Fulani from Cameroon show ancestry similar to Afroasiatic speakers from East Africa

sahel-region-fulani

Open access African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations, by Fan et al. Genome Biology (2019) 20:82.

Interesting excerpts (emphasis mine):

Introduction

To extend our knowledge of patterns of genomic diversity in Africa, we generated high coverage (> 30×) genome sequencing data from 43 geographically diverse Africans originating from 22 ethnic groups, representing a broad array of ethnic, linguistic, cultural, and geographic diversity (Additional file 1: Table S1). These include a number of populations of anthropological interest that have never previously been characterized for high-coverage genome sequence diversity such as Afroasiatic-speaking El Molo fishermen and Nilo-Saharan-speaking Ogiek hunter-gatherers (Kenya); Afroasiatic-speaking Aari, Agaw, and Amhara agro-pastoralists (Ethiopia); Niger-Congo-speaking Fulani pastoralists (Cameroon); Nilo-Saharan-speaking Kaba (Central African Republic, CAR); and Laka and Bulala (Chad) among others. We integrated this data with 49 whole genome sequences generated as part of the Simons Genome Diversity Project (SGDP) [14] (…)

afroasiatic-samples
Locations of samples included in this study. Each dot is an individual and the color indicates the language classification

Results and discussion

We found that the CRHG populations from central Africa, including the Mbuti from the Demographic Republic of Congo (DRC), Biaka from the CAR, and Baka, Bakola, and Bedzan from Cameroon, also form a basal lineage in the phylogeny. The other two hunter-gatherer populations, Hadza and Sandawe, living in Tanzania, group with populations from eastern Africa (Fig. 2). The two Nilo-Saharan-speaking populations, the Mursi from southern Ethiopia and the Dinka from southern Sudan, group into a single cluster, which is consistent with archeological data indicating that the migration of Nilo-Saharan populations to eastern Africa originated from a source population in southern Sudan in the last 3000 years [4, 23, 24, 25].

phylogenetic-relationship-africans
Phylogenetic relationship of 44 African and 32 west Eurasian populations determined by a neighbor joining analysis assuming no admixture. Here, the dots of each node represent bootstrap values and the color of each branch indicates language usage of each population. Human_AA human ancestral alleles

The Fulani people are traditionally nomadic pastoralists living across a broad geographic range spanning Sudan, the Sahel, Central, and Western Africa. The Fulani in our study, sampled from Cameroon, clustered with the Afroasiatic-speaking populations in East Africa in the phylogenetic analysis, indicating a potential language replacement from Afroasiatic to Niger-Congo in this population (Fig. 2). Prior studies suggest a complex history of the Fulani; analyses of Y chromosome variation suggest a shared ancestry with Nilo-Saharan and Afroasiatic populations [24], whereas mtDNA indicates a West African origin [26]. An analysis based on autosomal markers found traces of West Eurasian-related ancestry in this population [4], which suggests a North African or East African origin (as North and East Africans also have such ancestry likely related to expansions of farmers and herders from the Near East) and is consistent with the presence at moderate frequency of the −13,910T variant associated with lactose tolerance in European populations [15, 16].

Phylogenetic reconstruction of the relationship of African individuals under a model allowing for migration using TREEMIX [27] largely recapitulates the NJ phylogeny with the exception of the Fulani who cluster near neighboring Niger-Congo-speaking populations with whom they have admixed (Additional file 2: Figure S1). Interestingly, TREEMIX analysis indicates evidence for gene flow between the Hadza and the ancestors of the Ju|‘hoan and Khomani San, supporting genetic, linguistic, and archeological evidence that Khoesan-speaking populations may have originated in Eastern Africa [28, 29, 30].

afroasiatic-niger-congo-admixture
ADMIXTURE analysis of 92 African and 62 West Eurasian individuals. Each bar is an individual and colors represent the proportion of inferred ancestry from K ancestral populations. The bottom bar shows the language classification of each individual. With the increasing of K, the populations are largely grouped by their current language usage

About the Fulani, this is what the referenced study of Y‐chromosome variation among 15 Sudanese populations by Hassan et al. (2008), had to say:

  • Haplogroups A-M13 and B-M60 are present at high frequencies in Nilo-Saharan groups except Nubians, with low frequencies in Afro-Asiatic groups although notable frequencies of B-M60 were found in Hausa (15.6%) and Copts (15.2%).
  • Haplogroup E (four different haplotypes) accounts for the majority (34.4%) of the chromosome and is widespread in the Sudan. E-M78 represents 74.5% of haplogroup E, the highest frequencies observed in Masalit and Fur populations. E-M33 (5.2%) is largely confined to Fulani and Hausa, whereas E-M2 is restricted to Hausa. E-M215 was found to occur more in Nilo-Saharan rather than Afro-Asiatic speaking groups.
  • In contrast, haplogroups F-M89, I-M170, J-12f2, and JM172 were found to be more frequent in the Afro-Asiatic speaking groups. J-12f2 and J-M172 represents 94% and 6%, respectively, of haplogroup J with high frequencies among Nubians, Copts, and Arabs.
  • Haplogroup K-M9 is restricted to Hausa and Gaalien with low frequencies and is absent in Nilo-Saharan and Niger-Congo.
  • Haplogroup R-M173 appears to be the most frequent haplogroup in Fulani, and haplogroup R-P25 has the highest frequency in Hausa and Copts and is present at lower frequencies in north, east, and western Sudan.
  • Haplogroups A-M51, A-M23, D-M174, H-M52, L-M11, OM175, and P-M74 were completely absent from the populations analyzed.
fulfulde-fulani-language
Image modified from “Fulfulde Language Family Report” Author: Annette Harrison; Cartographer: Irene Tucker; SIL International 2003.

This is what David Reich will talk about in the seminar Insights into language expansions from ancient DNA:

In this talk, I will describe how the new science of genome-wide ancient DNA can provide insights into past spreads of language and culture. I will discuss five examples: (1) the spread of Indo-European languages to Europe and South Asia in association with Steppe pastoralist ancestry, (2) the spread of Austronesian languages to the open Pacific islands in association with Taiwanese aboriginal-associated ancestry, (3) the spread of Austroasiatic languages through southeast Asia in association with the characteristic ancestry type that is also represented in western Indonesia suggesting that these languages were once widespread there, (4) the spread of Afroasiastic languages through in East Africa as part of the Pastoral Neolithic farming expansion, and (5) the spread of Na-Dene languages in North America in association with Proto-Paleoeskimo ancestry. I will highlight the ways that ancient DNA can meaningfully contribute to our understanding of language expansions—increasing the plausibility of some scenarios while decreasing the plausibility of others—while emphasizing that with genetic data by itself we can never definitively determine what languages ancient people spoke.

EDIT (3 MAY 2019): Apparently, there was not much to take from the talk:

neolithic-pastoralist-africa
Pastoralist Neolithic in Africa, through a pale-green Sahelo-Sudanian steppe corridor. See full map.

This seminar (and maybe some new paper on the Neolithic expansion in Africa) could shed light on population movements that may be related to the spread of Afroasiatic dialects. Until now, it seems that Bantu peoples have been more interesting for linguistics and archaeology, and South and East Africans for anthropology.

Archaeology in Africa appears to be in its infancy, as is population genomics. From the latest publication by Carina Schlebusch, Population migration and adaptation during the African Holocene: A genetic perspective, a chapter from Modern Human Origins and Dispersal (2019):

The process behind the introduction and development of farming in Africa is still unclear. It is not known how many independent invention events there were in the continent and to which extent the various first instances of farming in northern Africa are linked. Based on the archeological record, it was proposed that at least three regions in Africa may have developed agriculture independently: the Sahara/Sahel (around 7 ka), the Ethiopian highlands (7-4 ka), and western Africa (5-3 ka). In addition to these developments, the Nile River Valley is thought to have adopted agriculture (around 7.2 ka), from the Neolithic Revolution in the Middle East (Chapter 12 – Jobling et al. 2014; Chapter 35, 37 – Mitchell and Lane 2013). From these diverse centers of origin, farmers or farming practices spread to the rest of Africa, with domesticate animals reaching the southern tip of Africa ~2 ka and crop farming ~1,8 ka (Mitchell 2002; Huffman 2007)

african-popularion-movements
Schematic representation of possible migration routes related to the expansion of herders and crop farmers during Holocene times. Arrow color indicate source populations; Brown-Eurasian, Green-western African, Blue-eastern African.

Similar to the case in Europe and the 1990s-2000s wrong haplogroup history based on the modern distribution of R1b, R1a, N, or I2, it is possible that neither of the most often mentioned haplogroups linked to the Afroasiatic expansion, E and J, were responsible for its early spread within Africa, despite their widespread distribution in certain modern Afroasiatic-speaking areas. The fact that such assessments include implausible glottochronological dates spanning up to 20,000 years for the parent language, combined with regional language continuities despite archaeological changes, makes them even more suspicious.

Similar to the case with Indo-Europeans and the “steppe ancestry” concept of the 2010s, it may be that the often-looked-for West Eurasian ancestry among Africans is the effect of recent migrations, unrelated to the Afroasiatic expansion. The results of this paper could be offering another sign of how this ancestry may have expanded only quite recently westwards from East Africa through the Sahel, after the Semitic expansion to the south:

1. From approximately 1000 BC, accompanying Nilo-Saharan peoples.

2. From approximately AD 1500, with the different population movements related to the nomadic Fulani:

sahel-nomadic-sedentary
Image from Sahel in West African History – Oxford Research Encyclopedia of African History.
  • Arguably, since the Fulani caste system wasn’t as elaborate in northern Nigeria, eastern Niger, and Cameroon, these specific groups would be a good example of the admixture with eastern populations, based on the (proportionally) huge amount of slaves they dealt with.
  • Similarly, it could be argued that the castes-based social stratification in most other territories (including Sudan) would have helped them keep a genetic make-up similar to their region of origin in terms of ancient lineages, hence similar to Chadic populations from west to east.

Reich’s assertion of the association of the language expansion with the spread of Pastoral Neolithic is still too vague, but – based on previous publications of ancient DNA in Africa and the Levant – I don’t have high hopes for a revolutionary paper in the near future. Without many samples and proper temporal transects, we are stuck with speculations based on modern distributions and scarce historical data.

fula-people-distribution
A distribution map of Fula people. Dark green: a major ethnic group; Medium: significant; Light: minor. Modified from image by Sarah Welch at Wikipedia.

About the potential genetic make-up of Cameroon before the arrival of the Neolithic, from the recent SAA 84th Annual Meeting (Abstracts in PDF):

Lipson, Mark (Harvard Medical School), Mary Prendergast (Harvard University), Isabelle Ribot (Université de Montréal), Carles Lalueza-Fox (Institute of Evolutionary Biology CSIC-UPF) and David Reich (Harvard Medical School)

[253] Ancient Human DNA from Shum Laka (Cameroon) in the Context of African Population History We generated genome-wide DNA data from four people buried at the site of Shum Laka in Cameroon between 8000–3000 years ago. One individual carried the deeply divergent Y chromosome haplogroup A00 found at low frequencies among some present-day Niger-Congo speakers, but the genome-wide ancestry profiles for all four individuals are very different from the majority of West Africans today and instead are more similar to West-Central African hunter-gatherers. Thus, despite the geographic proximity of Shum Laka to the hypothesized birthplace of Bantu languages and the temporal range of our samples bookending the initial Bantu expansion, these individuals are not representative of a Bantu source population. We present a phylogenetic model including Shum Laka that features three major radiations within Africa: one phase early in the history of modern humans, one close to the time of the migration giving rise to non-Africans, and one in the past several thousand years. Present-day West Africans and some East Africans, in addition to Central and Southern African hunter-gatherers, retain ancestry from the first phase, which is therefore still represented throughout the majority of human diversity in Africa today.

Related

Ancient genomes from North Africa evidence Neolithic migrations to the Maghreb

BioRxiv preprint now published (behind paywall) Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe, by Fregel et al., PNAS (2018).

NOTE. I think one of the important changes in this version compared to the preprint is the addition of the recent Iberomaurusian samples.

Abstract (emphasis mine):

The extent to which prehistoric migrations of farmers influenced the genetic pool of western North Africans remains unclear. Archaeological evidence suggests that the Neolithization process may have happened through the adoption of innovations by local Epipaleolithic communities or by demic diffusion from the Eastern Mediterranean shores or Iberia. Here, we present an analysis of individuals’ genome sequences from Early and Late Neolithic sites in Morocco and from Early Neolithic individuals from southern Iberia. We show that Early Neolithic Moroccans (∼5,000 BCE) are similar to Later Stone Age individuals from the same region and possess an endemic element retained in present-day Maghrebi populations, confirming a long-term genetic continuity in the region. This scenario is consistent with Early Neolithic traditions in North Africa deriving from Epipaleolithic communities that adopted certain agricultural techniques from neighboring populations. Among Eurasian ancient populations, Early Neolithic Moroccans are distantly related to Levantine Natufian hunter-gatherers (∼9,000 BCE) and Pre-Pottery Neolithic farmers (∼6,500 BCE). Late Neolithic (∼3,000 BCE) Moroccans, in contrast, share an Iberian component, supporting theories of trans-Gibraltar gene flow and indicating that Neolithization of North Africa involved both the movement of ideas and people. Lastly, the southern Iberian Early Neolithic samples share the same genetic composition as the Cardial Mediterranean Neolithic culture that reached Iberia ∼5,500 BCE. The cultural and genetic similarities between Iberian and North African Neolithic traditions further reinforce the model of an Iberian migration into the Maghreb.

north-africa-genomes-pca
Ancestry inference in ancient samples from North Africa and the Iberian Peninsula. PCA analysis using the Human Origins panel (European, Middle Eastern, and North African populations) and LASER projection of aDNA samples.

Relevant excerpts:

FST and outgroup-f3 distances indicate a high similarity between IAM and Taforalt. As observed for IAM, most Taforalt sample ancestry derives from Epipaleolithic populations from the Levant. However, van de Loosdrecht et al. (17) also reported that one third of Taforalt ancestry was of sub-Saharan African origin. To confirm whether IAM individuals show a sub-Saharan African component, we calculated f4(chimpanzee, African population; Natufian, IAM) in such a way that a positive result for f4 would indicate that IAM is composed both of Levantine and African ancestries. Consistent with the results observed for Taforalt, f4 values are significantly positive for West African populations, with the highest value observed for Gambian and Mandenka (Fig. 3 and SI Appendix, Supplementary Note 10). Together, these results indicate the presence of the same ancestral components in ∼15,000-y old and ∼7,000-y-old populations from Morocco, strongly suggesting a temporal continuity between Later Stone Age and Early Neolithic populations in the Maghreb. However, it is important to take into account that the number of ancient genomes available for comparison is still low and future sampling can provide further refinement in the evolutionary history of North Africa.

Genetic analyses have revealed that the population history of modern North Africans is quite complex (11). Based on our aDNA analysis, we identify an Early Neolithic Moroccan component that is (i) restricted to North Africa in present-day populations (11); (ii) the sole ancestry in IAM samples; and (iii) similar to the one observed in Later Stone Age samples from Morocco (17). We conclude that this component, distantly related to that of Epipaleolithic communities from the Levant, represents the autochthonous Maghrebi ancestry associated with Berber populations. Our data suggests that human populations were isolated in the Maghreb since Upper Paleolithic times. Our hypothesis is in agreement with archaeological research pointing to the first stage of the Neolithic expansion in Morocco as the result of a local population that adopted some technological innovations, such as pottery production or farming, from neighboring areas.

By 3,000 BCE, a continuity in the Neolithic spread brought Mediterranean-like ancestry to the Maghreb, most likely from Iberia. Other archaeological remains, such as African elephant ivory and ostrich eggs found in Iberian sites, confirm the existence of contacts and exchange networks through both sides of the Gibraltar strait at this time. Our analyses strongly support that at least some of the European ancestry observed today in North Africa is related to prehistoric migrations, and local Berber populations were already admixed with Europeans before the Roman conquest. Furthermore, additional European/ Iberian ancestry could have reached the Maghreb after KEB people; this scenario is supported by the presence of Iberian-like Bell-Beaker pottery in more recent stratigraphic layers of IAM and KEB caves. Future paleogenomic efforts in North Africa will further disentangle the complex history of migrations that forged the ancestry of the admixed populations we observe today.

north-africa-iberia-admixture
Ancestry inference in ancient samples from North Africa and the Iberian Peninsula. (B) ADMIXTURE analysis using the Human Origins dataset (European, Middle Eastern, and North African populations) for modern and ancient samples (K = 8). (D) Detail of ADMIXTURE analysis using the Human Origins dataset (European, Middle Eastern, North African, and sub-Saharan African populations) for modern and ancient samples, including Taforalt.

Also, from the main author’s Twitter account:

I just realized that the paragraph with information on data availability is missing! Sequence data in the European Nucleotide Archive (PRJEB22699). Consensus mtDNA sequences are available at the National Center of Biotechnology Information (Accession Numbers MF991431-MF991448).

I find it hard to believe that this genetic continuity from Upper Palaeolithic to Late Neolithic could be representative of an autochthonous development of Afroasiatic. An important population movement – likely more than one – must be found in ancient DNA influencing North-Central and North-East Africa, probably during the time of the Green Sahara corridor.

See here: