Population turnover in remote Oceania shortly after initial settlement

papuan-oceanian

Interesting preprint at BioRxiv by the team of the Reich lab, Population Turnover in Remote Oceania Shortly After Initial Settlement, by Mark Lipson, Pontus Skoglund, Matthew Spriggs, et al. (2018).

Abstract (emphasis mine):

Ancient DNA analysis of three individuals dated to ~3000 years before present (BP) from Vanuatu and one ~2600 BP individual from Tonga has revealed that the first inhabitants of Remote Oceania (“First Remote Oceanians”) were almost entirely of East Asian ancestry, and thus their ancestors passed New Guinea, the Bismarck Archipelago, and the Solomon Islands with minimal admixture with the Papuan groups they encountered. However, all present-day populations in Near and Remote Oceania harbor 25-100% Papuan ancestry, implying that there must have been at least one later stream of migration eastward from Near Oceani>. We generated genome-wide data for 14 ancient individuals from Efate and Epi Islands in Vanuatu ranging from 3,000-150 BP, along with 185 present-day Vanuatu individuals from 18 islands. We show that people of almost entirely Papuan ancestry had arrived in Vanuatu by 2400 BP, an event that coincided with the end of the Lapita cultural period, changes in skeletal morphology, and the cessation of long-distance trade between Near and Remote Oceania. First Remote Oceanian ancestry subsequently increased via admixture but remains at 10-20% in most islands. Through a fine-grained comparison of ancestry profiles in Vanuatu and Polynesia with diverse groups in Near Oceania, we find that Papuan ancestry in Vanuatu is consistent with deriving from the Bismarck Archipelago instead of the geographically closer Solomon Islands. Papuan ancestry in Polynesia also shows connections to the ancestry profiles present in the Bismarck Archipelago but is more similar to Tolai from New Britain and Tutuba from Vanuatu than to the ancient Vanuatu individuals and the great majority of present-day Vanuatu populations. This suggests a third eastward stream of migration from Near to Remote Oceania bringing a different type of Papuan ancestry.

qpgraph-oceanian-papuan
Admixture graph model with inferred parameters, alternative visualization. Branch lengths are given in units of f2 genetic drift distance times 1000, and admixture proportions are indicated along corresponding dotted lines. Red, Solomon Islands majority source; blue, Bismarck Archipelago majority source; purple, New Guinea-related source; green, First Remote Oceanian; brown, mixed ancestry. The order of admixture events specified is arbitrary.

See also:

Genomic history of South-East Asia: eastern Polynesians, Peninsular Malaysia and North Borneo

Two recent interesting genetic papers:

1. Open Access Investigating the origins of eastern Polynesians using genome-wide data from the Leeward Society Isles, by Hudjashov et al., at Scientific Reports (2018)

Abstract:

The debate concerning the origin of the Polynesian speaking peoples has been recently reinvigorated by genetic evidence for secondary migrations to western Polynesia from the New Guinea region during the 2nd millennium BP. Using genome-wide autosomal data from the Leeward Society Islands, the ancient cultural hub of eastern Polynesia, we find that the inhabitants’ genomes also demonstrate evidence of this episode of admixture, dating to 1,700–1,200 BP. This supports a late settlement chronology for eastern Polynesia, commencing ~1,000 BP, after the internal differentiation of Polynesian society. More than 70% of the autosomal ancestry of Leeward Society Islanders derives from Island Southeast Asia with the lowland populations of the Philippines as the single largest potential source. These long-distance migrants into Polynesia experienced additional admixture with northern Melanesians prior to the secondary migrations of the 2nd millennium BP. Moreover, the genetic diversity of mtDNA and Y chromosome lineages in the Leeward Society Islands is consistent with linguistic evidence for settlement of eastern Polynesia proceeding from the central northern Polynesian outliers in the Solomon Islands. These results stress the complex demographic history of the Leeward Society Islands and challenge phylogenetic models of cultural evolution predicated on eastern Polynesia being settled from Samoa.

polynesian
Sampling locations and overview of genomic diversity. (a) Sources of population data used in the present study. The Philippine group names are abbreviated as follows: Aet (Aeta); Agt (Agta); Bat (Batak); Cas (Casiguran); Kan (Kankanaey); Taga (Tagalog); Tagb (Tagbanua); Zam (Zambales); and Phi (Philippines, incorporating all other groups from this region). Colours indicate regional affiliation of populations used for analysis of autosomal DNA: orange – mainland Southeast Asia and East Asia; dark blue – Taiwan; brown – Philippines Aeta, Agta and Batak negritos; light blue – Philippines non-negritos; red – western Indonesia; pink – eastern Indonesia; purple – northern Melanesia and New Guinea; black – Australia; green –Polynesia. The usage of populations varies with the type of analysis employed (Supplementary Table S1). Inset map shows the three populations from the Leeward Society Isles, and Tahiti, the major island in the Windward Society Isles. The red circles within Micronesia and Melanesia represent 20 of the atolls and islands referred to collectively as outlier Polynesia. The red stars denote the three additional Polynesian outlier populations (Rennell and Bellona, Tikopia), which together with Tonga, were used in analysis of ancient admixture by Skoglund, et al.25. Detailed sample information is given in Supplementary Table S1. The map was created using R v. 3.4.1 (R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/), and packages ‘maps’ v. 3.2.0 (https://cran.r-project.org/package=maps) and ‘mapdata’ v. 2.2-6 (https://cran.r-project.org/package=mapdata). (b) Inset at top right shows two alternative reconstructed sub-groupings of Polynesian languages discussed in the text. The critical differences are the position of the East Polynesian languages relative to the rest of nuclear Polynesian, and their relationship to the Central Northern Outlier languages. In the sub-grouping according to Pawley31 all the Polynesian Outlier languages group within Samoic implying an early separation of Proto-East Polynesian from the rest of the Nuclear Polynesian languages. In the alternative sub-grouping proposed by Wilson32 the Central Northern Outlier languages group with the languages of East Polynesia, within a larger clade containing the other Northern Outlier languages. (c) Principal components analysis of genome-wide SNP diversity in 639 individuals populations shown in panel A; axes are scaled by the proportion of variance described by the corresponding principal component.

2. Genomic structure of the native inhabitants of Peninsular Malaysia and North Borneo suggests complex human population history in Southeast Asia, by Yew et al. at at Human Genetics (2018)

Abstract:

Southeast Asia (SEA) is enriched with a complex history of peopling. Malaysia, which is located at the crossroads of SEA, has been recognized as one of the hubs for early human migration. To unravel the genomic complexity of the native inhabitants of Malaysia, we sequenced 12 samples from 3 indigenous populations from Peninsular Malaysia and 4 native populations from North Borneo to a high coverage of 28–37×. We showed that the Negritos from Peninsular Malaysia shared a common ancestor with the East Asians, but exhibited some level of gene flow from South Asia, while the North Borneo populations exhibited closer genetic affinity towards East Asians than the Malays. The analysis of time of divergence suggested that ancestors of Negrito were the earliest settlers in the Malay Peninsula, whom first separated from the Papuans ~ 50–33 thousand years ago (kya), followed by East Asian (~ 40–15 kya), while the divergence time frame between North Borneo and East Asia populations predates the Austronesian expansion period implies a possible pre-Neolithic colonization. Substantial Neanderthal ancestry was confirmed in our genomes, as was observed in other East Asians. However, no significant difference was observed, in terms of the proportion of Denisovan gene flow into these native inhabitants from Malaysia. Judging from the similar amount of introgression in the Southeast Asians and East Asians, our findings suggest that the Denisovan gene flow may have occurred before the divergence of these populations and that the shared similarities are likely an ancestral component.

See also: