celtic with Uralic. The huge time depth between this early hypothetic Uralic layer in northern Europe and the emergence of peoples inhabiting these territories in recorded history have no doubt been erroneously interpreted as a lack of Uralic presence in the area.

1) That connection was evident in the Yamna – CWC differences in archaeology, and especially later, with at least Fatyanovo-Balanovo and Abashevo representing the obvious replacement of the Volosovo culture before further expansions of CWC-related groups west and east of the Urals.

The mythical millennia-long continuity of Volosovo hunter-gatherers, including centuries among Corded Ware peoples, as expected lately by the Copenhagen group (and anyone who doesn’t want to question the 1960s association of Indo-European with CWC) must be rejected today in population genomics, as the recent studies of ancient and modern populations show, and as ancient DNA from the region will confirm.

2) In linguistics, the survival of Volosovo as The Uralic-speaking culture was also hardly believable. From Kallio (2015):

While we can say at least something about Uralic substrates in Northeastern Europe, non-Uralic substrates cannot at all easily be identified, because of multiple language shifts, viz. first from non-Uralic to Uralic and then from Uralic to Russian. Yet the Soviet Uralicist Boris Serebrennikov (1956, 1959) argued that there are some non-Uralic substrate toponyms in the Volga-Oka region, but his idea was never taken seriously in the west (cf. Sauvageot 1958), and it pretty soon also sank into oblivion in Russia, even though it can still occasionally pop up there in non-onomastic circles (cf. Napolskikh 1995: 18–19). However, not all the hypotheses on non-Uralic substrates in Northeastern Europe should be rejected (see e.g. Helimski 2001b).

bronze-age-early-languages-east-europe
Tentative map of the distribution of known languages in Eastern Europe during the Early Bronze Age. See full map.

Helimski (2001) argues for a non-Uralic topo-hydronomy in Northern Russia, whose population may have kept their languages up to the Common Era despite the Corded Ware expansion, which is in line with the survival of some non-Indo-European languages everywhere in Europe after the expansion of Yamna and its offshoots:

It should be borne in mind that these [Uralic] hydronyms reached us mainly through Northern Russian and, accordingly, with a tendency to phonetic-morphological adaptation and unification (for river names it is “natural” to be, like the word ‘river’ itself, feminine and to end in -a). Taking into account this circumstance, it may turn out to be non-useless for etymological identification of at least some of the hydronyms on the Finno-Ugric basis.

On the other hand, I wouldn’t exclude the possibility that some parts of this large geographical area were never (completely) Finno-Ugric. The population that created the most important part of the hydronymy of the Russian North could be finally pushed aside or assimilated only at the end of the 1st – beginning of the 2nd millennium AD, during the Russian colonization, retaining the memory of the White-Eyed Chude in its own memory.

NOTE. For more on this non-IE substrate in (especially West) Uralic, see e.g. Zhivlov (2015),

The same non-Uralic substrate is most likely behind most of the shared traits by Mordvinic and Balto-Finnic (see below).

3) In genetics, I don’t think the picture could get any clearer. I don’t know what “Steppe ancestry = Indo-European” proponents expected from 2019, if they expected anything at all (I haven’t seen any coherent model, proposal, or prediction for a long time now), but I doubt the recent results are compatible with any of their implied expectations.

corded-ware-pca-sub-neolithic-europe
Detail of the PCA of the Corded Ware expansion. See full PCA and more related files.

Notice, from the PCA above, how this Baltic Late Neolithic group shows actually a shift from Sredni Stog (see PCA with Sredni Stog) towards typical Khvalynsk-Urals-related ancestry, i.e. populations from eastern European forested regions, derived from hunter-gatherer pottery groups, as I have proposed for a very long time, since the first time a Baltic LN “outlier” appeared. It’s amazing how some amateurs can find 0.1% of any Siberian outlier’s ancestry among Uralians 4,000 years later, but fail to see the direct connection here. The esoteric uses of qpAdm, I guess…

Especially noticeable is the extra WHG-like ancestry and corresponding shift, seen especially marked in late Polish CWC samples, but also in Baltic CWC and especially in one Sweden Battle Axe sample, all of them shifting apparently closer to Pitted Ware and SHG. While that may have been interpreted as an in situ admixture in Scandinavia before, the late Polish CWC samples show likely a resurgence of local populations, so we can assume that both shifts (to SHG- and EHG-like populations) of available CWC samples around the Baltic are clearly part of the WHG:EHG continuum that will be found in the eastern European sub-Neolithic cultures, from Narva to Volosovo.

This WHG-related ancestry is clearly predominant in groups with which Battle Axe peoples admixed, based on the shift towards Pitted Ware, which – I can only guess based on modern Volga Finns – is different from the shift we will see in Netted Ware, more towards the Khvalynsk-Urals cluster. This is in line with the expansion of Battle Axe eastward through coastal areas (West to East Baltic and Finland into Sweden), while Fatyanovo peoples probably emerged from a slightly different route, but also a northern one, if one is to follow archaological similarities and their chronology.

bronze-age-europe-baltic
Detail of the PCA of European Bronze Age populations. See full PCA and more related files.

During the Iron Age, the only peoples that probably shifted strongly (based on modern populations) are West Baltic ones, getting closer to the available Late Trzciniec samples, and even closer to the Trzciniec outlier, i.e. away from the earlier Eastern Corded Ware cluster, and towards Central European groups like Czech EBA or Poland EBA, both of them clearly derived from Bell Beakers, but also admixed with (and thus shifted toward) CW-like populations.

If one looks carefully at the previous PCA on Bronze Age populations, and the next one on Iron Age clusters, it is evident that adding the Swedish LN outlier to East Baltic BA (both strongly related to Battle Axe populations) essentially gives us the continuity of East Baltic BA into the Iron Age. This cluster is continued also in two outliers from Sigtuna, a Viking town close to the Gulf of Finland, known to be an important trading site, 1,500 years later. Not much of a change around the Gulf of Finland, then:

iron-age-eastern-europe
Detail of the PCA of East and North European Iron Age populations. See full PCA and more related files.

Based on the two simplistic Uralic clines one might see described (among the many that certainly existed, from Corded Ware to different Eurasian populations), and just like BOO was for some months fashionable as “Samic”, some may be tempted to say that certain Sintashta or Srubna outliers close to the Urals mark the True Uralic™ peoples. Because, of course they do. Ghost haplogroup N and stuff. And Corded Ware never ever Uralic. Because Gimbutas, and my IE R1a grandfather.

NOTE. Funny thing here: there might be Corded Ware, Iranian, Slavic, Germanic, etc… outliers or out-groups, and they might form the widest genetic clusters ever seen, but they are all of one language, because archaeology and linguistics; however, one “outlier” (also, put your own definition of “outlier” here, let’s say 1% of whatever, and strontium isotope potentially from 100 km away) ca. 600 BC in the Baltic who (surprise!) happens to show hg. N, and he signals the first incoming True Uralic™ speaker from wherever… It won’t be the first or the last time some people resort to “the complexity of Uralic-speaking peoples” in ancestry, just to look for “hg. N = Uralic” like crazy. You only need common sense to understand that this is not how this works. Amateur genomics can’t get more embarrassing than the current “let’s look for ‘Siberian ancestry’ in every individual of haplogroup N” trend. Or maybe it can, and it will, but I can’t see it yet.

If one were to insist on looking for ‘foreign’ contributions among Iron Age Estonians, though, I think one should also check out first archaeology, and then the PC3 (or, more graphically, a 3D plot), to understand what might be happening with the many Uralic clines derived from Corded Ware, before starting to play around with bioinformatic tools to discover a teeny tiny 1% admixture of the wrong population, and rushing to build far-fetched narratives. Apparently, one of the different clines formed roughly between southern (steppe – forest-steppe) and northern (tundra-taiga) populations in Uralians is also seen in some Iron Age Estonian individuals – especially in some late samples from Ingria…This is not my main interest, so I will leave this here for others to keep wasting their time chasing the white whale of the 0.5% of True Uralic™ ancestry in ancient Baltic samples of hg. N.

pca-3d-estonians-iron-age-boo-samic
Still images of the 3D plot of Eurasian samples. Typical PC1 vs. PC2 visualization to the left, and shift of the view to PC3 on the right image. See full PCA and more related files.

An exclusive Volga-Kama homeland for Disintegrating Uralic?

Since I don’t believe in macro-regions of largely continuous ethnolinguistic communities, as I have often said about Slavic (naively associated with prehistoric tribes of Eastern Europe) or Germanic (absurdly considered to be represented by Battle Axe), it is difficult for me to believe that Battle Axe-derived cultures remained of the same Finno-Samic dialects since the Corded Ware expansion…unless we live in Westeros, where everything happens “for thousands of years”.

I have to admit, then, that the now prevalent identification among Uralicists has become quite attractive:

  • Fatyanovo-Balanovo as Finno-Permic:
    • Fatyanovo/Netted Ware with West Uralic (also called Finno-Mordvinic).
    • Balanovo/Chirkovo-Kazan with Central Uralic (Mari-Permic).
  • Abashevo, into the Andronovo-like Horizon through the Seima-Turbino phenomenon, with East Uralic (also Ugro-Samoyedic).

Exactly like the identification of Yamna Hungary – Bell Beaker transition as the North-West Indo-European homeland, it gives us simplicity and small and late ethnolinguistic communities, away from the traditionally overused big and early language territories.

This late homeland would be supported, among others, by:

  • The presence of Indo-Iranian loanwords in Finno-Permic and Ugric (probably also in Samoyedic, either lost, or – much more likely – underresearched), compatible with the immediate contact between Abashevo – Sintashta-Potapovka-Filatovka and Fatyanovo-Balanovo.
  • The supposed expansion of Netted Ware from Fatyanovo to the north-west, which may be explained as the split and expansion of Balto-Finnic and Samic ca. 1900 BC.
  • A longer-lasting Finno-Permic (West+Central Uralic) community contrasting with the early separation of East Uralic.
  • The compatibility of this late expansion with the late expansion of Pre-Germanic from Denmark with the Dagger Period, and of Balto-Slavic with Trzciniec, which puts all three dialects reaching the Baltic Sea in the EBA.

NOTE. I meant to update the linguistic text to include the most recently favoured phylogenetic tree of Uralic languages after Häkkinen (2007, 2009, 2014), which has very quickly become the new normal among Uralicists, but I don’t think I will have enough time to review the necessary papers for that. I am rushing to publish a printed edition, so the text will wind up being a mixture of “traditional” (meaning, basically, pre-2010s) description of Uralic dialects but using modern divisions; say, “West Uralic” instead of “Finno-Samic”. By the way, I am still amazed that none of my reader-haters (or any online user discussing Uralic migrations, for that matter) have come up with the questions that the new division pose, and it supports my suspicion about the complete lack of interest in linguistics of most (a)DNA fans, except for the occasional use of old and free PDFs Googled to support new narratives invented expressly for some qpAdm results…

textile-ceramics-europe-bronze-age
Textile ceramic styles and influence of Bronze Age cultures divided in clusters.

Problems with this Parpola-Carpelan’s (2012-2018) interpretation include:

  • The differentiation between Fennoscandian Textile Ceramics vs. Netted Ware, which is not warranted in archaeology. The assumption that Netted Ware expanded to the Baltic Sea (as Kallio does, following the traditional view) is thus weak, and it was probably a question of cultural contacts coupled with short-distance population movements/exchange in both directions (from the Baltic to the Volga and vice versa). In fact, the culture division relies on some fairly common and technically simple ornamentation patterns, widespread all over northern Europe, even before the Corded Ware expansion, and it is very difficult to separate certain neighboring Textile Ceramics from Netted Ware groups in southern Finland (i.e. Sarsa-Tomitsa groups).
  • The strict and radical direction described for the Netted Ware by Carpelan, as an eastward and northward expansion, within a very short time frame (ca. 1900-1800 BC), based on few radiocarbon dates, which seems to me like a very risky assumption. We know how this kind of descriptions of direction of culture expansion based on radiocarbon dates has turned out in much more complex “packages”, like the Bell Beaker culture… In fact, the earliest dates for Textile Ware are from the East Baltic, earlier than those of Netted Ware.
  • The assumption that Balto-Finnic traits shared with Mordvinic are a) late and b) meaningful for dialectalization of two closely related dialects, when it is clear that both dialects separated quite early. Phonologically Finnic is more conservative, morphologically less so, and the shared traits include a handful of non-Uralic substrate words which can’t be traced to a single common source, hence they were adopted when both languages had already separated… All in all, Finnic – Mordvinic correspondances are not even close to Italo-Celtic ones, which is clearly fully incompatible with a proposal of a Finnic separation from Mordvinic coinciding with the LBA-IA transition.

Especially problematic for Parpola’s model is the lack of genetic impact in Bronze Age or Iron Age Estonians, not reaching a significant level under any possible statistical threshold – which I am sure was quite disappointing for some of my readers -, but is in line with major archaeological continuity of groups the from region, only disturbed in cultural (and Y-chromosome) terms by the expansion of Akozino warrior-traders all over the Baltic Sea. Any proposed population movement will be very difficult to support in genetics, given the Corded Ware-derived populations that we will see in both regions, and the continued Baltic-Volga contacts since the Corded Ware expansion.

Problems with an interpretation of such a small impact in population genomics includes the similarly weak impacts and haplogroup infiltrations that can be seen among populations basically everywhere in Eurasia, during any given period, and much greater genetic impacts that are supposed to be (or that were certainly) followed by ethnolinguistic continuity.

akozino-malar-axes-fennoscandia
Distribution of the Akozino-Mälar axes according to Sergej V. Kuz’minykh (1996: 8, Abb. 2).

The Battle Axe question

From Kallio (2015), about choosing a tentative homeland for Proto-Uralic:

(…) linguistically uniform Proto-Uralic would have been spoken in the Volga-Oka region until the mid-third millennium BC when the Proto-Uralic-speaking area would have expanded to the Volga-Kama region as well. By the end of the same millennium, this expansion would have led to the earliest dialectal splits within Uralic into Finno-Mordvin, Mari-Permic, and Ugro-Samoyed. The splitting up of these three soon followed during the early second millennium BC when the Uralic-speaking area finally stretched from the Baltic Sea in the west to the Altai mountains in the east. Indeed, no matter where Proto-Uralic was spoken, the branching into the nine well-attested subgroups (viz. Finnic, Saami, Mordvin, Mari, Permic, Hungarian, Mansi, Khanty, and Samoyed) must have taken less than a millennium, because their shared phonological and morphosyntactic isoglosses are rather limited (see Salminen 2002). The traditional view that all this branching would have taken several millennia violates everything linguistic typology teaches us about the rate of language change.

The basic problem of this identification of Fatyanovo-Balanovo as West-Central Uralic and Abashevo as East Uralic is the nature of the Battle Axe culture, including the Bronze Age East Baltic and Gulf of Finland area. Even if it is accepted that Fatyanovo-Balanovo represented all Western groups, Battle Axe must have represented West Uralic-like dialects.

The ethnolinguistic identification of Battle Axe depends ultimately on the nature of contacts of Fatyanovo/Netted Ware with Battle Axe/Textile Ceramics. If both groups were close and interacted profusely, as it seems, it doesn’t seem granted that we will be able to distinguish a close Para-West Uralic dialect of Scandinavia from the actual expanding Balto-Finnic and Samic dialects, if they were actually linked to the Netted Ware expansion. Also from Kallio (2015):

No doubt the most convincing substrate theory has recently been put forward by the Saami Uralicist Ante Aikio (2004), who has not only rehabilitated but also improved the old idea of a non-Uralic substrate in Saami. His study shows that there were still non-Uralic languages spoken in Northern Fennoscandia as recently as the first millennium AD. Most of all, they were not only genetically non-Uralic but also typologically non-Uralic-looking, bearing a closer resemblance to the so-called Palaeo-European substrates (for which see e.g. Schrijver 2001; Vennemann 2003).

In comparison, the case of Finnic is much more difficult. The fact that Proto-Uralic was not spoken in the East Baltic region means that this area must have originally been non-Uralic-speaking, but so far the evidence for a non-Uralic substrate in Finnic has consisted of appellatives and proper names with no etymology (cf. Ariste 1971; Saarikivi 2004a). Contrary to the proposed substrate words in Saami, those in Finnic show no structural non-Uralisms, as if they had indeed been borrowed from some genetically related or at least typologically similar languages, as I suggested above. Also none of them is more recent than the Middle Proto-Finnic stage, which makes them at least two millennia old. All this agrees with archaeological evidence discussed earlier that the Uralicization of the East Baltic region occurred during the Bronze Age (ca. 1900–500 BC).

The discussion of the paper continues with an unsuccessful attempt to find a hypothetical ancient Indo-European substrate that Kallio believes must be associated with the expansion of Corded Ware, in line with the traditional belief. For example, the often mentioned – almost folk etymology-like, unsurprisingly popular among amateurs – ‘Neva’ as derived from IE “young” is logically rejected…Unlike Parpola, Kallio’s view seems to be confident that Netted Ware (as Textile Ware) expanded into the East Baltic, on both sides of the Gulf of Finland, already during the Bronze Age.

As it has become apparent in population genomics, none of them was right, and Textile Ceramics will essentially show – like Netted Ware – a large genetic continuity of Corded Ware peoples in the whole north-eastern European forest zone – despite small regional population movements, obviously -, which necessarily implies that the whole Corded Ware culture – and not only Fatyanovo-Balanovo and Abashevo – were Uralic-speaking territories.

The similarities in terms of culture and Y-DNA bottlenecks between Battle Axe and Fatyanovo-Balanovo also imply that the linguistic differences between these groups were probably not many, and became strongly divided only after their territorial division. Continued contacts between Battle Axe- and Fatyanovo-derived groups can explain the proposed contacts (Finnic with Samic, Finnic with Mordvinic) after their linguistic-but-not-physical separation.

east-european-fatyanovocwc
East European movement directions (arrows) of the representatives of the Central European Corded Ware Culture (according to I.I. Artemenko).

Battle Axe spoke “Para-Balto-Finnic”?

The Balto-Finnic-speaking nature of Battle Axe is thus supported by:

  • The lack of non-Uralic substrates in Balto-Finnic territory (Kallio 2015).
  • The early separation of Samic and Finnic from Mordvinic, and the virtual identity of Proto-West-Uralic and Proto-Uralic, which suggests that Proto-Uralic spread fast (Parpola 2012).
  • The scarce non-Uralic topo-hydronymy in the East Baltic and around the Gulf of Finland (Saarikivi 2004), comparable to that on the Upper Volga region.
  • The strong influence of a Balto-Finnic-like substrate on Pre-Germanic (or, in Kallio’s opinion, the same Scandinavian substrate influencing both Germanic and Balto-Finnic at the same time), and the continued influence of Balto-Finnic on Proto-Baltic and Proto-Slavic.
  • The continued influence of Corded Ware-derived groups in central-east Sweden in Finland and the East Baltic in terms of agricultural innovations appearing in the LBA, compatible with Schrijver’s proposal of intermediate Germanic-shifted Balto-Finnic groups and Balto-Finnic groups influenced by their pronunciation.
  • The intense Palaeo-Germanic and late Balto-Slavic / early Proto-Baltic superstrate on Balto-Finnic, which place all three dialects around the Baltic Sea since the Early Bronze Age.
  • The easy replacement of a hypothetic Para-Balto-Finnic dialect by incoming Proto-Balto-Finnic-speaking peoples (say, with textile ceramics), without much linguistic impact.

In fact, the continuous contacts of the East Baltic with the Volga, and especially the close interaction with Akozino warrior-traders just before the Tarand-grave period, could be the actual origin of the recent (if any) Finnic-Mordvinic connections that need to be traced back to the LBA-IA (maybe here the number ‘ten’), since most of them can be related to a Pit-Comb Ware culture substrate and earlier contacts through the forest zone, which Samic (due to its early split and presence to the north of the Gulf of Finland during the BA) does not share. In fact, some of them can be traced back to Balto-Finnic first

These are the most often mentioned, in order of descending relevance for a shared ancient community:

  • Noun paradigms and the form and function of individual cases.
  • The geminate *mm (foreign to Proto-Uralic before the development of Fennic under Germanic influence) and other non-Uralic consonant clusters.
  • The change of numeral *luka ‘ten’ with (non-Uralic) *kümmen.
  • The presence of loanwords of non-Uralic origin, related to farming and trees, potentially Palaeo-European in nature.

It’s not only a question of quantity. Are these shared Mordvinic – Balto-Finnic traits really more relevant than, say, those between Italo-Celtic, which are supposed to have formed a community for a very short period at the end of the 3rd millennium around the Alps? Are these traits even sufficient to propose a common early Mordvinic-Finnic group within West Uralic, rather than loose Mordvinic – Balto-Finnic contacts, i.e. contacts between East Baltic (Textile Ceramics) and Volga-Kama (Netted Ware)?

Based on the alternative (Kallio’s) view of continued contacts between Textile Ceramics groups, even without knowing anything about linguistics, you can guess that Parpola is spinning very thin when assuming that these changes suggest that Balto-Finnic may have expanded with Akozino warrior-traders, separating thus ca. 800 BC from Mordvinic…

Genetic findings now clearly help dismiss any meaningful population impact in the LBA-IA transition, although any linguist can obviously argue for linguistic change in spite of major genetic continuity. But then we are stuck in the pre-ancient DNA era, so what’s ancient DNA for.

netted-ware-textile-ceramics
Middle Bronze Age cultures of Eastern Europe.

Genetic continuity = language continuity?

In the end, it’s very difficult to say how much language continuity there is around Estonia since the arrival of Corded Ware peoples. Looking at Modern Estonians, they have been clearly influenced by recent contacts with Baltic- and Germanic-speaking peoples clustering to the south-west in the PCA. They seem to have also received contacts from north(-east)ern peoples, likely from Finland, evidenced by their shifts toward the modern Estonian cluster during and after the Middle Ages, with a slight increase in Siberian ancestry and N1c subclades associated with Lovozero Ware. How much language change did these contacts bring? Maybe an expansion of Gulf of Finland Finnic (Northern Estonian) over Inland Finnic (Southern Estonian) and Gulf of Riga Finnic (Livonian)? Difficult to know, exactly, but, in the traditional view of Balto-Finnic dialectal distribution among Uralicists like Kallio, possibly no change at all.

So, if the obvious changes in the Estonia_MA cluster relative to Estonia_IA cluster and Estonia_Modern relative to Estonia_MA do not represent radical language change…Why would Estonia_IA represent a change relative to Estonia_BA, when it is statistically basically the same? Or Estonia_BA relative to CWC_Baltic? Because of the infiltration of haplogroup N1c around the whole Baltic? Because of the occasional 1% “Siberian” ancestry in some non-locals of varied haplogroups across the whole Baltic area?

In spite of all this, the amount of special pleading we are seeing among openly Nordicist amateurs when discussing the Uralic homeland relative to the Indo-European question in genetics has become a matter of plain willful ignorance. Like the living corpses of the Anatolian homeland, the Armenian homeland, the OIT proponents, or the nativist Basque R1b association, the personal involvement in the revival of “R1a=Indo-European” and “N=Uralic” trends is just painful to watch.

[Next post in this line, if I manage to make time for it: “Genetic (dis)continuity in Central Europe“. Let’s see if early Balts and early Slavs, as well as Germanic peoples, show a cluster closer to Danubian EBA (viz. Maros), Hungary-Balkans BA, and Urnfield-related samples than their predecessors in their areas, i.e. away from East Corded Ware groups… If you want, you can enjoy for the moment the new PCAs I could get done and the tentative map of languages in the Early Bronze Age, that will probably give you the right idea about early Indo-European and Uralic population movements]

bronze-age-early-indo-european
European Early Bronze Age: tentative language map based on linguistics, archaeology, and genetics. See full map.

Related

R1a-Z280 and R1a-Z93 shared by ancient Finno-Ugric populations; N1c-Tat expanded with Micro-Altaic

Two important papers have appeared regarding the supposed link of Uralians with haplogroup N.

Avars of haplogroup N1c-Tat

Preprint Genetic insights into the social organisation of the Avar period elite in the 7th century AD Carpathian Basin, by Csáky et al. bioRxiv (2019).

Interesting excerpts (emphasis mine):

After 568 AD the Avars settled in the Carpathian Basin and founded the Avar Qaganate that was an important power in Central Europe until the 9th century. Part of the Avar society was probably of Asian origin, however the localisation of their homeland is hampered by the scarcity of historical and archaeological data.

Here, we study mitogenome and Y chromosomal STR variability of twenty-six individuals, a number of them representing a well-characterised elite group buried at the centre of the Carpathian Basin more than a century after the Avar conquest.

The Y-STR analyses of 17 males give evidence on a surprisingly homogeneous Y chromosomal composition. Y chromosomal STR profiles of 14 males could be assigned to haplogroup N-Tat (also N1a1-M46). N-Tat haplotype I was found in four males from Kunpeszér with identical alleles on at least nine loci. The full Y-STR haplotype I, reconstructed from AC17 with 17 detected STRs, is rare in our days. Only nine matches were found among haplotypes in YHRD database, such as samples from the Ural Region, Northern Europe (Estonia, Finland), and Western Alaska (Yupiks). We performed Median Joining (MJ) network analysis using N-Tat haplotypes with ten shared STR loci (Fig. 3, Table S9). All modern N-Tat samples included in the network had derived allele of L708 as well. Haplotype I (Cluster 1 in Fig. 3) is shared by eight populations on the MJ network among the 24 identical haplotypes. Cluster 1 represents the founding lineage, as it is described in Siberian populations, because this haplotype is shared by the most populations and it is more diverse than Cluster 2.

Nine males share N-Tat haplotype II (on a minimum of eight detected alleles), all of them buried in the Danube-Tisza Interfluve. We found 30 direct matches of this N-Tat haplotype II in the YHRD database, using the complete 17 STR Y-filer profile of AC1, AC12, AC14, AC15, AC19 samples. Most hits came from Mongolia (seven Buryats and one Khalkh) and from Russia (six Yakuts), but identical haplotypes also occur in China (five in Xinjiang and four in Inner Mongolia provinces). On the MJ network, this haplotype II is represented by Cluster 2 and is composed of 45 samples (including 32 Buryats) from six populations (Fig. 3).

y-str-haplogroup-n-mongolian-ugrians
Median Joining network of 162 N-Tat Y-STR haplotypes Allelic information of ten Y-STR loci were used for the network. Only those Avar samples were included, which had results for these ten Y-STR loci. The founder haplotype I (Cluster 1) is shared by eight populations including three Mongolian, three Székely, three northern Mansi, two southern Mansi, two Hungarian, eight Khanty, one Finn and two Avar (AC17, AC26) chromosomes. Haplotype II (Cluster 2) includes 45 haplotypes from six populations studied: 32 Buryats, two Mongolians, one Székely, one Uzbek, one Uzbek Madjar, two northern Mansi and six Avars (AC1, AC12, AC14, AC15, AC19 and KSZ 37). Haplotype III (indicated by a red arrow) is AC8. Information on the modern reference samples is seen in Table S9.

A third N-Tat lineage (type III) was represented only once in the Avar dataset (AC8), and has no direct modern parallels from the YHRD database. This haplotype on the MJ network (see red arrow in Fig. 3) seems to be a descendent from other haplotype cluster that is shared by three populations (two Buryat from Mongolia, three Khanty and one Northern Mansi samples). This haplotype cluster also differs one molecular step (locus DYS393) from haplotype II. We classified the Avar samples to downstream subgroup N-F4205 within the N-Tat haplogroup, based on the results of ours and Ilumäe et al.18 and constructed a second network (Fig. S4). The N-F4205 network results support the assumption that the N-Tat Avar samples belong to N-F4205 subgroup (see SI chapter 1d for more details).

Based on our calculation, the age of accumulated STR variance (TMRCA) within N-Tat lineage for all samples is 7.0 kya (95% CI: 4.9 – 9.2 kya), considering the core haplotype (Cluster 1) to be the founding lineage. Y haplogroup N-Tat was not detected by large scale Eurasian ancient DNA studies but it occurs in late Bronze Age Inner Mongolia and late medieval Yakuts, among them N-Tat has still the highest frequency.

Two males (AC4 and AC7) from the Transtisza group belong to two different haplotypes of Y-haplogroup Q1. Both Q1a-F1096 and Q1b-M346 haplotypes have neither direct nor one step neighbour matches in the worldwide YHRD database. A network of the Q1b-M346 haplotype shows that this male had a probable Altaian or South Siberian paternal genetic origin.

EDIT (5 APR 2019): The paper offers an interesting late sample before the arrival of Hungarian conquerors, although we don’t know which precise lineage the sample belongs to:

One sample in our dataset (HC9) comes from this population, and both his mtDNA (T1a1b) and Y chromosome (R1a) support Eastern European connections. (…) Furthermore, we excluded sample HC9 from population-genetic statistical analyses because it belongs to a later period (end of 7th – early 9th centuries)

Apparently, then, results are consistent with what was already known from studies of modern populations:

According to Ilumäe et al. study, the frequency peak of N-F4205 (N3a5-F4205) chromosomes is close to the Transbaikal region of Southern Siberia and Mongolia, and we conclude that most Avar N-Tat chromosomes probably originated from a common source population of people living in this area, completely in line with the results of Ilumäe et al.

haplogroup_n1
Geographic-Distribution Map of hg N3 from Ilumäe et al.

Finno-Ugrians share haplogroup R1a-Z280

Another paper, behind paywall, Genetic history of Bashkirian Mari and Southern Mansi ethnic groups in the Ural region, by Dudás et al. Molecular Genetics and Genomics (2019).

Interesting excerpts (emphasis mine):

Y‑chromosome diversity

The most frequent haplogroups of the Bashkirian Maris were N1b-P43 (42%), R1a-Z280 (16%), R1a-Z93 (16%), N1c-Tat (13%), and J2-M172 (7%). Furthermore, subgroup R1b-M343 accounted for 4% and I2a-P37 covered 2% of the lineages. None of the Mari N1c Y chromosomes belonged to the N1c subgroups investigated (L1034, VL29, Z1936).

In the case of the Southern Mansi males, the most frequent haplogroups were N1b-P43 (33%), N1c-L1034 (28%) and R1a-Z280 (19%). The frequencies of the remaining haplogroups were as follows: R1a-M458 (6%), I1-L22 (3%), I2a-P37 (3%), and R1b-P312 (3%). The haplotype and haplogroup diversities of the Bashkirian Mari group were 0.9929 and 0.7657, whereas these values for the Southern Mansi were 0.9984 and 0.7873, respectively. The results show that, in both populations, haplotypes are much more diverse than haplogroups.

bashkir-mari-southern-mansi
Haplogroup frequencies of the Bashkirian Mari and the Southern Mansi ethnic groups in Ural region

Genetic structure

(..) the studied Bashkirian Mari and Southern Mansi population groups formed a compact cluster along with two Khanty, Northern Mansi, Mari, and Estonian populations based on close Fst-genetic distances (< 0.05), with nonsignificant p values (p > 0.05) except for the Estonian population. All of these populations belong to the Finno-Ugric language family. Interestingly, the other Mansi population studied by Pimenoff et al. (2008) (pop # 38) was located a great distance from the Southern Mansi group (0.268). In addition, the Bashkir population (pop # 6) did not show a close genetic affinity to the Bashkirian Mari group (0.194), even though it is the host population. However, the Russian population from the Eastern European region of Russia (pop # 49) showed a genetic distance of 0.055 with the Southern Mansi group. All Hungarian speaking populations (pops 13, 22, 23, 24, 50, and 51) showed close genetic affinities to each other and to the neighbouring populations, but not to the two studied populations.

y-dna-hungarians-ugric-mansi
Multidimensional scaling (MDS) plot constructed on Fstgenetic distances of Y haplogroup frequencies of 63 populations compared. The haplogroup frequency data used for population comparison together with references are seen in Online Resource 2 (ESM_2). Pairwise Fst-genetic distances and p values between 63 populations were calculated as shown in Online Resource 3 (ESM_3) Fig. 4 Multidimensional scaling (MDS) plot constructed on Rstgenetic distances of 10 STR-based Y haplotype frequencies of 21 populations compared. Image modified to include labels of modern populations.

Phylogenetic analysis

Median-joining networks were constructed for:

N-P43 (earlier N1b):

(…) TMRCA estimates for this haplogroup were made for all P43 samples (n = 157) 8.7 kya (95% CI 6.7–10.8 kya), for the N-P43 Asian.

N1c-Tat:

(…) 75% of Buryats belonged to Haplotype 2, indicating that the Buryats studied by us is a young and isolated population (Bíró et al. 2015). Bashkirian Mari samples derive from Haplotype 2 via Haplotype 3 (see dark purple circles on the top of Fig. 6a). Haplotype 3 contained six males (2 Buryat, 1 Northern Mansi, and 3 Khanty samples from Pimenoff et al. 2008). The biggest Bashkirian Mari haplotype node (3 Mari samples) was positioned three mutational steps away from Haplotype 1 and the remaining Mari samples can be derived from this haplotype. Southern Mansi haplotypes were scattered within the network except for two, which formed a smaller haplotype node with two Northern Mansi and two Khanty samples from Pimenoff et al. (2008).

n1c-n-tat-uralic-ugric
Median-Joining Networks (MJ) of 153 N-Tat (a) and 26 N-L1034 (b) haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. For N-Tat network, we used data from Southern Mansi (n = 11), Bashkirian Mari (n = 6) samples with Hungarian (n = 12), Hungarian speaking Székely (n = 6), Northern Mansi (n = 14), Mongolian (n = 16), Buryat (n = 44), Finnish (n = 13), Uzbek Madjar (n = 2), Uzbek (n = 3), Khanty (n = 4) populations studied earlier by us (Fehér et al. 2015; Bíró et al. 2015) and Khanty (n = 18) and Mansi (n = 4) studied by Pimenoff et al. (2008)

R1a-Z280 haplotypes, shared by Maris, Mansis, and Hungarians, hence ancient Finno-Ugrians:

The founder R1a-Z280 haplotype was shared by four samples from four populations (1 Bashkirian Mari; 1 Southern Mansi; 1 Hungarian speaking Székely; and 1 Hungarian), as presented in Fig. 7 (Haplotype 1). Haplotype 2 included five males (3 Bashkirian Mari and 2 Hungarian), as it can be seen in Fig. 7. Haplotype 4 included two shared haplotypes (1 Bashkirian Mari and one Hungarian speaking Csángó). The remaining two Bashkirian Mari haplotypes differ from the founder haplotype (Haplotype 1) by two mutational steps via Hungarian or Hungarian and Bashkirian Mari shared haplotypes. Beside Haplotype 1, the remaining Southern Mansi haplotypes were shared with Hungarians (Haplotype 5 or turquoise blue and red-coloured circles above Haplotype 7) or with Hungarians and Hungarian speaking Székely group (Haplotypes 3, 5, and 6). Haplotype 7 included ten Hungarian speakers (Hungarian, Székely, and Csángó). One Hungarian and one Uzbek Khwarezm shared haplotype can be found in Fig. 7 as well (red and white-coloured circle). All the other haplotypes were scattered in the network. The age of accumulated STR variation within R1a-Z280 lineage for 93 samples is estimated to be 9.4 kya (95% CI 6.5–12.4 kya) considering Haplotype 1 (Fig. 7) to be the founder.

r1a-z280-ugrians
Median-Joining Networks (MJ) of 93 R1a-Z280 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used haplotype data from Bashkirian Mari (n = 7), Southern Mansi (n = 7), Hungarian (n = 52), Hungarian speaking Székely (n = 11), Hungarian speaking Csángó (n = 10), Uzbek Ferghana (n = 2), Uzbek Tashkent (n = 1), Uzbek Khwarezm (n = 1) and Northern Mansi (n = 2) populations

R1a-Z93 as isolated lineages among Permic and Ugric populations:

Figure 8 depicts an MJ network of R1a-Z93* samples using 106 haplotypes from the 14 populations (Fig. 8). All of the Bashkirian Mari samples (7 haplotypes) formed a very isolated branch and differed from the one Hungarian haplotype (Fig. 8, see Haplotype 1) by seven mutational steps as well from two Uzbek Tashkent samples (see Haplotype 3). Another Hungarian sample shared two haplotypes of Uzbek Khwarezm samples in Haplotype 4. This haplotype can be derived from Haplotype 3 (Uzbek Tashkent). Haplotype 2 included one Hungarian and one Khakassian male. The remaining three Hungarian haplotypes are outliers in the network and are not shared by any sample. The other population samples included in the network either form independent clusters such as Altaians, Khakassians, Khanties, and Uzbek Madjars or were scattered in the network. The age of accumulated STR variation (TMRCA) within R1a-Z93* lineage for 106 samples is estimated as 11.6 kya (95% CI 9.3–14.0 kya) considering an Armenian haplotype (Fig. 8, “A”) to be the founder and the median haplotype.

r1a-z93-ugrians
Median-Joining Networks (MJ) of 106 R1a-Z93 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used the next haplotype data: 7 Bashkirian Mari, 6 Khanty, 4 Uzbek Madjar, 5 Uzbek Ferghana, 9 Uzbek Tashkent, 7 Uzbek Khwarezm, 2 Mongolian, 2 Buryat, 6 Hungarian samples tested by us for this study or published earlier (Bíró et al. 2015) and populations (3 Armenian; 3 Afghan Tajik;
16 Altaian; 24 Khakassian; 12 Kyrgyz) from Underhill et al. (2015)

Comments

The results of modern populations for N (especially N1c) subclades show really wide clusters and ancient TMRCA, consistent with their known ancient and wide distribution in northern and eastern Eurasian groups, and thus with infiltration of different lineages with eastern nomads (and northern Arctic populations) coupled with later bottlenecks, as well as acculturation of groups.

EDIT (2 APR): Interesting is the specific subclade to which ancient Mongolic-speaking Avars belong (information from Yfull) N1c-F4205 (TMRCA ca. 500 BC), subclade of N1c-Y6058 (formed ca. 2800 BC, TMRCA ca. 2800 BC). This branch also gives the “European” branch N1c-CTS10760 (formed ca. 2800 BC, TMRCA ca. 2100 BC), and is subclade of a branch of N1c-L392 (formed ca. 4400 BC, TMRCA ca. 2800 BC). A northern expansion of N1c-L392 is probably represented by its branch N1c-Z1936 (formed ca. 2800, TMRCA ca. 2100 BC), the most likely candidate to appear in the Kola Peninsula in the Bronze Age as the Palaeo-Laplandic population (see here). Read more about potential routes of expansion of haplogroup N.

On the other hand, R1a-Z280 lineages form a tight cluster connecting Permic with Ugric groups, with R1a-Z93 showing early isolation (probably) between Cis-Urals and Trans-Urals regions. While both Corded Ware lineages in Finno-Ugrians are most likely related to the Abashevo expansion through Seima-Turbino and the Andronovo-like Horizon (and potentially later Eurasian expansions), a plausible hypothesis would be that Finno-Ugrians are related to an expansion of R1a-Z283 haplogroups (we already knew about the Finno-Permic connection), while the ancient connection between Permians and Hungarians with R1a-Z93 would correspond to this haplogroup’s potentially tighter link with an early Samoyedic split.

I don’t think that an explosive expansion of eastern Corded Ware groups of R1a-Z645 lineages will show a clear-cut division of haplogroups among Eastern Uralic groups, though, and culturally I doubt we will have such a clear image, either (similar to how the explosive expansion of Bell Beakers cannot be easily divided by regional/language group into R1b-L151 subclades before the known bottlenecks). Relevant in this regard are the known Z93 samples from the Árpád dynasty.

Nevertheless, this data may represent a slightly more recent wave of R1a-Z280 lineages linked to the expansion of Ugric into the Trans-Uralian region, after their split from Finno-Permic, still in close contact with Indo-Iranians in Poltavka and Sintashta-Potapovka, evident from the early and late Indo-Iranian borrowings, during a common period when Samoyedic had already separated.

Such a “Z283 over Z93” layer in the Trans-Urals (and Cis-Urals?) forest-steppes would be similar to the apparent replacement of Z284 by Z282 in the Eastern Baltic during the Bronze Age (possibly with the second or Estonian Battle Axe wave or, much more likely during later population movements). Such an early R1a-Z93 split could potentially be supported also by the separation into bottlenecks under “Northern” (R1a-Z283) Finno-Ugric-speaking Abashevo-related groups and “Southern” (R1a-Z93) acculturated Indo-Iranian-speaking Abashevo migrants developing Sintashta-Potapovka admixing with Poltavka R1b-Z2103 herders.

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.

Conclusion

Let’s review some of the most common myths about Hungarians (and Finno-Ugrians in general) repeated ad nauseam, side by side with my assertions:

❌ N (especially N1c-Tat) in ancient and modern samples represent the True Uralic™ N1c peoples including Magyar tribes? Nope.

✅ Ancient N (especially N1c-Tat) lineages among Uralic populations expanded relatively recently, and differently in different regions (including eastern steppe nomads and northern arctic populations) not associated with a particular language or language group? Yep (read the series on Corded Ware = Uralic expansion).

❌ Modern Hungarian R1a-Z280 lineages represent the majority of the native population, poor Slavic ‘peasants’ from the Carpathian Basin, forcibly acculturated by a minority of bad bad Hungarian hordes? Nope.

✅ Modern Hungarian R1a-Z280 subclades represent Ugric lineages in common with ancient R1a-Z645 Finno-Ugric populations from north-eastern Europe and the Trans-Urals? Yep (see Avars and Ugrians).

❌ Modern Hungarian R1a-Z93 lineages represent acculturated Iranian/Turkic peoples from the steppes? Not likely.

✅ Modern Hungarian R1a-Z93 lineages represent a remnant of the expansion of Corded Ware to the east, potentially more clearly associated with Samoyedic? Much more likely.

finno-ugric-haplogroup-n
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

Sooo, the theory of a “diluted” Y-DNA in Modern Hungarians from originally fully N-dominated conquerors subjugating native R1a-Z280 Slavs from the Carpathian Basin is not backed up by genetic studies? The ethnic Iranian-Turkic R1a-Z93 federation in the steppes that ended up speaking Magyar is not real?? Who would’ve thunk.

Another true story whose rejection in genetics could not be predicted, like, not at all.

Totally unexpected, too, the drift of “R1a=IE” fans with the newest genetic findings towards a Molgen-like “Yamna/R1b = Vasconic-Caucasian”, “N1c = Uralic-Altaic”, and “R1a = the origin of the white world in Mother Russia”. So much for the supposed interest in “Steppe ancestry” and fancy statistics.

Related

Haplogroup R1a and CWC ancestry predominate in Fennic, Ugric, and Samoyedic groups

uralic-languages

Open access Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations, by Tambets et al. Genome Biology (2018).

Interesting excerpts (emphasis mine):

Methods

A total of 286 samples of Uralic-speaking individuals, of those 121 genotyped in this study, were analysed in the context of 1514 Eurasian samples (including 14 samples published for the first time) based on whole genome single nucleotide polymorphisms (SNPs) (Additional file 1: Table S1). All these samples, together with the larger sample set of Uralic speakers, were characterized for mtDNA and chrY markers.

The question as which material cultures may have co-spread together with proto-Uralic and Uralic languages depends on the time estimates of the splits in the Uralic language tree. Deeper age estimates (6,000 BP) of the Uralic language tree suggest a connection between the spread of FU languages from the Volga River basin towards the Baltic Sea either with the expansion of the Neolithic culture of Combed Ware, e.g. [6, 7, 17, 26] or with the Neolithic Volosovo culture [7]. Younger age estimates support a link between the westward dispersion of Proto-Finno-Saamic and eastward dispersion of Proto-Samoyedic with a BA Sejma-Turbino (ST) cultural complex [14, 18, 27, 28] that mediated the diffusion of specific metal tools and weapons from the Altai Mountains over the Urals to Northern Europe or with the Netted Ware culture [23], which succeeded Volosovo culture in the west. It has been suggested that Proto-Uralic may have even served as the lingua franca of the merchants involved in the ST phenomenon [18]. All these scenarios imply that material culture of the Baltic Sea area in Europe was influenced by cultures spreading westward from the periphery of Europe and/or Siberia. Whether these dispersals involved the spread of both languages and people remains so far largely unknown.

The population structure of Uralic speakers

To contextualize the autosomal genetic diversity of Uralic speakers among other Eurasian populations (Additional file 1: Table S1), we first ran the principal component (PC) analysis (Fig. 2a, Additional file 3: Figure S1). The first two PCs (Fig. 2a, Additional file 3: Figure S1A) sketch the geography of the Eurasian populations along the East-West and North-South axes, respectively. The Uralic speakers, along with other populations speaking Slavic and Turkic languages, are scattered along the first PC axis in agreement with their geographic distribution (Figs. 1 and 2a) suggesting that geography is the main predictor of genetic affinity among the groups in the given area. Secondly, in support of this, we find that FST-distances between populations (Additional file 3: Figure S2) decay in correlation with geographical distance (Pearson’s r = 0.77, p < 0.0001). On the UPGMA tree based on these FST-distances (Fig. 2b), the Uralic speakers cluster into several different groups close to their geographic neighbours.

uralic-pca
Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations.

We next used ADMIXTURE [48], which presents the individuals as composed of inferred genetic components in proportions that maximize Hardy-Weinberg and linkage equilibrium in the overall sample (see the ‘Methods’ section for choice of presented K). Overall, and specifically at lower values of K, the genetic makeup of Uralic speakers resembles that of their geographic neighbours. The Saami and (a subset of) the Mansi serve as exceptions to that pattern being more similar to geographically more distant populations (Fig. 3a, Additional file 3: S3). However, starting from K = 9, ADMIXTURE identifies a genetic component (k9, magenta in Fig. 3a, Additional file 3: S3), which is predominantly, although not exclusively, found in Uralic speakers. This component is also well visible on K = 10, which has the best cross-validation index among all tests (Additional file 3: S3B). The spatial distribution of this component (Fig. 3b) shows a frequency peak among Ob-Ugric and Samoyed speakers as well as among neighbouring Kets (Fig. 3a). The proportion of k9 decreases rapidly from West Siberia towards east, south and west, constituting on average 40% of the genetic ancestry of FU speakers in Volga-Ural region (VUR) and 20% in their Turkic-speaking neighbours (Bashkirs, Tatars, Chuvashes; Fig. 3a). The proportion of this component among the Saami in Northern Scandinavia is again similar to that of the VUR FU speakers, which is exceptional in the geographic context. It is also notable that North Russians, sampled from near the White Sea, differ from other Russians by sporting higher proportions of k9 (10–15%), which is similar to the values we observe in their Finnic-speaking neighbours. Notably, Estonians and Hungarians, who are geographically the westernmost Uralic speakers, virtually lack the k9 cluster membership.

siberian-ancestry
Population structure of Uralic-speaking populations inferred from ADMIXTURE analysis on autosomal SNPs in Eurasian context. a Individual ancestry estimates for populations of interest for selected number of assumed ancestral populations (K3, K6, K9, K11). Ancestry components discussed in a main text (k2, k3, k5, k6, k9, k11) are indicated and have the same colours throughout. The names of the Uralic-speaking populations are indicated with blue (Finno-Ugric) or orange (Samoyedic). The full bar plot is presented in Additional file 3: Figure S3. b Frequency map of component k9

We also tested the different demographic histories of female and male lineages by comparing outgroup f3 results for autosomal and X chromosome (chrX) data for pairs of populations (Estonians, Udmurts or Khanty vs others) with high versus low probability to share their patrilineal ancestry in chrY hg N (see the ‘Methods’ section, Additional file 3: Figure S13). We found a minor but significant excess of autosomal affinity relative to chrX for pairs of populations that showed a higher than 10% chance of two randomly sampled males across the two groups sharing their chrY ancestry in hg N3-M178, compared to pairs of populations where such probability is lower than 5% (Additional file 3: Figure S13).

In sum, these results suggest that most of the Uralic speakers may indeed share some level of genetic continuity via k9, which, however, also extends to the geographically close Turkic speakers.

uralic-modern-europe

Identity-by-descent

We found that it is the admixture with the Siberians that makes the Western Uralic speakers different from the tested European populations (Additional file 3: Figure S4A-F, H, J, L). Differentiating between Estonians and Finns, the Siberians share more derived alleles with Finns, while the geographic neighbours of Estonians (and Finns) share more alleles with Estonians (Additional file 3: Figure S4M). Importantly, Estonians do not share more derived alleles with other Finnic, Saami, VUR FU or Ob-Ugric-speaking populations than Latvians (Additional file 3: Figure S4O). The difference between Estonians and Latvians is instead manifested through significantly higher levels of shared drift between Estonians and Siberians on the one hand and Latvians and their immediate geographic neighbours on the other hand. None of the Uralic speakers, including linguistically close Khanty and Mansi, show significantly closer affinities to the Hungarians than any non-FU population from NE Europe (Additional file 3: Figure S4R).

ibd-uralic-genetics
Share of ~ 1–2 cM identity-by-descent (IBD) segments within and between regional groups of Uralic speakers. For each Uralic-speaking population representing lines in this matrix, we performed permutation test to estimate if it shows higher IBD segment sharing with other population (listed in columns) as compared to their geographic control group. Empty rectangles indicate no excess IBD sharing, rectangles filled in blue indicate comparisons when statistically significant excess IBD sharing was detected between one Uralic-speaking population with another Uralic-speaking population (listed in columns), rectangles filled in green mark the comparisons when a Uralic-speaking population shows excess IBD sharing with a non-Uralic-speaking population. For each tested Uralic speaker (matrix rows) populations in the control group that were used to generate permuted samples are indicated using small circles. For example, the rectangle filled in blue for Vepsians and Komis (A) implies that the Uralic-speaking Vepsians share more IBD segments with the Uralic-speaking Komis than the geographic control group for Vepsians, i.e. populations indicated with small circles (Central and North Russians, Swedes, Latvians and Lithuanians). The rectangle filled in green for Vepsians and Dolgans shows that the Uralic-speaking Vepsians share more IBD segments with the non-Uralic-speaking Dolgans than the geographic control group

Time of Siberian admixture

The time depth of the Globetrotter (Fig. 5b) inferred admixture events is relatively recent—500–1900 AD (see also complementary ALDER results, in Additional file 13: Table S12 and Additional file 3: Figure S7)—and agrees broadly with the results reported in Busby et al. [55]. A more detailed examination of the ALDER dates, however, reveals an interesting pattern. The admixture events detected in the Baltic Sea region and VUR Uralic speakers are the oldest (800–900 AD or older) followed by those in VUR Turkic speakers (∼1200–1300 AD), while the admixture dates for most of the Siberian populations (>1500 AD) are the most recent (Additional file 3: Figure S7). The West Eurasian influx into West Siberia seen in modern genomes was thus very recent, while the East Eurasian influx into NE Europe seems to have taken place within the first millennium AD (Fig. 5b, Additional file 3: Figure S7).

Affinities of the Uralic speakers with ancient Eurasians

We next calculated outgroup f3-statistics [48] to estimate the extent of shared genetic drift between modern and ancient Eurasians (Additional file 14: Table S13, Additional file 3: Figures S8-S9). Consistent with previous reports [45, 50], we find that the NE European populations including the Uralic speakers share more drift with any European Mesolithic hunter-gatherer group than Central or Western Europeans (Additional file 3: Figure S9A-C). Contrasting the genetic contribution of western hunter-gatherers (WHG) and eastern hunter-gatherers (EHG), we find that VUR Uralic speakers and the Saami share more drift with EHG. Conversely, WHG shares more drift with the Finnic and West European populations (Additional file 3: Figure S9A). Interestingly, we see a similar pattern of excess of shared drift between VUR and EHG if we substitute WHG with the aDNA sample from the Yamnaya culture (Additional file 3: Figure S9D). As reported before [2, 45], the genetic contribution of European early farmers decreases along an axis from Southern Europe towards the Ural Mountains (Fig. 6, Additional file 3: Figure S9E-F).

yamna-cwc-qpgraph-admixture-uralic
Proportions of ancestral components in studied European and Siberian populations and the tested qpGraph model. a The qpGraph model fitting the data for the tested populations. Colour codes for the terminal nodes: pink—modern populations (‘Population X’ refers to test population) and yellow—ancient populations (aDNA samples and their pools). Nodes coloured other than pink or yellow are hypothetical intermediate populations. We putatively named nodes which we used as admixture sources using the main recipient among known populations. The colours of intermediate nodes on the qpGraph model match those on the admixture proportions panel. b Admixture proportions (%) of ancestral components. We calculated the admixture proportions summing up the relative shares of a set of intermediate populations to explain the full spectrum of admixture components in the test population. We further did the same for the intermediate node CWC’ and present the proportions of the mixing three components in the stacked column bar of CWC’. Colour codes for ancestral components are as follows: dark green—Western hunter gatherer (WHG’); light green—Eastern hunter gatherer (EHG’); grey—European early farmer (LBK’); dark blue—carriers of Corded Ware culture (CWC’); and dark grey—Siberian. CWC’ consists of three sub-components: blue—Caucasian hunter-gatherer in Yamnaya (CHGinY’); light blue—Eastern hunter-gatherer in Yamnaya (EHGinY’); and light grey—Neolithic Levant (NeolL’)

We then used the qpGraph software [48] to test alternative demographic scenarios by trying to fit the genetic diversity observed in a range of the extant Finno-Ugric populations through a model involving the four basic European ancestral components: WHG, EHG, early farmers (LBK), steppe people of Yamnaya/Corded Ware culture (CWC) and a Siberian component (Fig. 6, Additional file 3: Figure S10). We chose the modern Nganasans to serve as a proxy for the latter component because we see least evidence for Western Eurasian admixture (Additional file 3: Figure S3) among them. We also tested the Khantys for that proxy but the model did not fit (yielding f2-statistics, Z-score > 3). The only Uralic-speaking population that did not fit into the tested model with five ancestral components were Hungarians. The qpGraph estimates of the contributions from the Siberian component show that it is the main ancestry component in the West Siberian Uralic speakers and constitutes up to one third of the genomes of modern VUR and the Saami (Fig. 6). It drops, however, to less than 10% in most of NE Europe, to 5% in Estonians and close to zero in Latvians and Lithuanians.

Discussion

uralic-groups-haplogroup-r1a
Additional file 6: Table S5. Y chromosome haplogroup frequencies in Eurasia. Modified by me: in bold haplogroup N1c and R1a from Uralic-speaking populations, with those in red showing where R1a is the major haplogroup. Observe that all Uralic subgroups – Finno-Permic, Ugric, and Samoyedic – have some populations with a majority of R1a lineages.

One of the notable observations that stands out in the fineSTRUCTURE analysis is that neither Hungarians nor Estonians or Mordovians form genetic clusters with other Uralic speakers but instead do so with a broad spectrum of geographically adjacent samples. Despite the documented history of the migration of Magyars [63] and their linguistic affinity to Khantys and Mansis, who today live east of the Ural Mountains, there is nothing in the present-day gene pool of the sampled Hungarians that we could tie specifically to other Uralic speakers.

Perhaps even more surprisingly, we found that Estonians, who show close affinities in IBD analysis to neighbouring Finnic speakers and Saami, do not share an excess of IBD segments with the VUR or Siberian Uralic speakers. This is eIn this context, it is important to remind that the limited (5%, Fig. 6) East Eurasian impact in the autosomal gene pool of modern Estonians contrasts with the fact that more than 30% of Estonian (but not Hungarian) men carry chrY N3 that has an East Eurasian origin and is very frequent among NE European Uralic speakers [36]. However, the spread of chrY hg N3 is not language group specific as it shows similar frequencies in Baltic-speaking Latvians and Lithuanians, and in North Russians, who in all our analyses are very similar to Finnic-speakers. The latter, however, are believed to have either significantly admixed with their Uralic-speaking neighbours or have undergone a language shift from Uralic to Indo-European [38].ven more striking considering that the immediate neighbours—Finns, Vepsians and Karelians—do.

With some exceptions such as Estonians, Hungarians and Mordovians, both IBD sharing and Globetrotter results suggest that there are detectable inter-regional haplotype sharing ties between Uralic speakers from West Siberia and VUR, and between NE European Uralic speakers and VUR. In other words, there is a fragmented pattern of haplotype sharing between populations but no unifying signal of sharing that unite all the studied Uralic speakers.

Comments

The paper is obviously trying to find a “N1c/Siberian ancestry = Uralic” link, but it shows (as previous papers using ancient DNA) that this identification is impossible, because it is not possible to identify “N1c=Siberian ancestry”, “N1c=Uralic”, or “Siberian ancestry = Uralic”. In fact, the arrival of N subclades and Siberian ancestry are late, both events (probably multiple stepped events) are unrelated to each other, and represent east-west demic diffusion waves (as well as founder effects) that probably coincide in part with the Scythian and Turkic (or associated) expansions, i.e. too late for any model of Proto-Uralic or Proto-Finno-Ugric expansion.

On the other hand, it shows interesting data regarding ancestry of populations that show increased Siberian influence, such as those easternmost groups admixed with Yeniseian-like populations (Samoyedic), those showing strong founder effects (Finnic), or those isolated in the Circum-Artic region with neighbouring Siberian peoples in Kola (Saami). All in all, Hungarians, Estonians and Mordovians seem to show the original situation better than the other groups, which is also reflected in part in Y-DNA, conserved as a majority of R1a lineages precisely in these groups. Just another reminder that CWC-related ancestry is found in every single Uralic group, and that it represents the main ancestral component in all non-Samoyedic groups.

estonians-hungarians-mordvinian
Selection of the PCA, with the group of Estonians, Mordovians, and Hungarians selected.

The qpGraph shows the ancestor of Yamna (likely Khvalynsk) and Corded Ware stemming as different populations from a common (likely Neolithic) node – whose difference is based on the proportion of Anatolian-related ancestry – , that is, probably before the Indo-Hittite expansion; and ends with CWC groups forming the base for all Uralic peoples. Below is a detail of the qpGraph on the left, and my old guess (2017) on the right, for comparison:

yamna-corded-ware-qpgraph

#EDIT (22 sep 2018): I enjoyed re-reading it, and found this particular paragraph funny:

Despite the documented history of the migration of Magyars [63] and their linguistic affinity to Khantys and Mansis, who today live east of the Ural Mountains, there is nothing in the present-day gene pool of the sampled Hungarians that we could tie specifically to other Uralic speakers.

They are so obsessed with finding a link to Siberian ancestry and N1c, and so convinced of Kristiansen’s idea of CWC=Indo-European, that they forgot to examine their own data from a critical point of view, and see the clear link between all Uralic peoples with Corded Ware ancestry and R1a-Z645 subclades… Here is a reminder about Hungarians and R1a-Z282, and about the expansion of R1a-Z645 with Uralic peoples.

Related