N1c-L392 associated with expanding Turkic lineages in Siberia


Second in popularity for the expansion of haplogroup N1a-L392 (ca. 4400 BC) is, apparently, the association with Turkic, and by extension with Micro-Altaic, after the Uralic link preferred in Europe; at least among certain eastern researchers.

New paper in a recently created journal, by the same main author of the group proposing that Scythians of hg. N1c were Turkic speakers: On the origins of the Sakhas’ paternal lineages: Reconciliation of population genetic / ancient DNA data, archaeological findings and historical narratives, by Tikhonov, Gurkan, Demirdov, and Beyoglu, Siberian Research (2019).

Interesting excerpts:

According to the views of a number of authoritative researchers, the Yakut ethnos was formed in the territory of Yakutia as a result of the mixing of people from the south and the autochthonous population [34].

These three major Sakha paternal lineages may have also arrived in Yakutia at different times and/ or from different places and/or with a difference in several generations instead, or perhaps Y-chromosomal STR mutations may have taken place in situ in Yakutia. Nevertheless, the immediate common ancestor(s) from the Asian Steppe of these three most prevalent Sakha Y-chromosomal STR haplotypes possibly lived during the prominence of the Turkic Khaganates, hence the near-perfect matches observed across a wide range of Eurasian geography, including as far as from Cyprus in the West to Liaoning, China in the East, then Middle Lena in the North and Afghanistan in the South (Table 3 and Figure 5). There may also be haplotypes closely-related to ‘the dominant Elley line’ among Karakalpaks, Uzbeks and Tajiks, however, limitations in the loci coverage for the available dataset (only eight Y-chromosomal STR loci) precludes further conclusions on this matter [25].

17-loci median-joining network analysis of the original/dominant Elley, Unknown and Omogoy Y-chromosomal STR haplotypes with the YHRD matches from outside Yakutia populations.

According to the results presented here, very similar Y-STR haplotypes to that of the original Elley line were found in the west: Afghanistan and northern Cyprus, and in the east: Liaoning Province, China and Ulaanbaator, Northern Mongolia. In the case of the dominant Omogoy line, very closely matching haplotypes differing by a single mutational step were found in the city of Chifen of the Jirin Province, China. The widest range of similar haplotypes was found for the Yakut haplotype Unknown: In Mongolia, China and South Korea. For instance, haplotypes differing by a single step mutation were found in Northern Mongolia (Khalk, Darhad, Uryankhai populations), Ulaanbaator (Khalk) and in the province of Jirin, China (Han population).

14-loci median-joining network analysis for the original/dominant Elley (Ell), Unknown Clan
(Vil), Omogoy (Omo), Eurasian (Eur) and Xiongnu (Xuo) Y-chromosomal STR haplotypes and that for a representative ancient DNA sample (Ch0 or DSQ04) from the Upper Xiajiadian Culture
recovered from the Inner Mongolia Autonomous Region, China.

Notably, Tat-C-bearing Y-chromosomes were also observed in ancient DNA samples from the 2700-3000 years-old Upper Xiajiadian culture in Inner Mongolia, as well as those from the Serteya II site at the Upper Dvina region in Russia and the ‘Devichyi gory’ culture of long barrow burials at the Nevel’sky district of Pskovsky region in Russia. A 14-loci Y-chromosomal STR median-joining network of the most prevalent Sakha haplotypes and a Tat-C-bearing haplotype from one of the ancient DNA samples recovered from the Upper Xiajiadian culture in Inner Mongolia (DSQ04) revealed that the contemporary Sakha haplotype ‘Xuo’ (Table 2, Haplotype ID “Xuo”) classified as that of ‘the Xiongnu clan’ in our current study, was the closest to the ancient Xiongnu haplotype (Figure 6). TMRCA estimate for this 14-loci Y-chromosomal STR network was 4357 ± 1038 years or 2341 ± 1038 BCE, which correlated well with the Upper Xiajiadian culture that was dated to the Late Bronze Age (700-1000 BCE).

Geographical location of ancient samples belonging to major clade N of the Y-chromosome.

NOTE. Also interesting from the paper seems to be the proportion of E1b1b among admixed Russian populations, in a proportion similar to R1a or I2a(xI2a1).

It is tempting to associate the prevalent presence of N1c-L392 in ancient Siberian populations with the expansion of Altaic, by simplistically linking the findings (in chronological order) near Lake Baikal (Damgaard et al. 2018), Upper Xiajiadian (Cui et al. 2013), among Khövsgöl (Jeong et al. 2018), in Huns (Damgaard et al. 2018), and in Mongolic-speaking Avars (Csáky et al. 2019).

However, its finding among Palaeo-Laplandic peoples in the Kola peninsula ca. 1500 BC (Lamnidis et al. 2018) and among Palaeo-Siberian populations near the Yana River (Sikora et al. 2018) ca. AD 1200 should be enough to accept the hypothesis of ancestral waves of expansion of the haplogroup over northern Eurasia, with acculturation and further expansions in the different regions since the Iron Age (see more on its potential expansion waves).

Also, a simple look at the TMRCA and modern distribution was enough to hypothesize long ago the lack of connection of N1c-L392 with Altaic or Uralic peoples. From Ilumäe et al. (2016):

Previous research has shown that Y chromosomes of the Turkic-speaking Yakuts (Sakha) belong overwhelmingly to hg N3 (formerly N1c1). We found that nearly all of the more than 150 genotyped Yakut N3 Y chromosomes belong to the N3a2-M2118 clade, just as in the Turkic-speaking Dolgans and the linguistically distant Tungusic-speaking Evenks and Evens living in Yakutia (Table S2). Hence, the N3a2 patrilineage is a prime example of a male population of broad central Siberian ancestry that is not intrinsic to any linguistically defined group of people. Moreover, the deepest branch of hg N3a2 is represented by a Lebanese and a Chinese sample. This finding agrees with the sequence data from Hallast et al., where one Turkish Y chromosome was also assigned to the same sub-clade. Interestingly, N3a2 was also found in one Bhutan individual who represents a separate sub-lineage in the clade. These findings show that although N3a2 reflects a recent strong founder effect primarily in central Siberia (Yakutia, Sakha), the sub-clade has a much wider distribution area with incidental occurrences in the Near East and South Asia.

Frequency-Distribution Maps of Individual Sub-clades of hg N3a2, by Ilumäe et al. (2016).

The most striking aspect of the phylogeography of hg N is the spread of the N3a3’6-CTS6967 lineages. Considering the three geographically most distant populations in our study—Chukchi, Buryats, and Lithuanians—it is remarkable to find that about half of the Y chromosome pool of each consists of hg N3 and that they share the same sub-clade N3a3’6. The fractionation of N3a3’6 into the four sub-clades that cover such an extraordinarily wide area occurred in the mid-Holocene, about 5.0 kya (95% CI = 4.4–5.7 kya). It is hard to pinpoint the precise region where the split of these lineages occurred. It could have happened somewhere in the middle of their geographic spread around the Urals or further east in West Siberia, where current regional diversity of hg N sub-lineages is the highest (Figure 1B). Yet, it is evident that the spread of the newly arisen sub-clades of N3a3’6 in opposing directions happened very quickly. Today, it unites the East Baltic, East Fennoscandia, Buryatia, Mongolia, and Chukotka-Kamchatka (Beringian) Eurasian regions, which are separated from each other by approximately 5,000–6,700 km by air. N3a3’6 has high frequencies in the patrilineal pools of populations belonging to the Altaic, Uralic, several Indo-European, and Chukotko-Kamchatkan language families. There is no generally agreed, time-resolved linguistic tree that unites these linguistic phyla. Yet, their split is almost certainly at least several millennia older than the rather recent expansion signal of the N3a3’6 sub-clade, suggesting that its spread had little to do with linguistic affinities of men carrying the N3a3’6 lineages.

Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29.

It was thus clear long ago that N1c-L392 lineages must have expanded explosively in the 5th millennium through Northern Eurasia, probably from a region to the north of Lake Baikal, and that this expansion – and succeeding ones through Northern Eurasia – may not be associated to any known language group until well into the common era.


The Pazyryk culture spoke a “Uralic-Altaic” language… because haplogroup N

Matrilineal and patrilineal genetic continuity of two iron age individuals from a Pazyryk culture burial, by Tikhonov, Gurkan, Peler, & Dyakonov, Int J Hum Genet (2019).

Relevant excerpts (emphasis mine):

Of particular interest to the current study are the archaeogenetic investigations associated with the exemplary mound 1 from the Ak-Alakha-1 site on the Ukok Plateau in the Altai Republic (Polosmak 1994a; Pilipenko et al. 2015). This typical Pazyryk “frozen grave” was dated around 2268±39 years before present (Bln-4977) (Gersdorff and Parzinger 2000). Initial anthropological findings suggested an undisturbed dual inhumation comprising “a middle-aged European- type man” and “a young European-type woman”, both of whom presumably had a high social status among the Pazyryk elite (Polosmak 1994a). In contrast, recent archaeogenetic investigations revealed somewhat contradicting results since analyses at both the amelogenin gene and Y-chromosome short tandem repeat (Y-STR) loci clearly established that both Scythians were actually males and had paternal and maternal lineages that are typically associated with eastern Eurasians (Pilipenko et al. 2015). Through the use of mitochondrial, autosomal and Y-chromosomal DNA typing systems, it was possible to not only investigate the potential relationships between the two ancient Scythians but also to gather initial phylogenetic and phylogeographic information on their paternal and maternal lineages (Pilipenko et al. 2015).

Based on the Y-STR data available, the two Ak-Alakha-1 Scythians had an in silico haplogroup assignment of N, which first appeared in southeastern Asia and then expanded in southern Siberia (Rootsi et al. 2007; Pilipenko et al. 2015).

Current study aims to investigate the geographical distributions of the ancient and contemporary matches and close genetic variants of the maternal and paternal lineages observed in the two Scythians from the exemplary Ak-Alakha-1 kurgan.

Geographic distribution of the exact matches with the Scythian (PZ1) Y-STR (17-loci) and mtDNA (HVR1) haplotypes detailed in Tables 1a and 1b. Boundaries of the Altai Republic within the Russian Federation are shown with dashed lines, along with an approximate position of the Ak-Alakha-1 burial site, which is denoted with an ‘x’ on the map. Countries shaded in gray refer to those that have full 17-loci Y-STR and/or mtDNA HVR1 match(es) with the PZ1 haplotypes. Inset in the top and bottom left corners are the Altai and Uzbekistan maps, respectively, both scaled-up to allow better representation of the samples derived from these countries. There were no other exact matches from around parts of the globe that are not shown on the map, except for a single contemporary mtDNA haplotype from US, which presumably belonged to an ‘East Asian’ individual. Inset in the top right corner provides a scale for the number of haplotypes observed, but only up to three samples, which is valid for the entire map as well as the inset maps, irrespective of the differences in the scales of the actual map and inset maps themselves. For sample pools larger than three, the same linear scale provided on the inset in the top right corner still applies; please refer to Tables 1a and b for actual sample pool sizes. Samples are depicted on the entire map and the insets maps with circles and diamonds for the Y-STR and mtDNA haplotypes, respectively. Black and white coloring for samples depict whether the haplotype(s) are contemporary or ancient, respectively. Location of the PZ1 mtDNA and Y-STR haplotypes are shown on top of each other.

In response to aggressive Xiongnu expansion into the Altai region around the 2nd century BCE, some members of the Pazyryk culture may have started moving up North, and eventually reached the Vilyuy River at the beginning of 1st century CE. Notably, there is clear population continuity between the Uralic people such as Khants, Mansis and Nganasans, Paleo-Siberian people such as Yukaghirs and Chuvantsi, and the Pazyryk people even when considering just the two mtDNA and Y-STR haplotypes from the Ak-Alakha-1 mound 1 kurgan (Tables 1a, b, Table 2, Fig. 1). These concepts are also in agreement with the famous Yakut ethnographer Ksenofontov, who suggested that technologies associated with ferrous metallurgy were brought to the Vilyuy Valley at around 1st century CE by the first (proto)Turkic-speaking pioneers (Ksenofontov 1992). Yakut ethnogenesis per se possibly involved two major stages, the first being the proto-Turkic epoch through the arrival of Scytho-Siberian culture originating from Southern Siberia, such as that associated with the Pazyryk culture and the second being the proper Turkic epoch.

Nomadic peoples from the Central Asian steppes are East Iranian speakers whenever they are of haplogroup R1a, but “Uralic-Altaic” speakers whenever they are of haplogroup N. True story.

So they followed a haplogroup ca. 37,000 years old, in a sample dated some 2,300 years ago, whose precise subclade and ancient history is (yet) unknown, compared it to present-day populations, and the result is that they spoke “Uralic-Altaic” because haplogroup N and continuity. Sound familiar? Yep, it’s the kind of reasoning you might be reading right now about Iberian Bell Beakers, about Bell Beakers, or even about Yamna and their relationship to a Vasconic-Caucasian language, based on haplogroup R1b in modern Basques. Another true story.

Anyway, based on the multi-ethnic federations created during this time, and on the ancestral components visible in the different groups (see a post on Karasuk by Chad Rohlfsen), the Pazyryk culture’s language is unknown, and it could be, as a matter of fact (apart from the obvious East Iranian connection):

We also know that haplogroup N and Siberian ancestry expanded into cultures of Northern Eurasia precisely with the creation of the new social paradigm of chiefdoms and alliances, roughly at the same time as Scythians expanded, with the first sample of haplogroup N in Hungary appearing with Cimmerians.

Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

While the study of modern populations is interesting, the problem I have with the paper is the reasoning of “language of ancient haplogroups based on modern populations”, and especially with the concept of “Uralic-Altaic”, and the highly hypothetic “Proto-Turkic” nomadic steppe pastoralists before “Hunnic Turkic” (which is itself questionable), before the “real Turkic” layer (being the authors apparently Turkic themselves), and the supposed “continuity” of Eastern Uralic and Turkic groups in Asia since the Out of Africa migration. The combination of all of this in the same text is just disturbing.

If you look at it from the bright side, at least these samples were not of haplogroup R1a-Z280, or we would be talking about great Slavonic Scythians showing continuity from Russia with love, as the paper threatened to do in its introduction…

If you are enjoying the comeback of this retro 2000s comedy in 2019 (based on the classic nativist “R1a=IE”, “R1b=Basque”, and “N=Uralic” combo) it’s because you – like me – are putting yourself in this guy’s shoes every time a new episode of funny self-destruction appears:



The traditional multilingualism of Siberian populations


New paper (behind paywall) A case-study in historical sociolinguistics beyond Europe: Reconstructing patterns of multilingualism in a linguistic community in Siberia, by Khanina and Meyerhoff, Journal of Historical Sociolinguistics (2018) 4(2).

The Nganasans have been eastern neighbours of the Enets for at least several centuries, or even longer, as indicated in Figures 2 and 3.10 They often dwelled on the same grounds and had common households with the Enets. Nganasans and Enets could intermarry (Dolgikh 1962a), while the Nganasans did not marry representatives of any other ethnic groups. As a result, it was not unusual for Enets and Nganasans to live in the same tent and/or to have common relatives. Such close contact must clearly have favoured acquisition of Nganasan by Enets children and of Enets by Nganasan children from an early age.

The Nenets have been close neighbours of all the Enets groups more recently (Figures 2 and 3). In the seventeenth century, there were only warlike contacts between the Nenets and the Enets, while in the eighteenth century the Nenets started to live on the traditional Enets lands, on the western bank of the Yenisey river, with more peaceful interactions reported. (…) Since then the same situation of intermarriages and common households has been attested for these western Enets neighbours as with the Nganasans (Dolgikh 1962a), and this has also created conditions favouring early acquisition of both languages by children.

The Enets and neighbouring peoples in the middle of the seventeenth century; map by Yuri Koryakov (http://lingvarium.org), adapted from Dolgikh (1960).

As for the Evenkis and the Selkups, the Enets had regular contact with these peoples (Figures 2 and 3), though they were not their close neighbours: in fact, geographically, the Selkups were not neighbours at all by the end of the nineteenth century. The Evenkis had always been direct south-eastern neighbours (…) Contacts with Selkups could be trade based, or they could simply be occasional encounters on adjacent lands. (…) [With Evenkis] some sporadic contacts were similar in nature to those with the Selkups, however many other contacts were war-like. Traditionally, the Enets considered the Evenkis to have a martial spirit, and the Evenkis were known as being accustomed to stealing Enets women. A number of stories in Dolgikh (1961) concern Evenkis stealing Enets women and Enets men going to Evenki lands to find and return them. It is clear, therefore, that if Evenki or Selkup were acquired by the Enets, this happened later in life, and this acquisition required particular conditions for it, i. e. it was not readily acquired through regular or harmonious contact (as with Nganasan).

In a pattern similar to the situation with Nganasan, in the second half of the twentieth century most Enets elders could speak Nenets (Vasil’jev 1963; Eugen Helimski p.c., the lead author’s fieldwork experience).

The Enets and neighbouring indigenous peoples: end of the nineteenth century – beginning of the twentieth century; map by Yuri Koryakov (http://lingvarium.org), adapted from
Bruk (1961).

At the start of the period studied, in the 1850s, the Enets linguistic community could be characterized as multilingual in the following five languages: Enets, Nganasan, Nenets, Evenki, and Russian (Figure 4). The number of Enets individuals who were able to converse in each of the other four languages differed and generally was a property of the individuals who had regular social contact with speakers of the other four languages. (…) Note that in all cases of interethnic communication there could well be a lack of perfect proficiency in a language for which the multilingualism is ascribed to the Enets community or Enets individuals: as Braunmüller and Ferraresi (2003: 3) put it: “Nobody would ever have expected to know other languages ‘perfectly’ (whatever that may mean in detail). This expectation seems to be a quite modern idea when discussing issues of bilingualism or multilingualism in general”.

The complex interactions of Siberian populations during the 17th-19th centuries offer a reasonably good picture of the life in the centuries before these accounts, when Samoyedic peoples migrated northwards, and Palaeo-Siberian and Tungusic populations were gradually assimilated into their Uralic culture and language, through intermarriage and close contacts among naturally nomadic populations.

You can read more about the origin of Nganasans – and other modern Samoyedic-speaking peoples – as Palaeo-Siberian populations (hence probably speaking Palaeo-Siberian languages more or less related to each other) who adopted Samoyedic languages in Wikipedia, which offers a summary of Boris Dolgikh’s On the Origin of the Nganasans (1962). Dolgikh is one of the main sources of information for these Siberian groups, as is reflected in this paper, too.

Map of distribution of Samoyedic languages (red) in the XVII century (approximate; hatching) and in the end of XX century (continuous background). Notice late expansion to north and west into the typical territory where Nomadic peoples roamed. Modified from Wikipedia, with the Tuva region labelled (see a recent genetic study on the Tuva region, one of the most likely to be originally Samoyedic-speaking).

Why some geneticists are using Nganasans – in fact the latest Palaeo-Siberians to learn Samoyedic, already during historic times – as a model for the expansion of Uralic? I have never understood that. Among the many cases of circular reasoning based on modern populations that have been created since the start of population genomics, the use of Nganasans as a model of ‘true Uralians’ is probably the most clearly frontally opposed to what was well known in anthropology before geneticists started this new field.

If Kallio is right, most “eastern homeland” proposals are due to the interest of Russian nationalism, which is sadly quite likely to be influencing genetic research, too. It’s like letting Hindu nationalists influence publications on steppe-related migrations. As David Reich puts it in his book:

The tensest twenty-four hours of my scientific career came in October 2008, when my collaborator Nick Patterson and I traveled to Hyderabad to discuss these initial results with Singh and Thangaraj.

Our meeting on October 28 was challenging. Singh and Thangaraj seemed to be threatening to nix the whole project. Prior to the meeting, we had shown them a summary of our findings, which were that Indians today descend from a mixture of two highly divergent ancestral populations, one being “West Eurasians.” Singh and Thangaraj objected to this formulation because, they argued, it implied that West Eurasian people migrated en masse into India. They correctly pointed out that our data provided no direct evidence for this conclusion. They even reasoned that there could have been a migration in the other direction, of Indians to the Near East and Europe. (…) They also implied that the suggestion of a migration from West Eurasia would be politically explosive. They did not explicitly say this, but it had obvious overtones of the idea that migration from outside India had a transformative effect on the subcontinent.

If you add the nation-building myths in Eastern Europe (like the Russian Euro-Asian movements) to the now prevalent Indo-European—CWC idea, and a Siberian ancestry peaking in the Arctic, with little demographic or political relevance of modern Uralic-speaking peoples, you have clearly an explosive sociopolitical mix (based on a mythical Pan-Eurasian Indo-Slavonic) in the making…

Russia as the Euro-Asian Empire. Source: A. Dugin (1999), p. 415. From Eberhardt (2018).


The Tungusic Ulchi population probably linked to haplogroup C2b1a


New paper (behind paywall) Demographic and Genetic Portraits of the Ulchi Population, by Balanovska et al. Russian Journal of Genetics (2018) 54(10):1245–1253.

Interesting excerpts (emphasis mine):

Marital structure. The intensity of interethnic marriages puts the existence of the Ulchi population at risk. The colorful ethnic composition of the Ulchi settlements is reflected in the marriage structure [see featured image]. We found that the proportion of single-ethnic marriages of the Ulchi is on average 51%. The greatest number of such marriages takes place in the village of Bulava. Marriages of Ulchi with Russians are in second place. Marriages with indigenous peoples of the Far East, Nanais, Nivkhs, Evenks, and others, are in third place. Thus, almost half of the Ulchi marriages are with representatives of other nationalities. Such a significant level of interethnic mixing makes it possible to talk about intense processes of assimilation of this indigenous people and puts to the forefront the problem of loss of the unique gene pool of the Ulchi.

Haplogroup C (its branch M48) was genotyped for its five subbranches with markers M86, B470, F13686, B93, and the marker at position 16645386 (GRCh37), which was found by our team for the first time. Variant B93 is rare in the Ulchi, and 14 samples (that is, more than a quarter of the entire gene pool of the Ulchi, Fig. 2) belong to M86 and its subvariants. Therefore, we genotyped STR markers of C-M86 carriers for the Ulchi and neighboring Amur populations and analyzed the relationships of detected haplotypes on the phylogenetic network (Fig. 3, STR haplotypes are available from authors upon request).

(…) On the network, different clusters are associated with different populations: most Mongols belong to F13686, all Evenks of the Amur River region with this haplogroup form a subcluster within F13686, and part of Upper Nanais is the basis of cluster B470.

Frequencies of haplogroups of Y chromosome in the Ulchi population. The nomenclature of haplogroups is given according to [9]. Markers that are not in bold type were not typed, but are ancestral for these nodes.

An estimate of the age of the entire haplogroup C-F12355 obtained from the data of genome-wide sequencing of seven specimens is 2400 ± 500 years (O.P. Balanovsky, unpublished data). That is, the common ancestor of all the studied representatives of various peoples with this haplogroup lived not so long ago, the first millennium BC. The formation time of cluster F13686 is somewhat later: 1990 ± 600 years.

(…) obvious traces of the interaction of the gene pool of the Ulchi with neighboring and remote peoples of the Far East and Central Asia in the time range of the last one to three thousand years were revealed. This shows that the results of work [4] on the similarity of the gene pool of the ancient (age of 7500 years) Neolithic genomes of the Amur River region to the Ulchi probably indicate not the uniqueness of the Ulchi, but the fact that this ancient gene pool was preserved in a vast circle of populations of the Far East interwoven with gene flows both with each other and, to a lesser extent, with populations of Central Asia.

The expansion of C2b1a2a-M86 (among many basal C2-M217 samples) is thus possibly associated with the spread of Tungusic, which puts C2b1a at the root of the Micro-Altaic expansion, with a formation date ca. 12700 BC, TMRCA 12500 BC (and not only Mongolian). This shows that Micro-Altaic is connected with a local population which shows a clear continuity since at least 3500 BC. This, however, tells us little about the origin of the language.

See also the recent ISBA presentation on the Houtaomuga site, Neolithic transition in Northeast Asia; and also Bronze Age population dynamics and rise of dairy pastoralism in Mongolia, Impact of colonization in north-eastern Siberia

That leaves the ancestral N lineages found among Far East Asians as Palaeo-Siberian in origin, and their late expansions to the west not particularly linked with any of the known Palaeo-Siberian ethnolinguistic groups, let alone a supposed “Uralo-Altaic” language…