Fulani from Cameroon show ancestry similar to Afroasiatic speakers from East Africa

sahel-region-fulani

Open access African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations, by Fan et al. Genome Biology (2019) 20:82.

Interesting excerpts (emphasis mine):

Introduction

To extend our knowledge of patterns of genomic diversity in Africa, we generated high coverage (> 30×) genome sequencing data from 43 geographically diverse Africans originating from 22 ethnic groups, representing a broad array of ethnic, linguistic, cultural, and geographic diversity (Additional file 1: Table S1). These include a number of populations of anthropological interest that have never previously been characterized for high-coverage genome sequence diversity such as Afroasiatic-speaking El Molo fishermen and Nilo-Saharan-speaking Ogiek hunter-gatherers (Kenya); Afroasiatic-speaking Aari, Agaw, and Amhara agro-pastoralists (Ethiopia); Niger-Congo-speaking Fulani pastoralists (Cameroon); Nilo-Saharan-speaking Kaba (Central African Republic, CAR); and Laka and Bulala (Chad) among others. We integrated this data with 49 whole genome sequences generated as part of the Simons Genome Diversity Project (SGDP) [14] (…)

afroasiatic-samples
Locations of samples included in this study. Each dot is an individual and the color indicates the language classification

Results and discussion

We found that the CRHG populations from central Africa, including the Mbuti from the Demographic Republic of Congo (DRC), Biaka from the CAR, and Baka, Bakola, and Bedzan from Cameroon, also form a basal lineage in the phylogeny. The other two hunter-gatherer populations, Hadza and Sandawe, living in Tanzania, group with populations from eastern Africa (Fig. 2). The two Nilo-Saharan-speaking populations, the Mursi from southern Ethiopia and the Dinka from southern Sudan, group into a single cluster, which is consistent with archeological data indicating that the migration of Nilo-Saharan populations to eastern Africa originated from a source population in southern Sudan in the last 3000 years [4, 23, 24, 25].

phylogenetic-relationship-africans
Phylogenetic relationship of 44 African and 32 west Eurasian populations determined by a neighbor joining analysis assuming no admixture. Here, the dots of each node represent bootstrap values and the color of each branch indicates language usage of each population. Human_AA human ancestral alleles

The Fulani people are traditionally nomadic pastoralists living across a broad geographic range spanning Sudan, the Sahel, Central, and Western Africa. The Fulani in our study, sampled from Cameroon, clustered with the Afroasiatic-speaking populations in East Africa in the phylogenetic analysis, indicating a potential language replacement from Afroasiatic to Niger-Congo in this population (Fig. 2). Prior studies suggest a complex history of the Fulani; analyses of Y chromosome variation suggest a shared ancestry with Nilo-Saharan and Afroasiatic populations [24], whereas mtDNA indicates a West African origin [26]. An analysis based on autosomal markers found traces of West Eurasian-related ancestry in this population [4], which suggests a North African or East African origin (as North and East Africans also have such ancestry likely related to expansions of farmers and herders from the Near East) and is consistent with the presence at moderate frequency of the −13,910T variant associated with lactose tolerance in European populations [15, 16].

Phylogenetic reconstruction of the relationship of African individuals under a model allowing for migration using TREEMIX [27] largely recapitulates the NJ phylogeny with the exception of the Fulani who cluster near neighboring Niger-Congo-speaking populations with whom they have admixed (Additional file 2: Figure S1). Interestingly, TREEMIX analysis indicates evidence for gene flow between the Hadza and the ancestors of the Ju|‘hoan and Khomani San, supporting genetic, linguistic, and archeological evidence that Khoesan-speaking populations may have originated in Eastern Africa [28, 29, 30].

afroasiatic-niger-congo-admixture
ADMIXTURE analysis of 92 African and 62 West Eurasian individuals. Each bar is an individual and colors represent the proportion of inferred ancestry from K ancestral populations. The bottom bar shows the language classification of each individual. With the increasing of K, the populations are largely grouped by their current language usage

About the Fulani, this is what the referenced study of Y‐chromosome variation among 15 Sudanese populations by Hassan et al. (2008), had to say:

  • Haplogroups A-M13 and B-M60 are present at high frequencies in Nilo-Saharan groups except Nubians, with low frequencies in Afro-Asiatic groups although notable frequencies of B-M60 were found in Hausa (15.6%) and Copts (15.2%).
  • Haplogroup E (four different haplotypes) accounts for the majority (34.4%) of the chromosome and is widespread in the Sudan. E-M78 represents 74.5% of haplogroup E, the highest frequencies observed in Masalit and Fur populations. E-M33 (5.2%) is largely confined to Fulani and Hausa, whereas E-M2 is restricted to Hausa. E-M215 was found to occur more in Nilo-Saharan rather than Afro-Asiatic speaking groups.
  • In contrast, haplogroups F-M89, I-M170, J-12f2, and JM172 were found to be more frequent in the Afro-Asiatic speaking groups. J-12f2 and J-M172 represents 94% and 6%, respectively, of haplogroup J with high frequencies among Nubians, Copts, and Arabs.
  • Haplogroup K-M9 is restricted to Hausa and Gaalien with low frequencies and is absent in Nilo-Saharan and Niger-Congo.
  • Haplogroup R-M173 appears to be the most frequent haplogroup in Fulani, and haplogroup R-P25 has the highest frequency in Hausa and Copts and is present at lower frequencies in north, east, and western Sudan.
  • Haplogroups A-M51, A-M23, D-M174, H-M52, L-M11, OM175, and P-M74 were completely absent from the populations analyzed.
fulfulde-fulani-language
Image modified from “Fulfulde Language Family Report” Author: Annette Harrison; Cartographer: Irene Tucker; SIL International 2003.

This is what David Reich will talk about in the seminar Insights into language expansions from ancient DNA:

In this talk, I will describe how the new science of genome-wide ancient DNA can provide insights into past spreads of language and culture. I will discuss five examples: (1) the spread of Indo-European languages to Europe and South Asia in association with Steppe pastoralist ancestry, (2) the spread of Austronesian languages to the open Pacific islands in association with Taiwanese aboriginal-associated ancestry, (3) the spread of Austroasiatic languages through southeast Asia in association with the characteristic ancestry type that is also represented in western Indonesia suggesting that these languages were once widespread there, (4) the spread of Afroasiastic languages through in East Africa as part of the Pastoral Neolithic farming expansion, and (5) the spread of Na-Dene languages in North America in association with Proto-Paleoeskimo ancestry. I will highlight the ways that ancient DNA can meaningfully contribute to our understanding of language expansions—increasing the plausibility of some scenarios while decreasing the plausibility of others—while emphasizing that with genetic data by itself we can never definitively determine what languages ancient people spoke.

EDIT (3 MAY 2019): Apparently, there was not much to take from the talk:

neolithic-pastoralist-africa
Pastoralist Neolithic in Africa, through a pale-green Sahelo-Sudanian steppe corridor. See full map.

This seminar (and maybe some new paper on the Neolithic expansion in Africa) could shed light on population movements that may be related to the spread of Afroasiatic dialects. Until now, it seems that Bantu peoples have been more interesting for linguistics and archaeology, and South and East Africans for anthropology.

Archaeology in Africa appears to be in its infancy, as is population genomics. From the latest publication by Carina Schlebusch, Population migration and adaptation during the African Holocene: A genetic perspective, a chapter from Modern Human Origins and Dispersal (2019):

The process behind the introduction and development of farming in Africa is still unclear. It is not known how many independent invention events there were in the continent and to which extent the various first instances of farming in northern Africa are linked. Based on the archeological record, it was proposed that at least three regions in Africa may have developed agriculture independently: the Sahara/Sahel (around 7 ka), the Ethiopian highlands (7-4 ka), and western Africa (5-3 ka). In addition to these developments, the Nile River Valley is thought to have adopted agriculture (around 7.2 ka), from the Neolithic Revolution in the Middle East (Chapter 12 – Jobling et al. 2014; Chapter 35, 37 – Mitchell and Lane 2013). From these diverse centers of origin, farmers or farming practices spread to the rest of Africa, with domesticate animals reaching the southern tip of Africa ~2 ka and crop farming ~1,8 ka (Mitchell 2002; Huffman 2007)

african-popularion-movements
Schematic representation of possible migration routes related to the expansion of herders and crop farmers during Holocene times. Arrow color indicate source populations; Brown-Eurasian, Green-western African, Blue-eastern African.

Similar to the case in Europe and the 1990s-2000s wrong haplogroup history based on the modern distribution of R1b, R1a, N, or I2, it is possible that neither of the most often mentioned haplogroups linked to the Afroasiatic expansion, E and J, were responsible for its early spread within Africa, despite their widespread distribution in certain modern Afroasiatic-speaking areas. The fact that such assessments include implausible glottochronological dates spanning up to 20,000 years for the parent language, combined with regional language continuities despite archaeological changes, makes them even more suspicious.

Similar to the case with Indo-Europeans and the “steppe ancestry” concept of the 2010s, it may be that the often-looked-for West Eurasian ancestry among Africans is the effect of recent migrations, unrelated to the Afroasiatic expansion. The results of this paper could be offering another sign of how this ancestry may have expanded only quite recently westwards from East Africa through the Sahel, after the Semitic expansion to the south:

1. From approximately 1000 BC, accompanying Nilo-Saharan peoples.

2. From approximately AD 1500, with the different population movements related to the nomadic Fulani:

sahel-nomadic-sedentary
Image from Sahel in West African History – Oxford Research Encyclopedia of African History.
  • Arguably, since the Fulani caste system wasn’t as elaborate in northern Nigeria, eastern Niger, and Cameroon, these specific groups would be a good example of the admixture with eastern populations, based on the (proportionally) huge amount of slaves they dealt with.
  • Similarly, it could be argued that the castes-based social stratification in most other territories (including Sudan) would have helped them keep a genetic make-up similar to their region of origin in terms of ancient lineages, hence similar to Chadic populations from west to east.

Reich’s assertion of the association of the language expansion with the spread of Pastoral Neolithic is still too vague, but – based on previous publications of ancient DNA in Africa and the Levant – I don’t have high hopes for a revolutionary paper in the near future. Without many samples and proper temporal transects, we are stuck with speculations based on modern distributions and scarce historical data.

fula-people-distribution
A distribution map of Fula people. Dark green: a major ethnic group; Medium: significant; Light: minor. Modified from image by Sarah Welch at Wikipedia.

About the potential genetic make-up of Cameroon before the arrival of the Neolithic, from the recent SAA 84th Annual Meeting (Abstracts in PDF):

Lipson, Mark (Harvard Medical School), Mary Prendergast (Harvard University), Isabelle Ribot (Université de Montréal), Carles Lalueza-Fox (Institute of Evolutionary Biology CSIC-UPF) and David Reich (Harvard Medical School)

[253] Ancient Human DNA from Shum Laka (Cameroon) in the Context of African Population History We generated genome-wide DNA data from four people buried at the site of Shum Laka in Cameroon between 8000–3000 years ago. One individual carried the deeply divergent Y chromosome haplogroup A00 found at low frequencies among some present-day Niger-Congo speakers, but the genome-wide ancestry profiles for all four individuals are very different from the majority of West Africans today and instead are more similar to West-Central African hunter-gatherers. Thus, despite the geographic proximity of Shum Laka to the hypothesized birthplace of Bantu languages and the temporal range of our samples bookending the initial Bantu expansion, these individuals are not representative of a Bantu source population. We present a phylogenetic model including Shum Laka that features three major radiations within Africa: one phase early in the history of modern humans, one close to the time of the migration giving rise to non-Africans, and one in the past several thousand years. Present-day West Africans and some East Africans, in addition to Central and Southern African hunter-gatherers, retain ancestry from the first phase, which is therefore still represented throughout the majority of human diversity in Africa today.

Related

Migrations in the Levant region during the Chalcolithic, also marked by distinct Y-DNA

halaf-ubaid-migrations

Open access Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation, by Harney et al. Nature Communications (2018).

Interesting excerpts (emphasis mine, reference numbers deleted for clarity):

Introduction

The material culture of the Late Chalcolithic period in the southern Levant contrasts qualitatively with that of earlier and later periods in the same region. The Late Chalcolithic in the Levant is characterized by increases in the density of settlements, introduction of sanctuaries, utilization of ossuaries in secondary burials, and expansion of public ritual practices as well as an efflorescence of symbolic motifs sculpted and painted on artifacts made of pottery, basalt, copper, and ivory. The period’s impressive metal artifacts, which reflect the first known use of the “lost wax” technique for casting of copper, attest to the extraordinary technical skill of the people of this period.

The distinctive cultural characteristics of the Late Chalcolithic period in the Levant (often related to the Ghassulian culture, although this term is not in practice applied to the Galilee region where this study is based) have few stylistic links to the earlier or later material cultures of the region, which has led to extensive debate about the origins of the people who made this material culture. One hypothesis is that the Chalcolithic culture in the region was spread in part by immigrants from the north (i.e., northern Mesopotamia), based on similarities in artistic designs. Others have suggested that the local populations of the Levant were entirely responsible for developing this culture, and that any similarities to material cultures to the north are due to borrowing of ideas and not to movements of people.

Previous genome-wide ancient DNA studies from the Near East have revealed that at the time when agriculture developed, populations from Anatolia, Iran, and the Levant were approximately as genetically differentiated from each other as present-day Europeans and East Asians are today. By the Bronze Age, however, expansion of different Near Eastern agriculturalist populations — Anatolian, Iranian, and Levantine — in all directions and admixture with each other substantially homogenized populations across the region, thereby contributing to the relatively low genetic differentiation that prevails today. Showed that the Levant Bronze Age population from the site of ‘Ain Ghazal, Jordan (2490–2300 BCE) could be fit statistically as a mixture of around 56% ancestry from a group related to Levantine Pre-Pottery Neolithic agriculturalists (represented by ancient DNA from Motza, Israel and ‘Ain Ghazal, Jordan; 8300–6700 BCE) and 44% related to populations of the Iranian Chalcolithic (Seh Gabi, Iran; 4680–3662 calBCE). Suggested that the Canaanite Levant Bronze Age population from the site of Sidon, Lebanon (~1700 BCE) could be modeled as a mixture of the same two groups albeit in different proportions (48% Levant Neolithic-related and 52% Iran Chalcolithic-related). However, the Neolithic and Bronze Age sites analyzed so far in the Levant are separated in time by more than three thousand years, making the study of samples that fill in this gap, such as those from Peqi’in, of critical importance.

This procedure produced genome-wide data from 22 ancient individuals from Peqi’in Cave (4500–3900 calBCE) (…)

Discussion

We find that the individuals buried in Peqi’in Cave represent a relatively genetically homogenous population. This homogeneity is evident not only in the genome-wide analyses but also in the fact that most of the male individuals (nine out of ten) belong to the Y-chromosome haplogroup T, a lineage thought to have diversified in the Near East. This finding contrasts with both earlier (Neolithic and Epipaleolithic) Levantine populations, which were dominated by haplogroup E, and later Bronze Age individuals, all of whom belonged to haplogroup J.

levant-chalcolithic-bronze-age
Detailed sample background data for each of the 22 samples from which we successfully obtained ancient DNA. Additionally, background information for all samples from Peqi’in that were screened is included in Supplementary Data 1. *Indicates that Y-chromosome haplogroup call should be interpreted with caution, due to low coverage data.

Our finding that the Levant_ChL population can be well-modeled as a three-way admixture between Levant_N (57%), Anatolia_N (26%), and Iran_ChL (17%), while the Levant_BA_South can be modeled as a mixture of Levant_N (58%) and Iran_ChL (42%), but has little if any additional Anatolia_N-related ancestry, can only be explained by multiple episodes of population movement. The presence of Iran_ChL-related ancestry in both populations – but not in the earlier Levant_N – suggests a history of spread into the Levant of peoples related to Iranian agriculturalists, which must have occurred at least by the time of the Chalcolithic. The Anatolian_N component present in the Levant_ChL but not in the Levant_BA_South sample suggests that there was also a separate spread of Anatolian-related people into the region. The Levant_BA_South population may thus represent a remnant of a population that formed after an initial spread of Iran_ChL-related ancestry into the Levant that was not affected by the spread of an Anatolia_N-related population, or perhaps a reintroduction of a population without Anatolia_N-related ancestry to the region. We additionally find that the Levant_ChL population does not serve as a likely source of the Levantine-related ancestry in present-day East African populations.

These genetic results have striking correlates to material culture changes in the archaeological record. The archaeological finds at Peqi’in Cave share distinctive characteristics with other Chalcolithic sites, both to the north and south, including secondary burial in ossuaries with iconographic and geometric designs. It has been suggested that some Late Chalcolithic burial customs, artifacts and motifs may have had their origin in earlier Neolithic traditions in Anatolia and northern Mesopotamia. Some of the artistic expressions have been related to finds and ideas and to later religious concepts such as the gods Inanna and Dumuzi from these more northern regions. The knowledge and resources required to produce metallurgical artifacts in the Levant have also been hypothesized to come from the north.

Our finding of genetic discontinuity between the Chalcolithic and Early Bronze Age periods also resonates with aspects of the archeological record marked by dramatic changes in settlement patterns, large-scale abandonment of sites, many fewer items with symbolic meaning, and shifts in burial practices, including the disappearance of secondary burial in ossuaries. This supports the view that profound cultural upheaval, leading to the extinction of populations, was associated with the collapse of the Chalcolithic culture in this region.

levant-chalcolithic-pca
Genetic structure of analyzed individuals. a Principal component analysis of 984 present-day West Eurasians (shown in gray) with 306 ancient samples projected onto the first two principal component axes and labeled by culture. b ADMIXTURE analysis of 984 and 306 ancient samples with K = 11
ancestral components. Only ancient samples are shown

Comments

I think the most interesting aspect of this paper is – as usual – the expansion of peoples associated with a single Y-DNA haplogroup. Given that the expansion of Semitic languages in the Middle East – like that of Anatolian languages from the north – must have happened after ca. 3100 BC, coinciding with the collapse of the Uruk period, these Chalcolithic north Levant peoples are probably not related to the posterior Semitic expansion in the region. This can be said to be supported by their lack of relationship with posterior Levantine migrations into Africa. The replacement of haplogroup E before the arrival of haplogroup J suggests still more clearly that Natufians and their main haplogroup were not related to the Afroasiatic expansions.

semitic-languages
Distribution of Semitic languages. From Wikipedia.

On the other hand, while their ancestry points to neighbouring regional origins, their haplogroup T1a1a (probably T1a1a1b2) may be closely related to that of other Semitic peoples to the south, as found in east Africa and Arabia. This may be due either to a northern migration of these Chalcolithic Levantine peoples from southern regions in the 5th millennium BC, or maybe to a posterior migration of Semitic peoples from the Levant to the south, coupled with the expansion of this haplogroup, but associated with a distinct population. As we know, ancestry can change within certain generations of intense admixture, while Y-DNA haplogroups are not commonly admixed in prehistoric population expansions.

Without more data from ancient DNA, it is difficult to say. Haplogroup T1a1 is found in Morocco (ca. 3780-3650 calBC), which could point to a recent expansion of a Berbero-Semitic branch; but also in a sample from Balkans Neolithic ca. 5800-5400 calBCE, which could suggest an Anatolian origin of the specific subclades encountered here. In any case, a potential origin of Proto-Semitic anywhere near this wide Near Eastern region ca. 4500-3500 BC cannot be discarded, knowing that their ancestors came probably from Africa.

haplogroup-t-levant
Distribution of haplogroup T of Y-chromosome. From Wikipedia.

Interesting from this paper is also that we are yet to find a single prehistoric population expansion not associated with a reduction of variability and expansion of Y-DNA haplogroups. It seems that the supposedly mixed Yamna community remains the only (hypothetical) example in history where expanding patrilineal clans will not share Y-DNA haplogroup…

Related

Haplogroup J spread in the Mediterranean due to Phoenician and Greek colonizations

iron_age_europe_mediterranean

Open access A finely resolved phylogeny of Y chromosome Hg J illuminates the processes of Phoenician and Greek colonizations in the Mediterranean, by Finocchio et al. Scientific Reports (2018) Nº 7465.

Abstract (emphasis mine):

In order to improve the phylogeography of the male-specific genetic traces of Greek and Phoenician colonizations on the Northern coasts of the Mediterranean, we performed a geographically structured sampling of seven subclades of haplogroup J in Turkey, Greece and Italy. We resequenced 4.4 Mb of Y-chromosome in 58 subjects, obtaining 1079 high quality variants. We did not find a preferential coalescence of Turkish samples to ancestral nodes, contradicting the simplistic idea of a dispersal and radiation of Hg J as a whole from the Middle East. Upon calibration with an ancient Hg J chromosome, we confirmed that signs of Holocenic Hg J radiations are subtle and date mainly to the Bronze Age. We pinpointed seven variants which could potentially unveil star clusters of sequences, indicative of local expansions. By directly genotyping these variants in Hg J carriers and complementing with published resequenced chromosomes (893 subjects), we provide strong temporal and distributional evidence for markers of the Greek settlement of Magna Graecia (J2a-L397) and Phoenician migrations (rs760148062). Our work generated a minimal but robust list of evolutionarily stable markers to elucidate the demographic dynamics and spatial domains of male-mediated movements across and around the Mediterranean, in the last 6,000 years.

greek-phoenician
J2-L397. The star indicates the centroid of derived alleles. The solid square indicates the centroid of ancestral alleles, with its 95% C.I. (ellipse). In the insets: distributions of the pairwise sampling distances (in Km) for the carriers of the ancestral (black) and derived (white) allele, with solid and dashed lines indicating the respective averages. At right: median joining network of 7-STR haplotypes and SNPs in the same groups, with sectors coloured according to sampling location. Haplotype structure is detailed for some nodes, in the order YCA2a-YCA2b-DYS19-DYS390-DYS391-DYS392-DYS393 (in italics).

Interesting excerpts:

Two features of our tree are at odds with the simplistic idea of a dispersal of Hg J as a whole from the Middle East towards Greece and Italy and an accompanying radiation26. First, there is little evidence of sudden diversification between 15 and 5 kya, a period of likely population increase and pressure for range expansion, due to the Agricultural revolution in the Fertile Crescent. Second, within each subclade, lineages currently sampled in Turkey do not show up as preferentially ancestral. Both findings are replicated and reinforced by examining the previous landmark studies. Our Turkish samples do not coalesce preferentially to ancestral nodes when mapped onto these studies’ trees.

Additional relevant information on the entire Hg J comes from the discontinuous distribution of J2b-M12. The northern fringe of our sample is enriched in the J2b-M241 subclade, which reappears in the gulf of Bengal38,45, with low frequencies in the intervening Iraq46 and Iran47. No J2b-M12 carriers were found among 35 modern Lebanese, as contrasted to one of two ancient specimens from the same region35.

In summary, a first conclusion of our sequencing effort and merge with available data is that the phylogeography of Hg J is complex and hardly explained by the presence of a single population harbouring the major lineages at the onset of agriculture and spreading westward. A unifying explanation for all the above inconsistencies could be a centre of initial radiation outside the area here sampled more densely, i.e. the Caucasus and regions North of it, from which different Hg J subclades may have later reached mainland Italy, Greece and Turkey, possibly following different routes and times. Evidence in this direction comes from the distribution of J2a-M41045,48 and the early-49 or mid-Holocene50 southward spread of J1.

greek-colonization
Supplemental Figure 7. Maps of sampling locations for the carriers of the derived allele (white triangle point down) at the indicated SNP vs carriers of the ancestral allele (black triangle point-up), conditioned on identical genotype at the same most terminal marker. Coastlines were drawn with the R packages18 “map” and “mapproj” v. 3.1.3 (https://cran.r-project.org/web/packages/mapproj/index.html), and additional features added with default functions. The star triangle indicates the centroid of derived alleles. The solid square indicates the centroid of ancestral alleles, with its 95% C.I. (ellipse). In the insets: distributions of the pairwise sampling distances (in Km) for the carriers of the ancestral (black) and derived (white) allele, with solid and dashed lines indicating the respective averages. At right: median joining network of 7-STR haplotypes and SNPs in the same groups, with sectors coloured according to sampling location. Haplotype structure is detailed for some nodes, in the order YCA2a-YCA2b-DYS19-DYS390-DYS391-DYS392-DYS393 (in italics).

The lineage defined by rs779180992, belonging to J2b-M205, and dated at 4–4.5 kya, has a radically different distribution, with derived alleles in Continental Italy, Greece and Northern Turkey, and two instances in a Palestinian and a Jew. The interpretation of the spread of this lineage is not straightforward. Tentative hypotheses are linked to Southward movements that occurred in the Balkan Peninsula from the Bronze Age29,53, through the Roman occupation and later54.

The slightly older (5.6–6.3 kya) branch 98 lineage displays a similar trend of a Eastward positioning of derived alleles, with the notable difference of being present in Sardinia, Crete, Cyprus and Northern Egypt. This feature and the low frequency of the parental J2a-M92 lineage in the Balkans27 calls for an explanation different from the above.

Finally, we explored the distribution of J2a-L397 and three derived lineages within it. J2a-L397 is tightly associated with a typical DYS445 6-repeat allele. This has been hypothesized as a marker of the Greek colonizations in the Mediterranean55, based on its presence in Greek Anatolia and Provence (France), a region with attested Iron Age Greek contribution. All of our chromosomes in this clade were characterized also by DYS391(9), confirming their Anatolian Greek signature. We resolved the J2a-L397 clade to an unprecedented precision, with three internal markers which allow a finer discrimination than STRs. The ages of the three lineages (2.0–3.0 kya) are compatible with the beginning of the Greek colonial period, in the 8th century BCE. The three subclades have different distributions (Fig. 2B), with two (branches 57, 59) found both East and West to Greece, and one only in Italy (branch 58). As to Mediterranean Islands, J2a-L397 was found in Cyprus56 and Crete43. Its presence as one of the three branches 57–59 will represent an important test. In Italy all three variants were found mainly along the Western coast (18/25), which hosted the preferred Greek trade cities. The finding of all three differentiated lineages in Locri excludes a local founder effect of a single genealogy. Interestingly, an important Greek colony was established in this location, with continuity of human settlement until modern times. The sample composed of the same subjects displayed genetic affinities with Eastern Greece and the Aegean also at autosomal markers57. In summary, the distributions of branches 57–59 mirror the variety of the cities of origin and geographic ranges during the phases of the colonization process58.

So, there you have it, another proof that haplogroup J and CHG-related ancestry in the Mediterranean was mainly driven by different (and late) expansions of historic peoples.

Related: