Early Medieval Alemannic graveyard shows diverse cultural and genetic makeup


Open access Ancient genome-wide analyses infer kinship structure in an Early Medieval Alemannic graveyard, by O’Sullivan et al., Science (2018) 4(9):eaao1262

Interesting excerpts:


The Alemanni were a confederation of Germanic tribes that inhabited the eastern Upper Rhine basin and surrounding region (Fig. 1) (1). Roman ethnographers mentioned the Alemanni, but historical records from the 3rd to the 6th century CE contain no regular description of these tribes (2). The upheaval that occurred during the European Migration Period (Völkerwanderung) partly explains the interchangeability of nomenclature with the contemporaneous Suebi people of the same region and periods of geographic discontinuity in the historical record (3). This diverse nomenclature reflects centuries of interactions between Romans and other Germanic groups such as the Franks, Burgundians, Thuringians, Saxons, and Bavarians. With the defeat of the Alemanni by Clovis I of the Franks in 497 CE, Alamannia became a subsumed Duchy of the Merovingian Kingdom. This event solidified the naming of the inhabitants of this region as Alemanni (3). From the 5th to the 8th century CE, integration between the Franks and the Alemanni was reflected by changed burial practices, with households (familia) buried in richly furnished graves (Adelsgrablege) (4). The splendor of these Adelsgräber served to demonstrate the kinship structure, wealth, and status of the familia and also the power of the Franks (Personenverbandstaaten, a system of power based on personal relations rather than fixed territory). Because inclusion in familia during the Merovingian period was not necessarily based on inheritance or provenance, debate continues on the symbolism of these burial rites (5).

The 7th century CE Alemannic burial site at Niederstotzingen in southern Germany, used circa 580 to 630 CE, represents the best-preserved example of such an Alemannic Adelsgrablege. (…)


Strontium and oxygen isotope data from the enamel showed that most individuals are local rather than migrants (Table 1, table S2, and fig. S2), except for individuals 10 and 3B. (…)

Analysis of uniparental markers

mtDNA haplogroups were successfully assigned to all 13 individuals (Table 1). Notably, there are three groups of individuals that share, among the assigned positions, identical haplotypes: individuals 4, 9, and 12B in haplogroup X2b4; individuals 1 and 3A in haplogroup K1a; and individuals 2 and 5 in haplogroup K1a1b2a1a.

Most individuals belong to the R1b haplogroup (individuals 1, 3A, 3C, 6, 9, 12A, 12B, and 12C), which has the highest frequency (>70%) in modern western European populations (20). Five individuals (1, 3A, 9, 12B, and 12C) share the same marker (Z319) defining haplogroup R1b1a2a1a1c2b2b1a1 [=ISOGG R1b1a1a2a1a1c2b2b1a1a] (…) individuals 1, 3A, and 6 have R1b lineage and marker Z347 (R1b1a2a1a1c2b2b) [=ISOGG R1b1a1a2a1a1c2b2b], which belongs to the same male ancestral lineage as marker Z319 [i.e. all R1b-U106]. Individual 3B instead carries NRY haplogroup G2a2b1, which is rare in modern north, west, and east European populations (<5%), only reaching common abundance in the Caucasus (>70%), southern Europe, and the Near East (10 to 15%)

Genome-wide capture

PCA plot of Niederstotzingen individuals, modern west Eurasians, and selected ancient Europeans. Genome-wide ancient data were projected against modern west Eurasian populations. Colors on PCA indicate more general Eurasian geographic boundaries than countries: dark green, Caucasus; bright green, eastern Europe; yellow, Sardinia and Canary Islands; bright blue, Jewish diaspora; bright purple, western and central Europe; red, southern Europe; dark brown, west Asia; light purple, Spain; dark purple, Russia; pale green, Middle East; orange, North Africa. The transparent circles serve to highlight the genetic overlap between regions of interest.

Genomically, the individuals buried at Niederstotzingen can be split into two groups: Niederstotzingen North (1, 3A, 6, 9, 12B, and 12C), who have genomic signals that most resemble modern northern and eastern European populations, and Niederstotzingen South (3B and 3C), who most resemble modern-day Mediterraneans, albeit with recent common ancestry to other Europeans. Niederstotzingen North is composed of those buried with identifiable artifacts: Lombards (individual 6), Franks (individual 9), and Byzantines (individuals 3A and 12B), all of whom have strontium and oxygen isotope signals that support local provenance (fig. S2) (8). Just two individuals, 3B (Niederstotzingen South) and 10 (no sufficient autosomal data, with R1 Y-haplogroup), have nonlocal strontium isotope signals. The δ18O values suggest that individuals 10 and 3B may have originated from a higher-altitude region, possibly the Swiss-German Alpine foothills (8). Combined with the genome affinity of individual 3B to southern Europeans, these data provide direct evidence for incoming mobility at the site and for contact that went beyond exchange of grave goods (4). Familia had holdings across the Merovingian Kingdom and traveled long distances to maintain them; these holdings could have extended from northern Italy to the North Sea. Nobles displayed and accrued power by recruiting outside individuals into the household as part of their traveling retinue. Extravagant burial rites of these familia are symbolic evidence of the Frankish power systems based on people Personenverbandstaaten imposed from the 5th until the 8th century CE (4). The assignment of grave goods and the burial pattern do not follow any apparent pattern with respect to genetic origin or provenance, suggesting that relatedness and fellowship were held in equal regard at this burial.


Both kinship estimates show first-degree relatedness for pairs 1/3A, 1/6, 1/9, 3A/9, and 9/12B and second-degree relatedness for 1/12B, 3A/6, 3A/12B, and 6/9. Except for 12C, all of the Niederstotzingen North individuals are detectably and closely related. The Niederstotzingen South individuals are not detectably related to each other or any other members of the cohort. (…)

We demonstrated that five of the individuals (1, 3A, 6, 9, and 12B) were kin to at least second degree (Fig. 3 and tables S15 and S16); four of these were buried with distinguishable grave goods (discussed above and in fig. S1). These data show that at Niederstotzingen, at least in death, diverse cultural affiliations could be appropriated even within the same family across just two generations. This finding is somewhat similar to the burial of the Frankish King Childeric in the 5th century CE with a combination of Frankish and Byzantine grave goods that symbolized both his provenance and military service to the Romans (4). The burial of three unrelated individuals (3B, 3C, and 12C) in multiple graves beside the rest of the cohort would imply that this Alemannic group buried their dead based on a combination of familial ties and fellowship. One explanation could be that they were adopted as children from another region to be trained as warriors, which was a common practice at the time; these children were raised with equal regard in the familia (2, 4).

Reconstruction of first- and second-degree relatedness among all related individuals. Bold black lines and blue lines indicate first- and second-degree relatedness, respectively. Dark blue squares are identified males with age-at-death estimates years old (y.o.), mtDNA haplotypes, and NRY haplogroups. Red circles represent unidentified females that passed maternal haplotypes to their offspring. The light square represents one male infant that shares its maternal haplotype with individuals 12B and 9. N.D., not determined.


The 7th century CE burial in Niederstotzingen represents the best-preserved example of an Alemannic Adelsgrablege. The observation that burial of the remains was close to a Roman crossroads, orientated in a considered way, and associated with rich grave goods points to a noble gravesite of an Alemannic familia with external cultural influences. The high percentage of males in the burial site suggests that this site was intended for a ranked warrior group, meaning that the individuals are not representative of the population existing in 7th century CE Alemannia. The kinship estimates show that kinship structure was organized around the familia, which is defined by close association of related and unrelated individuals united for a common purpose. The apparent kinship structure is consistent with the hypothesized Personenverbandstaaten, which was a system by which Merovingian nobles enforced rule in the Duchies of Alemannia, Thuringia, Burgundy, and elsewhere. Beyond the origin of the grave goods, we show isotopic and genetic evidence for contact with communities external to the region and evidence for shared ancestry between northern and southern Europeans. This finding invites debate on the Alemannic power system that may have been highly influenced by mobility and personal relations.

Texts and images distributed under the terms of the Creative Commons Attribution-NonCommercial license.


Mitogenomes from the middle of the Merovingian period in the Lorraine region


Investigating the kinship between individuals deposited in exceptional Merovingian multiple burials through aDNA analysis: The case of Hérange burial 41 (Northeast France), by Deguilloux et al. Journal of Archaeological Science: Reports (2018) 20:784-790.

Interesting excerpts (emphasis mine):

The Merovingian period in Northeast France (developing from 440/450 to 700/710 CE; Legoux et al., 2004) represents [a case of multiple burial], where a large majority of the types of deposits encountered consists of individual burials. In this context, whereas hundreds of individual burials are known, the syntheses recently conducted have enabled the inventory of only six multiple burials (Lefebvre and Lafosse, 2016). These observations naturally raised questions about the exceptional circumstances that led the members of the community to set up such unusual burials. The archaeological site of Hérange, excavated in 2014 (Lorraine, Grand Est region; Fig. S1), holds a key position in the debate surrounding the interpretation of multiple burials during the Merovingian period since it contains one of these rare multiple burials: burial 41, which was dated through archaeological material to the period 530–640 CE.

(…) The biological analysis of the human remains recovered in the second burial (“burial 41”) enabled the demonstration of the combined presence of a woman of approximately 40 years old (A) and three immature individuals, including a 4–5-year-old child (B), a 14–16-year-old teenager (C) and a 2,5–3-month-old infant (D) (Lefebvre and Lafosse, 2016) (Fig. 1). Since rare multiple burials described for the Merovingian period in Northeast France mainly contained two or rarely three deceased, the discovery of a burial grouping four individuals reinforced its exceptional nature. (…) Intriguingly, great care was observed in the treatment of the dead, as illustrated through a special arrangement of the deceased in the grave (Fig. 1). Indeed, the woman A occupied a central position in the grave, with her left arm covering part of the body of child D, her right arm covering the torso of child B and her right hand covering the legs of children B and C. Several arguments, such as the close contact or the imbrication of the bones of individuals A, B and C, have attested to the simultaneity of their deposits in the burial (Lefebvre and Lafosse, 2016).

Geographic distribution of the extant European individuals sharing mitochondrial haplotypes with the Hérange human remains.

Interestingly, studies have demonstrated an important chronological homogeneity for the rare multiple burials discovered for the Merovingian period in the Lorraine region (Lefebvre and Lafosse, 2016). The collected data support the existence of an epiphenomenon arisen around the middle of the Merovingian period and that may have linked the multiple burials to (i) a funerary “fashion trend” for a special group of the community, (ii) an increase in cases of violence or (iii) an epidemic crisis linked to infectious disease. In other Lorraine sites, none of the available indices permitted the specification of the cause of death for the individuals recovered in these specific burials. The deceased could well have died of natural causes, violent acts or infectious diseases that had left no visible evidence on the skeletal.

Nuclear data (Y chromosome SNPs and nuclear STRs) typed on the four Hérange human remains (STRs alleles shown in grey were not fully replicated).

The aDNA analyses conducted on the four individuals discovered in the exceptional multiple burial 41 from Hérange (Lorraine) have demonstrated strong biological links between three individuals. Notably, we could propose that the woman A was the mother of the two immatures B and D deposited just besides her whereas she was not genetically closely related to the teenager C deposited along her legs. Consequently, we propose that the special arrangement of the deceased in the grave clearly reflected the degree of biological links between the deposited individuals. In Hérange, the bereaved were well aware of kinship among the deceased, wanted to express this close linkage through their relative location within the burial, and intentionally arranged body positions consequently. In conclusion, the collected archaeological, archaeo-anthropological and genetic data suggest that the special setup of the multiple burial 41 in the Hérange necropolis and the great care in the treatment of the dead, could be explained by the contemporaneous death of the four related individuals. Data gathered for other archaeological sites from the region or in Germany suggested an epidemic crisis (plague epidemic?) during the middle of the Merovingian period that may explain the contemporaneous death of related individuals living in close contact and easily sharing pathogens.


Reported mtDNA haplogroups include U* for samples A, B, and D, and H for sample C.


Genomic analysis of Germanic tribes from Bavaria show North-Central European ancestry


New open access paper Population genomic analysis of elongated skulls reveals extensive female-biased immigration in Early Medieval Bavaria, by Veeramah, Rott, Groß, et al. PNAS (2018), published ahead of print.

First, a bit of context on the Bavarii:

Europe experienced a profound cultural transformation between Late Antiquity and the Middle Ages that laid the foundations of the modern political, social, and religious landscape. During this period, colloquially known as the “Migration Period,” the Roman Empire gradually dissolved, with 5th and 6th century historiographers and contemporary witnesses describing the formation and migration of numerous Germanic peoples, such as the Goths, Alamanni, Gepids, and Longobards. However, the genetic and social composition of groups involved and the exact nature of these “migrations” are unclear and have been a subject of substantial historical and archaeological debate

In the mid 6th century AD, the historiographer Jordanes and the poet and hagiographer Venantius Fortunatus provide the first mention of a group known as the Baiuvarii that resided in modern day Bavaria. It is likely that this group had already started to form in the 5th century AD, and that it emanated from a combination of the romanized local population of the border province of the former Roman Empire and immigrants from north of the Danube (2). While the Baiuvarii are less well known than some other contemporary groups, an interesting archaeological feature in Bavaria from this period is the presence of skeletons with artificially deformed or elongated skulls.

Procrustes-transformed PCA of ancient samples using pseudohaploid calls based on off-target reads using an imputed POPRES modern reference dataset. Blue, green, and red male or female symbols are ancient Bavarian individuals with normal, intermediate, and elongated skulls, respectively. Orange circles are Anglo-Saxon era individuals. Large circles are medians for regions, dots are individuals. CE, central Europe; EE, eastern Europe; NE, northern Europe; NEE, northeastern Europe; NEW, northwestern Europe; SE, southern Europe; SEE, southeast Europe; WE, western Europe. Percentage of variation explained by PCs 1 and 2 for modern populations only is 0.25% and 0.15%.

Abstract (emphasis mine):

Modern European genetic structure demonstrates strong correlations with geography, while genetic analysis of prehistoric humans has indicated at least two major waves of immigration from outside the continent during periods of cultural change. However, population-level genome data that could shed light on the demographic processes occurring during the intervening periods have been absent. Therefore, we generated genomic data from 41 individuals dating mostly to the late 5th/early 6th century AD from present-day Bavaria in southern Germany, including 11 whole genomes (mean depth 5.56×). In addition we developed a capture array to sequence neutral regions spanning a total of 5 Mb and 486 functional polymorphic sites to high depth (mean 72×) in all individuals. Our data indicate that while men generally had ancestry that closely resembles modern northern and central Europeans, women exhibit a very high genetic heterogeneity; this includes signals of genetic ancestry ranging from western Europe to East Asia. Particularly striking are women with artificial skull deformations; the analysis of their collective genetic ancestry suggests an origin in southeastern Europe. In addition, functional variants indicate that they also differed in visible characteristics. This example of female-biased migration indicates that complex demographic processes during the Early Medieval period may have contributed in an unexpected way to shape the modern European genetic landscape. Examination of the panel of functional loci also revealed that many alleles associated with recent positive selection were already at modern-like frequencies in European populations ∼1,500 years ago.

Supervised model-based clustering ADMIXTURE analysis for ancient samples based on phased haplotypes for individual 1,000 bp loci from the 5-Mb neutralome. Analysis is based on the best of 100 runs for K = 8, but NC_EUR is the ancestry summed across 1000 Genomes CEU, 1000 Genomes GBR, and GoNL populations (i.e., it represents a northern/central European ancestry). Blue, green, and red male or female symbols are ancient Bavarian individuals with normal, intermediate, and elongated skulls, respectively.

There is no Y-DNA data to keep confirming the North-Central origin of certain modern European subclades in Central and South-Central Europe.

The potential Ostrogothic sample from Crimea was probably Hunnic, as the paper itself suggests, and both Ostrogoths and Gepids are known to have been allies of the Huns for a long time. It is also a well-known fact that East Germanic tribes migrated south- and eastward through eastern Europe, and then from the steppe westward.

Obviously, the PCA of a late Gepid sample – after a certain number of generations and admixture events with ‘local’ populations during the migrations – , and of a Crimean sample without a clear cultural identification, are of limited value today, until more samples are available.

Hence sadly no valid data yet to add to the debate of East Germanic nature, which mainly concerns its traditionally described origin in Scandinavia – i.e. close to North Germanic dialects – against a different origin (and dialectal branch) within Proto-Germanic territory.

NOTE. Just to be clear for future papers on Germanic tribes, I would expect East Germanic males to show either:
a) mainly R1b-U106, I1, and R1a-Z645 subclades, and to cluster closely to samples of Scandinavia during Antiquity, which would support a Scandinavian origin – a predominance of typically Scandinavian R1a-Z284 subclades would be more indicative of this origin, of course;
b) or mainly R1b-U106, R1b-P312, and I1 subclades and a PCA cluster close to West Germanic tribes, which would challenge its traditional dialectal identification.

I agree with the authors in that a few samples are able to describe certain migratory events, though, such as the emphasized female-biased long-distance migration in Bavaria, as well as the diverse ancestry of women versus men.